1 |
VAN DEN BERG R, PARMENTIER T E, ELKJÆR C F, et al. Support functionalization to retard Ostwald ripening in copper methanol synthesis catalysts[J]. ACS Catalysis, 2015, 5(7): 4439-4448.
|
2 |
RUCKENSTEIN E, PULVERMACHER B. Growth kinetics and the size distributions of supported metal crystallites[J]. Journal of Catalysis, 1973, 29(2): 224-245.
|
3 |
LIFSHITZ I M, SLYOZOV V V. The kinetics of precipitation from supersaturated solid solutions[J]. Journal of Physics and Chemistry of Solids, 1961, 19(1/2): 35-50.
|
4 |
AMANN P, KLÖTZER B, DEGERMAN D, et al. The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst[J]. Science, 2022, 376(6593): 603-608.
|
5 |
SHYAM K, RAMÍREZ P J, CHEN J G, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355(6331): 1296-1299.
|
6 |
SEBASTIAN K, MAX T, HANNE F, et al. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis[J]. Science, 2016, 352(6288): 969-974.
|
7 |
MALTE B, FELIX S, IGOR K, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012, 336(6083): 893-897.
|
8 |
SHAO Yuewen, WANG Junzhe, DU Huining, et al. Importance of magnesium in Cu-based catalysts for selective conversion of biomass-derived furan compounds to diols[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5217-5228.
|
9 |
TOYIR J, DE LA PISCINA P R, FIERRO J L G, et al. Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts: Influence of support and promoter[J]. Applied Catalysis B: Environmental, 2001, 29(3): 207-215.
|
10 |
LIU Xianyun, TOYIR J, DE LA PISCINA P R, et al. Hydrogen production from methanol steam reforming over Al2O3- and ZrO2-modified CuOZnOGa2O3 catalysts[J]. International Journal of Hydrogen Energy, 2017, 42(19): 13704-13711.
|
11 |
彭桂芳. Ba改性铜基复合氧化物的制备与三效催化性能的研究[D]. 汕头: 汕头大学, 2010.
|
|
PENG Guifang. Preparation and investigation on three-way catalytic properties of copper base composite oxide of Ba[D]. Shantou: Shantou University, 2010.
|
12 |
BANSODE A, TIDONA B, VON ROHR P R, et al. Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure[J]. Catalysis Science & Technology, 2013, 3(3): 767-778.
|
13 |
ZHANG Hui, ZHANG Guoyan, BI Xue, et al. Facile assembly of a hierarchical core@shell Fe3O4@CuMgAl-LDH (layered double hydroxide) magnetic nanocatalyst for the hydroxylation of phenol[J]. Journal of Materials Chemistry A, 2013, 1(19): 5934-5942.
|
14 |
SHI Zhisheng, TAN Qingqing, TIAN Chao, et al. CO2 hydrogenation to methanol over Cu-In intermetallic catalysts: Effect of reduction temperature[J]. Journal of Catalysis, 2019. 379: 78-89.
|
15 |
SHI Zhisheng, TAN Qingqing, WU Dongfang, et al. A novel core-shell structured CuIn@SiO2 catalyst for CO2 hydrogenation to methanol[J]. AIChE Journal, 2019, 65(3): 1047-1058.
|
16 |
高琪. 碱性助剂对铜基催化剂结构及CO2加氢合成甲醇催化活性的影响[D]. 银川: 宁夏大学, 2019.
|
|
GAO Qi. Effect of alkaline promoter on the structure of copper-based catalysts and the activity of CO2 hydrogenation to methanol[D]. Yinchuan: Ningxia University, 2019.
|
17 |
SŁOCZYŃSKI J, GRABOWSKI R, OLSZEWSKI P, et al. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2 [J]. Applied Catalysis A: General, 2006, 310: 127-137.
|
18 |
REN Hong, XU Chenghua, ZHAO Haoyang, et al. Methanol synthesis from CO2 hydrogenation over Cu/γ-Al2O3 catalysts modified by ZnO, ZrO2 and MgO[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 261-267.
|
19 |
BRANDS D S, POELS E K, BLIEK A. Ester hydrogenolysis over promoted Cu/SiO2 catalysts[J]. Applied Catalysis A: General, 1999, 184(2): 279-289.
|
20 |
王爱丽,贾星原,卢志鹏,等. 稀土元素(La,Ce,Nd)改性Cu/SiO2催化甲醇脱氢制备甲酸甲酯[J]. 精细石油化工, 2019, 36(1): 20-25.
|
|
WANG Aili, JIA Xingyuan, LU Zhipeng, et al. Methanol dehydrogenation to methyl formate catalyzed by rare earth element (La,Ce,Nd) modified Cu/SiO2 catalysts[J]. Speciality Petrochemicals, 2019, 36(1): 20-25.
|
21 |
VENUGOPAL A, PALGUNADI J, DEOG Jung Kwang, et al. Dimethyl ether synthesis on the admixed catalysts of Cu-Zn-Al-M (M=Ga, La, Y, Zr) and γ-Al2O3: The role of modifier[J]. Journal of Molecular Catalysis A: Chemical, 2009, 302(1/2): 20-27.
|
22 |
ZHENG Xinlei, LIN Haiqiang, ZHENG Jianwei, et al. Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol[J]. ACS Catalysis, 2013, 3(12): 2738-2749.
|
23 |
ZHANG X G, WILSON K, LEE A F. Heterogeneously catalyzed hydrothermal processing of C5—C6 sugars[J]. Chemical Reviews, 2016, 116(19): 12328-12368.
|
24 |
SONG Xiwen, YANG Chengsheng, LI Xianghong, et al. On the role of hydroxyl groups on Cu/Al2O3 in CO2 Hydrogenation[J]. ACS Catalysis, 2022, 12(22): 14162-14172.
|
25 |
HU Jun, LI Yangyang, ZHEN Yanping, et al. In situ FTIR and ex situ XPS/HS-LEIS study of supported Cu/Al2O3 and Cu/ZnO catalysts for CO2 hydrogenation[J]. Chinese Journal of Catalysis, 2021, 42(3): 367-375.
|
26 |
ZHANG Fan, LIU Yuan, XU Xiaoying, et al. Effect of Al-containing precursors on Cu/ZnO/Al2O3 catalyst for methanol production[J]. Fuel Processing Technology, 2018, 178: 148-155.
|
27 |
刘艳霞,王丽丽,王琪,等. γ-Al2O3对铜基甲醇合成催化剂的促进作用[J]. 厦门大学学报(自然科学版), 2007, 46(5): 661-664.
|
|
LIU Yanxia, WANG Lili, WANG Qi, et al. The promoting effect of γ-Al2O3 on copper-based catalysts for methanol synthesis[J]. Journal of Xiamen University (Natural Science). 2007, 46(5): 661-664.
|
28 |
LI Fengjiao, WANG Liguo, HAN Xiao, et al. Influence of support on the performance of copper catalysts for the effective hydrogenation of ethylene carbonate to synthesize ethylene glycol and methanol[J]. RSC Advances, 2016, 6(51): 45894-45906.
|
29 |
YIN Anyuan, GUO Xiuying, DAI Weilin, et al. The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: New insights on the synergetic effect between Cu0 and Cu+ [J]. The Journal of Physical Chemistry C, 2009, 113(25): 11003-11013.
|
30 |
WANG Shurong, GUO Wenwen, WANG Haixia, et al. Effect of the Cu/SBA-15 catalyst preparation method on methyl acetate hydrogenation for ethanol production[J]. New Journal of Chemistry, 2014, 38(7): 2792-2800.
|
31 |
CHEN Liangfeng, GUO Pingjun, QIAO Minghua, et al. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2008, 257(1): 172-180.
|
32 |
CHEN Liangfeng, GUO Pingjun, ZHU Lingjun, et al. Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol[J]. Applied Catalysis A: General, 2009, 356(2): 129-136.
|
33 |
ZHU Yifeng, ZHU Yulei, DING Guoqiang, et al. Highly selective synthesis of ethylene glycol and ethanol via hydrogenation of dimethyl oxalate on Cu catalysts: Influence of support[J]. Applied Catalysis A: General, 2013, 468: 296-304.
|
34 |
ANGELO L, KOBL K, TEJADA L M M, et al. Study of CuZnMO x oxides (M=Al, Zr, Ce, CeZr) for the catalytic hydrogenation of CO2 into methanol[J]. Comptes Rendus Chimie, 2015, 18(3): 250-260.
|
35 |
ARENA F, ITALIANO G, BARBERA K, et al. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Applied Catalysis A: General, 2008, 350(1): 16-23.
|
36 |
ARENA F, BARBERA K, ITALIANO G, et al. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol[J]. Journal of Catalysis, 2007, 249(2): 185-194.
|
37 |
WITOON T, CHALORNGTHAM J, DUMRONGBUNDITKUL P, et al. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases[J]. Chemical Engineering Journal, 2016, 293: 327-336.
|
38 |
SAMSON K, ŚLIWA M, SOCHA R P, et al. Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2 [J]. ACS Catalysis, 2014, 4(10): 3730-3741.
|
39 |
LI Kongzhai, CHEN Jingguang. CO2 hydrogenation to methanol over ZrO2 containing catalysts: Insights into ZrO2 induced synergy[J]. ACS Catalysis, 2019, 9(9): 7840-7861.
|
40 |
ZHU Jiadong, SU Yaqiong, CHAI Jiachun, et al. Mechanism and nature of active sites for methanol synthesis from CO/CO2 on Cu/CeO2 [J]. ACS Catalysis, 2020, 10(19): 11532-11544.
|
41 |
WANG Weiwei, QU Zhenping, SONG Lixin, et al. CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: Tuning methanol selectivity via metal-support interaction[J]. Journal of Energy Chemistry, 2020, 40: 22-30.
|
42 |
YU Wenzhu, WANG Weiei, LI Shanqing, et al. Construction of active site in a sintered copper-ceria nanorod catalyst[J]. Journal of the American Chemical Society, 2019, 141(44): 17548-17557.
|
43 |
LI Shuirong, GONG Jinlong. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions[J]. Chemical Society Reviews, 2014, 43(21): 7245-7256.
|
44 |
YANG Haiyan, GAO Peng, ZHANG Chen, et al. Core-shell structured Cu@m-SiO2 and Cu/ZnO@m-SiO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. Catalysis Communications, 2016, 84: 56-60.
|
45 |
AI P P, TAN M H, ISHIKURO Y, et al. Design of an autoreduced copper in carbon nanotube catalyst to realize the precisely selective hydrogenation of dimethyl oxalate[J]. ChemCatChem, 2017, 9(6): 1067-1075.
|
46 |
YUE Hairong, ZHAO Yujun, ZHAO Shuo, et al. A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions[J]. Nature Communications, 2013, 4(1): 1-7.
|
47 |
CHEN S, DE SOUZA P M, CIOTONEA C, et al. Micro-/mesopores confined ultrasmall Cu nanoparticles in SBA-15 as a highly efficient and robust catalyst for furfural hydrogenation to furfuryl alcohol[J]. Applied Catalysis A: General, 2022, 633(5): 118527.
|
48 |
YUAN Zhenle, WANG Lina, WANG Junhua, et al. Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts[J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 431-440.
|
49 |
YU X B, VEST T A, GLEASON-BOURE N, et al. Enhanced hydrogenation of dimethyl oxalate to ethylene glycol over indium promoted Cu/SiO2 [J]. Journal of Catalysis, 2019, 380: 289-296.
|
50 |
REN Yingyu, YANG Yusen, CHEN Lifang, et al. Synergetic effect of Cu0-Cu+ derived from layered double hydroxides toward catalytic transfer hydrogenation reaction[J]. Applied Catalysis B: Environmental, 2022, 314: 121515.
|
51 |
ZHANG Fan, XU Xiaoying, QIU Zhengpu, et al. Improved methanol synthesis performance of Cu/ZnO/Al2O3 catalyst by controlling its precursor structure[J]. Green Energy & Environment, 2022, 7(4): 772-781.
|
52 |
BEHRENS M. Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts[J]. Journal of Catalysis, 2009, 267(1): 24-29.
|
53 |
HOU Xiaoning, QING Shaojun, LIU Yajie, et al. Cu1- x Mg x Al3 spinel solid solution as a sustained release catalyst: One-pot green synthesis and catalytic performance in methanol steam reforming[J]. Fuel, 2021, 284: 119041.
|
54 |
BAHMANPOUR A M, HÉROGUEL F, KILIÇ M, et al. Cu-Al spinel as a highly active and stable catalyst for the reverse water gas shift reaction[J]. ACS Catalysis, 2019, 9(7): 6243-6251.
|