化工进展 ›› 2023, Vol. 42 ›› Issue (11): 5993-6004.DOI: 10.16085/j.issn.1000-6613.2022-2276
• 资源与环境化工 • 上一篇
焦路畅1(), 卫月星1, 张禹洵1, 秦育红1(), 崔丽萍1, 燕可洲2, 郭舒岗3, 申浩楠1, 贺冲1
收稿日期:
2022-12-07
修回日期:
2023-02-08
出版日期:
2023-11-20
发布日期:
2023-12-15
通讯作者:
秦育红
作者简介:
焦路畅(1999—),女,硕士研究生,研究方向为工业固废的资源化应用。E-mail:jiaoluchang1087@link.tyut.edu.cn。
基金资助:
JIAO Luchang1(), WEI Yuexing1, ZHANG Yuxun1, QIN Yuhong1(), CUI Liping1, YAN Kezhou2, GUO Shugang3, SHEN Haonan1, HE Chong1
Received:
2022-12-07
Revised:
2023-02-08
Online:
2023-11-20
Published:
2023-12-15
Contact:
QIN Yuhong
摘要:
以航天炉煤气化细渣(FS)为载体,对其经简单水洗后,通过超声浸渍法在其表面负载CoO制备了分散性良好的煤气化细渣负载型复合催化剂CoO@FSC,并将其用于活化过氧化单硫酸盐(PMS)高效降解含双酚A(BPA)废水。结果表明,CoO颗粒均匀分布在细渣表面,避免了金属氧化物在实际催化降解过程中的聚集,为活化PMS提供了更多的活性位点。所制备催化剂CoO@FSC可在30℃、催化剂投加量0.2g/L、PMS投加量6mmol/L、BPA浓度50mg/L的条件下,25min内实现BPA的完全降解,且降解过程可以适应从弱酸到碱性基质的广泛pH范围。通过自由基淬灭实验发现,BPA的催化降解路径中的主要活性物质为1O2和·O
中图分类号:
焦路畅, 卫月星, 张禹洵, 秦育红, 崔丽萍, 燕可洲, 郭舒岗, 申浩楠, 贺冲. 煤气化细渣负载CoO活化PMS高效降解双酚A[J]. 化工进展, 2023, 42(11): 5993-6004.
JIAO Luchang, WEI Yuexing, ZHANG Yuxun, QIN Yuhong, CUI Liping, YAN Kezhou, GUO Shugang, SHEN Haonan, HE Chong. Coal gasification fine slag supported CoO catalyst for the efficient degradation of bisphenol A by activating peroxymonosulfate process[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5993-6004.
组分 | 质量分数/% |
---|---|
SiO2 | 31.28 |
Fe2O3 | 28.15 |
Al2O3 | 15.84 |
SO3 | 4.04 |
CaO | 13.65 |
TiO2 | 1.73 |
K2O | 1.73 |
P2O5 | 1.06 |
Na2O | 0.87 |
Cl | 0.58 |
MgO | 0.59 |
ZrO2 | 0.18 |
SrO | 0.14 |
MnO | 0.09 |
ZnO | 0.07 |
表1 FS的化学组成及含量
组分 | 质量分数/% |
---|---|
SiO2 | 31.28 |
Fe2O3 | 28.15 |
Al2O3 | 15.84 |
SO3 | 4.04 |
CaO | 13.65 |
TiO2 | 1.73 |
K2O | 1.73 |
P2O5 | 1.06 |
Na2O | 0.87 |
Cl | 0.58 |
MgO | 0.59 |
ZrO2 | 0.18 |
SrO | 0.14 |
MnO | 0.09 |
ZnO | 0.07 |
样品 | SBET/m2·g-1 | 孔体积/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
FS | 1.688 | 0.001 | 2.736 |
FSC | 32.726 | 0.026 | 3.178 |
表2 FS及FSC的比表面积、孔结构和孔径
样品 | SBET/m2·g-1 | 孔体积/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
FS | 1.688 | 0.001 | 2.736 |
FSC | 32.726 | 0.026 | 3.178 |
图8 BPA降解过程中主要自由基的作用实验条件:[BPA]0=50mg/L,[PMS]0=6mmol/L,[CoO@FSC]0=0.2g/L,T=30℃,初始pH=6.0,[EtOH]0=0.4mol/L,[TBA]0=0.4mol/L,[p-BQ]0=0.1mol/L,[FFA]0=0.2mol/L
1 | SHI Da, ZHANG Jianbo, HOU Xinjuan, et al. Adsorption mechanism of a new combined collector (PS-1) on unburned carbon in gasification slag[J]. Science of the Total Environment, 2022, 818: 151856. |
2 | LIU Xiaodong, JIN Zhengwei, JING Yunhuan, et al. Review of the characteristics and graded utilisation of coal gasification slag[J]. Chinese Journal of Chemical Engineering, 2021, 35: 92-106. |
3 | WANG Yafeng, TANG Yuegang, HUAN Binbin, et al. Mineralogical examination of the entrained-flow coal gasification residues and the feed coals from northwest China[J]. Advanced Powder Technology, 2021, 32(11): 3990-4003. |
4 | JI Wenxin, ZHANG Shiyue, ZHAO Pengde, et al. Green synthesis method and application of NaP zeolite prepared by coal gasification coarse slag from Ningdong[J]. Applied Sciences, 2020, 10(8): 2694. |
5 | YUAN Ning, ZHAO Aijing, HU Zekai, et al. Preparation and application of porous materials from coal gasification slag for wastewater treatment: A review[J]. Chemosphere, 2022, 287: 132227. |
6 | LIU Shuo, WEI Jilun, CHEN Xingtong, et al. Low-cost route for preparing carbon-silica composite mesoporous material from coal gasification slag: Synthesis, characterization and application in purifying dye wastewater[J]. Arabian Journal for Science and Engineering, 2020, 45(6): 4647-4657. |
7 | WU Yuhua, MA Yulong, SUN Yonggang, et al. Graded synthesis of highly ordered MCM-41 and carbon/zeolite composite from coal gasification fine residue for crystal violet removal[J]. Journal of Cleaner Production, 2020, 277: 123186. |
8 | ZHU Dandan, ZUO Jing, JIANG Yinshan, et al. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing[J]. Science of the Total Environment, 2020, 707: 136102. |
9 | MA Xianyao, LI Yingxue, XU Defu, et al. Simultaneous adsorption of ammonia and phosphate using ferric sulfate modified carbon/zeolite composite from coal gasification slag[J]. Journal of Environmental Management, 2022, 305: 114404. |
10 | 徐怡婷, 柴晓利. 铁负载煤气化渣基活性炭非均相Fenton体系降解甲基橙染料废水的工艺优化及其机理研究[J]. 山东化工, 2016, 45(22): 159-164. |
XU Yiting, CHAI Xiaoli. Kinetic studies of degradation of methyl orange dye wastewater by heterogeneous Fenton-like using coal gasification slag-based activated carbon-Fe[J]. Shandong Chemical Industry, 2016, 45(22): 159-164. | |
11 | WANG Ji, KONG Lingxue, BAI Jin, et al. Characterization of slag from anthracite gasification in moving bed slagging gasifier[J]. Fuel, 2021, 292: 120390. |
12 | XU Peng, WANG Peng, LI Xiang, et al. Efficient peroxymonosulfate activation by CuO-Fe2O3/MXene composite for atrazine degradation: Performance, coexisting matter influence and mechanism[J]. Chemical Engineering Journal, 2022, 440: 135863. |
13 | MA Chenyang, GUO Yajie, ZHANG Daofang, et al. Metal-nitrogen-carbon catalysts for peroxymonosulfate activation to degrade aquatic organic contaminants: Rational design, size-effect description, applications and mechanisms[J]. Chemical Engineering Journal, 2023, 454: 140216. |
14 | ZHENG Xiaoxian, NIU Xiaojun, ZHANG Dongqing, et al. Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways: A review[J]. Chemical Engineering Journal, 2022, 429: 132323. |
15 | 田婷婷, 李朝阳, 王召东, 等. 过渡金属活化过硫酸盐降解有机废水技术研究进展[J]. 化工进展, 2021, 40(6): 3480-3488. |
TIAN Tingting, LI Chaoyang, WANG Shaodong, et al. Research progress of transition metal activated persulfate to degrade organic wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3480-3488. | |
16 | LI Di, ZHAO Qianqian, REN Qiaoxia, et al. Double activating peroxymonosulfate with g-C3N4/Fe2(MoO4)3 to enhance photocatalytic activity under visible light irradiation[J]. New Journal of Chemistry, 2021, 45(35): 15818-15830. |
17 | ZHAO Chenhui, SHAO Binbin, YAN Ming, et al. Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: A review[J]. Chemical Engineering Journal, 2021, 416: 128829. |
18 | 莫贞林, 曾鸿鹄, 林华, 等. 高锰酸钾改性桉木生物炭对Pb(Ⅱ)的吸附特性[J]. 环境科学, 2021, 42(11): 5440-5449. |
MO Zhenlin, ZENG Honghu, LIN Hua, et al. Adsorption characteristics of Pb(Ⅱ) on eucalyptus biochar modified by potassium permanganate[J]. Environmental Science, 2021, 42(11): 5440-5449. | |
19 | SAMIR Brahim, BAKHTA Soumia, BOUAZIZI Nabil, et al. TBO degradation by heterogeneous Fenton-like reaction using Fe supported over activated carbon[J]. Catalysts, 2021, 11(12): 1456. |
20 | LI Chunquan, WANG Sidi, ZHANG Xiangwei, et al. In-situ preparation of coal gangue-based catalytic material for efficient peroxymonosulfate activation and phenol degradation[J]. Journal of Cleaner Production, 2022, 374: 133926. |
21 | GIANNAKIS S, LIN K Y, GHANBARI F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes(SR-AOPs)[J]. Chemical Engineering Journal, 2021, 406: 127083. |
22 | MORADI Mona, KAKAVANDI Babak, BAHADORAN Ashkan, et al. Intensification of persulfate-mediated elimination of bisphenol A by a spinel cobalt ferrite-anchored g-C3N4 S-scheme photocatalyst: Catalytic synergies and mechanistic interpretation[J]. Separation and Purification Technology, 2022, 285: 120313. |
23 | LI Hongchao, SHAN Chao, PAN Bingcai. Fe(Ⅲ)-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species[J]. Environmental Science and Technology, 2018, 52(4): 2197-2205. |
24 | XU Siyu, WEN Liangtao, YU Chen, et al. Activation of peroxymonosulfate by MnFe2O4@BC composite for bisphenol A degradation: The coexisting of free-radical and non-radical pathways[J]. Chemical Engineering Journal, 2022, 442: 136250. |
25 | GAN Lu, WANG Linjie, XU Lijie, et al. Fe3C-porous carbon derived from Fe2O3 loaded MOF-74(Zn) for the removal of high concentration BPA: The integrations of adsorptive/catalytic synergies and radical/non-radical mechanisms[J]. Journal of Hazardous Materials, 2021, 413: 125305. |
26 | JIANG Zhuorui, LI Yuxin, ZHOU Yuxiao, et al. Co3O4-MnO2 nanoparticles moored on biochar as a catalyst for activation of peroxymonosulfate to efficiently degrade sulfonamide antibiotics[J]. Separation and Purification Technology, 2022, 281: 119935. |
27 | LI Bo, WANG Yunfei, ZHANG Lu, et al. Enhancement strategies for efficient activation of persulfate by heterogeneous cobalt-containing catalysts: A review[J]. Chemosphere, 2022, 291: 132954. |
28 | 马爱玲, 黄光许, 耿乾浩, 等. 硼/氮共掺杂多孔碳纳米片的制备及其电化学性能[J]. 化工进展, 2021, 40(8): 4388-4396. |
MA Ailing, HUANG Guangxu, GENG Qianhao, et al. Preparation and electrochemical properties of B/N Co-doped porous carbon nanosheets[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4388-4396. | |
29 | DOU Ruyan, CHENG Hao, MA Jianfeng, et al. Catalytic degradation of methylene blue through activation of bisulfite with CoO nanoparticles[J]. Separation and Purification Technology, 2020, 239: 116561. |
30 | XI Tianhao, LI Xiaodan, ZHANG Qihui, et al. Enhanced catalytic oxidation of 2,4-dichlorophenol via singlet oxygen dominated peroxymonosulfate activation on CoOOH@ Bi2O3 composite[J]. Frontiers of Environmental Science & Engineering, 2021, 15(4): 55. |
31 | MIAO Zekai, WU Jianjun, ZHANG Yixin, et al. Chemical characterizations of different sized mineral-rich particles in fine slag from Entrained-flow gasification[J]. Advanced Powder Technology, 2020, 31(9): 3715-3723. |
32 | HOU Jifei, HE Xiudan, ZHANG Shengqi, et al. Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review[J]. Science of the Total Environment, 2021, 770: 145311. |
33 | LI Kai, MA Shuanglong, XU Shengjun, et al. The mechanism changes during bisphenol A degradation in three iron functionalized biochar/peroxymonosulfate systems: The crucial roles of iron contents and graphitized carbon layers[J]. Journal of Hazardous Materials, 2021, 404: 124145. |
34 | LUO Haoyu, FU Hengyi, YIN Hua, et al. Carbon materials in persulfate-based advanced oxidation processes: The roles and construction of active sites[J]. Journal of Hazardous Materials, 2022, 426: 128044. |
35 | 祁元, 徐欣蓉, 阮玮, 等. 改性活性碳纤维对苯胺吸附特性分析[J]. 化工进展, 2022, 41(S1): 622-630. |
QI Yuan, XU Xinrong, RUAN Wei, et al. Characterization of aniline adsorption by modified activated carbon fiber[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 622-630. | |
36 | TANG Juntao, WANG Jianlong. Metal organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine[J]. Environmental Science & Technology, 2018, 52(9): 5367-5377. |
37 | 白明华, 李一迪, 刘锐, 等. 水热法制备氧化钴/泡沫镍材料及电容性能分析[J]. 化工进展, 2020, 39(10): 4111-4118. |
BAI Minghua, LI Yidi, LIU Rui, et al. Preparation and properties of cobalt oxide/nickel foam materials by hydrothermal method[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4111-4118. | |
38 | LIN Xueming, YANG Xingjian, HU Zheng, et al. Highly effective removal of bisphenol A by greigite/persulfate in spiked soil: Heterogeneous soil/water system balance and degradation[J]. Chemosphere, 2021, 280: 130655. |
39 | MARYAM M A, NEZAMADDIN M. Catalytic degradation of mefenamic acid by peroxymonosulfate activated with MWCNTs-CoFe2O4: Influencing factors, degradation pathway, and comparison of activation processes[J]. Environmental Science and Pollution Research, 2020, 27(36): 45324-45335. |
40 | CHEN Chen, JIANG Caiyun, CAO Wang, et al. Insight into the difference in activation of peroxymonosulfate with nitrogen-doped and non-doped carbon catalysts to degrade bisphenol A[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105492. |
41 | KAKAVANDI Babak, ALAVI Saba, GHANBARI Farshid, et al. Bisphenol A degradation by peroxymonosulfate photo-activation coupled with carbon-based cobalt ferrite nanocomposite: Performance, upgrading synergy and mechanistic pathway[J]. Chemosphere, 2022, 287: 132024. |
42 | LUO Yuye, LIU Cheng, MEHMOOD Tariq, et al. Activation of permonosulfate by Co-Fe3O4 composite catalyst for amino acid removal: Performance and mechanism of Co-Fe3O4 nanoparticles[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106036. |
43 | TAN Jianke, XU Chengji, ZHANG Xiaodan, et al. MOFs-derived defect carbon encapsulated magnetic metallic Co nanoparticles capable of efficiently activating PMS to rapidly degrade dyes[J]. Separation and Purification Technology, 2022, 289: 120812. |
44 | YU Yaqun, JI Yuefei, LU Junhe, et al. Degradation of sulfamethoxazole by Co3O4-palygorskite composites activated peroxymonosulfate oxidation[J]. Chemical Engineering Journal, 2021, 406: 126759. |
45 | LI Yinghao, ZHU Wenjie, GUO Qian, et al. Highly efficient degradation of sulfamethoxazole (SMX) by activating peroxymonosulfate (PMS) with CoFe2O4 in a wide pH range[J]. Separation and Purification Technology, 2021, 276: 119403. |
46 | KLU P K, NASIR KHAN M A, WANG C, et al. Mechanism of peroxymonosulfate activation and the utilization efficiency using hollow (Co, Mn)3O4 nanoreactor as an efficient catalyst for degradation of organic pollutants[J]. Environmental Research, 2022, 207: 112148. |
47 | PAN Cong, FU Libin, DING Yaobin, et al. Homogeneous catalytic activation of peroxymonosulfate and heterogeneous reductive regeneration of Co2+ by MoS2: The pivotal role of pH[J]. Science of the Total Environment, 2020, 712: 136447. |
48 | 张燕, 王淼, 赵佳辉, 等. 氮掺杂石墨烯/碳纳米管/无定形炭复合材料制备及其电化学性能[J]. 化工进展, 2022, 41(10): 5501-5509. |
ZHANG Yan, WANG Miao, ZHAO Jiahui, et al. Preparation and electrochemical properties of nitrogen-doped graphene/carbon nanotubes/amorphous carbon composites[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5501-5509. | |
49 | CHENG Weiwei, GUAN Weijiang, LIN Yanjun, et al. Rapid discrimination of adsorbed oxygen and lattice oxygen in catalysts by the cataluminescence method[J]. Analytical Chemistry, 2022, 94(2): 1382-1389. |
50 | REN Hejun, LIU Hongwei, CUI Tingchen, et al. Boosting the activation of Peroxymonosulfate and the degradation of metronidazole over FeCo2O4 quantum dots anchored on β-FeOOH Nanosheets: Inspired from octahedral Co(Ⅱ) with missing angle[J]. Chemical Engineering Journal, 2022, 431: 133803. |
51 | ZHAO Lele, ZHANG Jiaming, ZHANG Zhiping, et al. Co3O4 crystal plane regulation to efficiently activate peroxymonosulfate in water: The role of oxygen vacancies[J]. Journal of Colloid and Interface Science, 2022, 623: 520-531. |
52 | LI Min, ZHANG Hao, LIU Zhiliang, et al. Surface lattice oxygen mobility inspired peroxymonosulfate activation over Mn2O3 exposing different crystal faces toward bisphenol A degradation[J]. Chemical Engineering Journal, 2022, 450: 138147. |
53 | CHEN Hanxiao, XU Yin, ZHU Kangmeng, et al. Understanding oxygen-deficient La2CuO4-δperovskite activated peroxymonosulfate for bisphenol A degradation: The role of localized electron within oxygen vacancy[J]. Applied Catalysis B: Environmental, 2021, 284: 119732. |
54 | LI Yi, MA Shuanglong, XU Shengjun, et al. Novel magnetic biochar as an activator for peroxymonosulfate to degrade bisphenol A: Emphasizing the synergistic effect between graphitized structure and CoFe2O4 [J]. Chemical Engineering Journal, 2020, 387: 124094. |
55 | REZAEI S S, KAKAVANDI B, NOORISEPEHR M, et al. Photocatalytic oxidation of tetracycline by magnetic carbon-supported TiO2 nanoparticles catalyzed peroxydisulfate: Performance, synergy and reaction mechanism studies[J]. Separation and Purification Technology, 2021, 258: 117936. |
56 | LIN K A, ZHANG Z Y. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal, 2017, 313: 1320-1327. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[7] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[11] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[14] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[15] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |