化工进展 ›› 2023, Vol. 42 ›› Issue (11): 5707-5721.DOI: 10.16085/j.issn.1000-6613.2022-2368
卜婷婷1,2(), 董炳利2, 周颖1, 马安3(), 周红军1,4,5()
收稿日期:
2022-12-28
修回日期:
2023-04-25
出版日期:
2023-11-20
发布日期:
2023-12-15
通讯作者:
马安,周红军
作者简介:
卜婷婷(1989—),女,博士研究生,研究方向为低碳烃脱氢催化剂开发。E-mail:lz_butingting@petrochina.com.cn。
基金资助:
BU Tingting1,2(), DONG Bingli2, ZHOU Ying1, MA An3(), ZHOU Hongjun1,4,5()
Received:
2022-12-28
Revised:
2023-04-25
Online:
2023-11-20
Published:
2023-12-15
Contact:
MA An, ZHOU Hongjun
摘要:
乙烷氧化脱氢制乙烯是非常有应用前景的乙烯生产途径,MoVTeNbO x 催化剂具有活性高、氧化还原能力强等特点,是当前低碳烷烃氧化脱氢的研究热点。本工作系统综述了MoVTeNbO x 复合金属氧化物在乙烷氧化脱氢制乙烯反应中的应用研究情况,包括催化剂晶相结构与活性中心、催化剂制备和催化乙烷转化的影响因素及反应性能优化提升等方面。研究多金属氧化物催化剂活性中心的调控策略,实现各组分氧化物相互作用的最优化,优化制备条件,通过助剂调控策略提高催化剂氧化还原能力及表面V5+含量,进而提高乙烷氧化脱氢活性和运行稳定性,为催化剂的规模化生产和工业应用奠定基础,是当前的主要研究方向。最后展望了MoVTeNbO x 复合金属氧化物催化剂在氧化脱氢领域的发展前景。
中图分类号:
卜婷婷, 董炳利, 周颖, 马安, 周红军. MoVTeNbO x 催化剂应用于乙烷氧化脱氢制乙烯的研究进展[J]. 化工进展, 2023, 42(11): 5707-5721.
BU Tingting, DONG Bingli, ZHOU Ying, MA An, ZHOU Hongjun. Advances in MoVTeNbO x catalyst for oxidative dehydrogenation of ethane to ethylene[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5707-5721.
催化剂 | 反应条件 | 转化率(摩尔分数)/% | 选择性(摩尔分数)/% |
---|---|---|---|
MoVTeNbO(M1)[ | 400℃,C2H6/O2/He=30/20/50 | 58.4 | 91.2 |
M1(机械处理)[ | 400℃,C2H6/O2/He=30/20/50 | 57.6 | 90.6 |
M1-1.0(1.0表示草酸浓度)[ | 400℃,C2H6/O2/He=30/20/50(摩尔比),v=30mL/min | 73 | 85 |
MoVTeNbCeO-0.1[ | 400℃,C2H6/O2/(He+N2)=10/5/85 | 56.2 | 95.4 |
M1/CeO2[ | 400℃,C2H6/O2/He=30/20/50(摩尔比),v=30mL/min | 59.4 | 89.3 |
M1@CeO2@堇青石[ | 400℃,C2H6/O2/He=30/20/50 | 60 | 85 |
MoVTeNbBiO[ | 400℃,C2H6/O2/N2=10/10/80(体积比),v=30mL/min | 50 | 94 |
Cr/CeO2[ | 740℃,C2H6/CO2=1/7,v(C2H6)=10mL/min,v(CO2)=70mL/min | 36.6 | 97 |
Cr/TiO2-ZrO2[ | 700℃,C2H6/O2/N2=10/50/40(体积比),v=75mL/min | 48 | 95 |
Cr/MCM-41[ | 700℃,C2H6/O2/N2=10/50/40,v=75mL/min | 56 | 94 |
Nb-NiO[ | 450℃,C2H6/O2/He=5/5/90(摩尔比) | 9 | 84 |
Nb2O5-NiO/Ni-泡沫[ | 450℃,C2H6/O2/N2=1/1/8(体积比),GHSV=9000h-1 | 60 | 68 |
Nd2O3-LiCl/SZ[ | 650℃,C2H6/O2/N2=1/1/8(体积比),v=60mL/min | 93 | 83 |
NiO/Al2O3[ | 450℃,C2H6/O2/N2=10/10/80(体积比) | 59.1 | 65.3 |
NiFe-1.0/γ-Al2O3[ | 400℃,C2H6/O2=1./1(体积比),W/F=0.48g·s/mL | 41.7 | 75.0 |
Ni40Si40Al[ | 400℃,C2H6/O2=1(体积比),W/F=0.6g·s/cm3 | 17.4 | 78.3 |
P0.15‐Ni‐Al‐O[ | 475℃,C2H6/O2/N2=10/10/80(体积比) | 31.9 | 61.4 |
VO x /c-Al2O3[ | 600℃,C2H6=20ml/次(脉冲进料),反应时间35s | 25.84 | 61.80 |
VCoAPO-18[ | 600℃,C2H6/O2/He=4/8/88(摩尔比) | 27.8 | 74.3 |
Ga2O3/HZSM-5[ | 650℃,C2H6/CO2/Ar=3/15/82(体积比),v=30mL/min | 15 | 94 |
MoO3-TiO2[ | 550℃,C2H6/O2/He=1/1/8(体积比),GHSV=10000mL/g·h | 55.2 | 92.1 |
Na2WO4/Mn/B5.0Si95[ | 700℃,C2H6/O2/N2=1.5/1/2(体积比),GHSV=15000h-1 | 66.12 | 70.32 |
表1 不同催化剂催化乙烷氧化脱氢制乙烯反应性能
催化剂 | 反应条件 | 转化率(摩尔分数)/% | 选择性(摩尔分数)/% |
---|---|---|---|
MoVTeNbO(M1)[ | 400℃,C2H6/O2/He=30/20/50 | 58.4 | 91.2 |
M1(机械处理)[ | 400℃,C2H6/O2/He=30/20/50 | 57.6 | 90.6 |
M1-1.0(1.0表示草酸浓度)[ | 400℃,C2H6/O2/He=30/20/50(摩尔比),v=30mL/min | 73 | 85 |
MoVTeNbCeO-0.1[ | 400℃,C2H6/O2/(He+N2)=10/5/85 | 56.2 | 95.4 |
M1/CeO2[ | 400℃,C2H6/O2/He=30/20/50(摩尔比),v=30mL/min | 59.4 | 89.3 |
M1@CeO2@堇青石[ | 400℃,C2H6/O2/He=30/20/50 | 60 | 85 |
MoVTeNbBiO[ | 400℃,C2H6/O2/N2=10/10/80(体积比),v=30mL/min | 50 | 94 |
Cr/CeO2[ | 740℃,C2H6/CO2=1/7,v(C2H6)=10mL/min,v(CO2)=70mL/min | 36.6 | 97 |
Cr/TiO2-ZrO2[ | 700℃,C2H6/O2/N2=10/50/40(体积比),v=75mL/min | 48 | 95 |
Cr/MCM-41[ | 700℃,C2H6/O2/N2=10/50/40,v=75mL/min | 56 | 94 |
Nb-NiO[ | 450℃,C2H6/O2/He=5/5/90(摩尔比) | 9 | 84 |
Nb2O5-NiO/Ni-泡沫[ | 450℃,C2H6/O2/N2=1/1/8(体积比),GHSV=9000h-1 | 60 | 68 |
Nd2O3-LiCl/SZ[ | 650℃,C2H6/O2/N2=1/1/8(体积比),v=60mL/min | 93 | 83 |
NiO/Al2O3[ | 450℃,C2H6/O2/N2=10/10/80(体积比) | 59.1 | 65.3 |
NiFe-1.0/γ-Al2O3[ | 400℃,C2H6/O2=1./1(体积比),W/F=0.48g·s/mL | 41.7 | 75.0 |
Ni40Si40Al[ | 400℃,C2H6/O2=1(体积比),W/F=0.6g·s/cm3 | 17.4 | 78.3 |
P0.15‐Ni‐Al‐O[ | 475℃,C2H6/O2/N2=10/10/80(体积比) | 31.9 | 61.4 |
VO x /c-Al2O3[ | 600℃,C2H6=20ml/次(脉冲进料),反应时间35s | 25.84 | 61.80 |
VCoAPO-18[ | 600℃,C2H6/O2/He=4/8/88(摩尔比) | 27.8 | 74.3 |
Ga2O3/HZSM-5[ | 650℃,C2H6/CO2/Ar=3/15/82(体积比),v=30mL/min | 15 | 94 |
MoO3-TiO2[ | 550℃,C2H6/O2/He=1/1/8(体积比),GHSV=10000mL/g·h | 55.2 | 92.1 |
Na2WO4/Mn/B5.0Si95[ | 700℃,C2H6/O2/N2=1.5/1/2(体积比),GHSV=15000h-1 | 66.12 | 70.32 |
催化剂 | 反应条件 | 乙烷转化率/% | 乙烯选择性/% | CO x 选择性/% |
---|---|---|---|---|
MoV0.24Te0.24Nb0.18O x[ | 440℃,常压,C2H6/O2/N2=9/7/84 | 45 | 93 | 7 |
MoV0.25Te0.23Nb0.12O x[ | 400℃,常压,C2H6/O2/He=30/20/50 | 58.4 | 91.2 | 8.8 |
MoV0.25Te0.23Nb0.18O x[ | 400℃,常压,C2H6/O2/He=30/20/50 | 24.2 | 94.6 | 5.4 |
MoV0.27Te0.16Nb0.14O x[ | 380℃,常压,C2H6/O2/He+Ne=30/20/50 | 35 | 92 | 8 |
MoV0.29Nb0.15O x[ | 400℃,常压,C2H6/O2=3/1 | 21 | 70 | 30 |
MoV0.3Te0.23Nb0.12O x[ | 400℃,常压,C2H6/O2/N2=5/5/90 | 55 | 92 | 8 |
MoV0.37Te0.17Nb0.15O x[ | 400℃,常压,C2H6︰O2=75︰25(v/v) | 37 | 85 | 15 |
表2 不同组成的MoVTeNbO x 催化剂催化乙烷氧化脱氢的反应性能
催化剂 | 反应条件 | 乙烷转化率/% | 乙烯选择性/% | CO x 选择性/% |
---|---|---|---|---|
MoV0.24Te0.24Nb0.18O x[ | 440℃,常压,C2H6/O2/N2=9/7/84 | 45 | 93 | 7 |
MoV0.25Te0.23Nb0.12O x[ | 400℃,常压,C2H6/O2/He=30/20/50 | 58.4 | 91.2 | 8.8 |
MoV0.25Te0.23Nb0.18O x[ | 400℃,常压,C2H6/O2/He=30/20/50 | 24.2 | 94.6 | 5.4 |
MoV0.27Te0.16Nb0.14O x[ | 380℃,常压,C2H6/O2/He+Ne=30/20/50 | 35 | 92 | 8 |
MoV0.29Nb0.15O x[ | 400℃,常压,C2H6/O2=3/1 | 21 | 70 | 30 |
MoV0.3Te0.23Nb0.12O x[ | 400℃,常压,C2H6/O2/N2=5/5/90 | 55 | 92 | 8 |
MoV0.37Te0.17Nb0.15O x[ | 400℃,常压,C2H6︰O2=75︰25(v/v) | 37 | 85 | 15 |
1 | 李月清, 陈庆利. “乙烷制乙烯”产品竞争力分析[J]. 中国石油企业, 2021(10): 41. |
LI Yueqing, CHEN Qingli. Competitiveness analysis of “ethane to ethylene” products[J]. China Petroleum Enterprise, 2021(10): 41. | |
2 | SUN Xiaoying, LI Bo, METIU Horia. Ethane activation by Nb-doped NiO[J]. The Journal of Physical Chemistry C, 2013, 117(45): 23597-23608. |
3 | QIAO A, KALEVARU V N, RADNIK J, et al. Oxidative dehydrogenation of ethane to ethylene over V2O5/Al2O3 catalysts: Effect of source of alumina on the catalytic performance[J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 18711-18721. |
4 | GAFFNEY Anne M, MASON Olivia M. Ethylene production via oxidative dehydrogenation of ethane using M1 catalyst[J]. Catalysis Today, 2017, 285: 159-165. |
5 | CHU Bozhao, AN Hang, NIJHUIS T A, et al. A self-redox pure-phase M1 MoVTeNbO x /CeO2 nanocomposite as a highly active catalyst for oxidative dehydrogenation of ethane[J]. Journal of Catalysis, 2015, 329: 471-478. |
6 | CHEN Yuxin, QIAN Shuairen, FENG Kai, et al. Determination of highly active and selective surface for the oxidative dehydrogenation of ethane over phase-pure M1 MoVTeNbO x catalyst[J]. Journal of Catalysis, 2022, 416: 277-288. |
7 | CHU Bozhao, AN Hang, CHEN Xin, et al. Phase-pure M1 MoVTeNbO x catalysts with tunable particle size for oxidative dehydrogenation of ethane[J]. Applied Catalysis A: General, 2016, 524: 56-65. |
8 | YUN Yang Sik, LEE Minzae, SUNG Jongbaek, et al. Promoting effect of cerium on MoVTeNb mixed oxide catalyst for oxidative dehydrogenation of ethane to ethylene[J]. Applied Catalysis B: Environmental, 2018, 237: 554-562. |
9 | CHEN Yuxin, QIAN Shuairen, FENG Kai, et al. MoVTeNbO x M1@CeO2@Cordierite structured catalysts for ODHE process[J]. Chemical Engineering Science, 2022, 253: 117597-117605. |
10 | ISHCHENKO E V, GULYAEV R V, T Yu KARDASH, et al. Effect of Bi on catalytic performance and stability of MoVTeNbO catalysts in oxidative dehydrogenation of ethane[J]. Applied Catalysis A: General, 2017, 534: 58-69. |
11 | 葛欣, 孙清, 沈俭一. Cr/CeO2体系及其对乙烷脱氢反应催化性能的研究[J]. 无机化学学报, 2004, 20(8): 987-990. |
GE Xin, SUN Qing, SHEN Lianyi. Cr/CeO2 system and its catalytic performance for dehydrogenation of ethane[J]. Chinese Journal of Inorganic Chemistry, 2004, 20(8): 987-990. | |
12 | TALATI A, HAGHIGHI M, RAHMANI F. Oxidative dehydrogenation of ethane to ethylene by carbon dioxide over Cr/TiO2-ZrO2 nanocatalyst: Effect of active phase and support composition on catalytic properties and performance[J]. Advanced Powder Technology, 2016, 27: 1195-1206. |
13 | ASGHARI E, HAGHIGHI M, RAHMANI F. CO2 oxidative dehydrogenation of ethane to ethylene over Cr/MCM-41 nanocatalyst synthesized via hydrothermal/impregnation methods: Influence of chromium content on catalytic properties and performance[J]. Journal of Molecular Catalysis A: Chemical, 2016, 418/419: 115-124. |
14 | DELGADO D, SOLSONA B, YKRELEF A, et al. Redox and catalytic properties of promoted NiO catalysts for the oxidative dehydrogenation of ethane[J]. The Journal of Physical Chemistry C, 2017, 121(45): 25132- 25142. |
15 | ZHANG Zhiqiang, ZHAO Guofeng, LIU Ye, et al. High-performance Ni-foam-structured Nb2O5-NiO nanocomposite catalyst for oxidative dehydrogenation of shale gas ethane to ethylene: Effects of Nb2O5 loading and calcination temperature[J]. Microporous and Mesoporous Materials, 2019, 288: 109609. |
16 | WANG Shaobin, MURATA K, HAYAKAWA T, et al. Performance of metal-oxide-promoted LiCl/sulfated-zirconia catalysts in the ethane oxidative dehydrogenation into ethene[J]. Catalysis Letters, 1999, 62(2): 191-195. |
17 | ZHANG Xinjie, LIU Jixin, JING Yi, et al. Support effects on the catalytic behavior of NiO/Al2O3 for oxidative dehydrogenation of ethane to ethylene[J]. Applied Catalysis A: General, 2003, 240(1/2):143-150. |
18 | COTILLO Mario Hurtado, UNSIHUAY Daisy, SANTOLALLA-VARGAS C E, et al. Catalysts based on Ni-Fe oxides supported on γ-Al2O3 for the oxidative dehydrogenation of ethane[J]. Catalysis Today, 2019, 356: 312-321. |
19 | BRUSSINO P, MEHRING E L, ULLA M A, et al. Tuning the properties of NiO supported on silicon-aluminum oxides: Influence of the silica amount in the ODH of ethane[J]. Catalysis Today, 2022, 394: 133-142. |
20 | 李东, 宋佳欣, 孔莲, 等. 助剂P对Ni-Al-O催化剂乙烷氧化脱氢性能的影响[J]. 无机化学学报, 2023, 39(4): 637-648. |
LI Dong, SONG Jiaxin, KONG Lian, et al. Effect of P promoter on the oxidative dehydrogenation of ethane over Ni-Al-O catalysts[J]. Chinese Journal of Inorganic Chemistry, 2023, 39(4): 637-648. | |
21 | AL-GHAMDI S, VOLPE M, HOSSAIN M M, et al. VO x /c-Al2O3 catalyst for oxidative dehydrogenation of ethane to ethylene: Desorption kinetics and catalytic activity[J]. Applied Catalysis A: General, 2013, 450(2): 120-130. |
22 | CONCEPCIÓN P, BLASCO T, LNIETO J M L, et al. Preparation, characterization and reactivity of V-and/or Co-containing AlPO-18 materials (VCoAPO-18) in the oxidative dehydrogenation of ethane[J]. Microporous and Mesoporous Materials, 2004, 67(2/3): 215-227. |
23 | SHEN Zhenhao, LIU Jian, XU Hualong, et al. Dehydrogenation of ethane to ethylene over a highly efficient Ga2O3/HZSM-5 catalyst in the presence of CO2 [J]. Applied Catalysis A: General, 2009, 356(2): 148-153. |
24 | SARKAR B, GOYAL R, KONATHALA L S, et al. MoO3 nanoclusters decorated on TiO2 nanorods for oxidative dehydrogenation of ethane to ethylene[J]. Applied Catalysis B: Environmental, 2017, 217: 637-649. |
25 | 张琦, 童金辉, 丑凌军, 等. h-BN掺杂Na2WO4-Mn/SiO2催化剂用于乙烷氧化脱氢制乙烯[J]. 分子催化, 2020, 34(6): 495-504. |
ZHANG Qi, TONG Jinhui, CHOU Lingjun, et al. h-BN-Doped Na2WO4-Mn/SiO2 catalysts for oxidative dehydrogenation of ethane to ethylene[J]. Journal of Molecular Catalysis(china), 2020, 34(6): 495-504. | |
26 | MISHANIN Igor I, BOGDAN Victor I. Regularities of oxidative dehydrogenation of ethane over MoVTeNbO x catalyst under supercritical conditions[J]. Catalysis Letters, 2021, 151(7): 2088-2093. |
27 | CHENG MuJeng, GODDARD William A Ⅲ. The mechanism of alkane selective oxidation by the M1 phase of Mo-V-Nb-Te mixed metal oxides: Suggestions for improved catalysts[J]. Topics in Catalysis, 2016, 59(17): 1506-1517. |
28 | NGUYEN T T, AOUINE M, MILLET J M M. Optimizing the efficiency of MoVTeNbO catalysts for ethane oxidative dehydrogenation to ethylene[J]. Catalysis Communications, 2012, 21: 22-26. |
29 | VALENTE Jaime S, Héctor ARMENDÁRIZ-HERRERA, Roberto QUINTANA-SOLÓRZANO, et al. Chemical, structural, and morphological changes of a MoVTeNb catalyst during oxidative dehydrogenation of ethane[J]. ACS Catalysis, 2014, 4(5): 1292-1301. |
30 | Gamaliel CHE-GALICIA, Roberto QUINTANA-SOLÓRZANO, RUIZ-MARTÍNEZ Richard S, et al. Kinetic modeling of the oxidative dehydrogenation of ethane to ethylene over a MoVTeNbO catalytic system[J]. Chemical Engineering Journal, 2014, 252: 75-88. |
31 | DE ARRIBA Agustín, SOLSONA Benjamin, DEJOZ Ana M, et al. Evolution of the optimal catalytic systems for the oxidative dehydrogenation of ethane: The role of adsorption in the catalytic performance[J]. Journal of Catalysis, 2022, 408: 388-400. |
32 | QUINTANA-SOLÓRZANO R, BARRAGÁN-RODRÍGUEZ G, ARMENDÁRIZ-HERRERA H, et al. Understanding the kinetic behavior of a Mo-V-Te-Nb mixed oxide in the oxydehydrogenation of ethane[J]. Fuel, 2014, 138: 15-26. |
33 | BONDAREVA V M, LAZAREVA E V, T Yu KARDASH, et al. Oxidative transformations of ethane and ethylene on VMoTeNbO catalysts[J]. Russian Journal of Applied Chemistry, 2019, 92(1): 122-127. |
34 | HE Qian, Jungwon WOO, BELIANINOV Alexei, et al. Better catalysts through microscopy: Mesoscale M1/M2 intergrowth in molybdenum-vanadium based complex oxide catalysts for propane ammoxidation[J]. ACS Nano, 2015, 9(4): 3470-3478. |
35 | BEATO P, BLUME A, GIRGSDIES F, et al. Analysis of structural transformations during the synthesis of a MoVTeNb mixed oxide catalyst[J]. Applied Catalysis A: General, 2006, 307(1): 137-147. |
36 | BACA Manuel, MILLET Jean-Marc M. Bulk oxidation state of the different cationic elements in the MoVTe(Sb)NbO catalysts for oxidation or ammoxidation of propane[J]. Applied Catalysis A: General, 2005, 279(1/2): 67-77. |
37 | Michael HÄVECKER, WRABETZ Sabine, Jutta KRÖHNERT, et al. Surface chemistry of phase-pure M1 MoVTeNb oxide during operation in selective oxidation of propane to acrylic acid[J]. Journal of Catalysis, 2012, 285(1): 48-60. |
38 | BONDAREVA V M, T Yu KARDASH, ISHCHENKO E V, et al. Heterogeneous catalytic oxidative conversion of ethane to ethylene[J]. Catalysis in Industry, 2015, 7(2): 104-110. |
39 | BOTELLA P, GARCĺA-GONZÁLEZ E, DEJOZ A, et al. Selective oxidative dehydrogenation of ethane on MoVTeNbO mixed metal oxide catalysts[J]. Journal of Catalysis, 2004, 225(2): 428-438. |
40 | LÓPEZ NIETO José M. The selective oxidative activation of light alkanes. From supported vanadia to multicomponent bulk V-containing catalysts[J]. Topics in Catalysis, 2006, 41(1): 3-15. |
41 | MELZER Daniel, XU Pinghong, HARTMANN Daniela, et al. Atomic-scale determination of active facets on the MoVTeNb oxide M1 phase and their intrinsic catalytic activity for ethane oxidative dehydrogenation[J]. Angewandte Chemie International Edition, 2016, 55(31): 8873-8877. |
42 | AMAKAWA Kazuhiko, KOLEN’KO Yury V, VILLA Alberto, et al. Multifunctionality of crystalline MoV(TeNb) M1 oxide catalysts in selective oxidation of propane and benzyl alcohol[J]. ACS Catalysis, 2013, 3(6): 1103-1113. |
43 | DENIAU Benoit, NGUYEN Thi Thao, DELICHERE Pierre, et al. Redox state dynamics at the surface of MoVTe(Sb)NbO M1 phase in selective oxidation of light alkanes[J]. Topics in Catalysis, 2013, 56(18): 1952-1962. |
44 | CHENG MuJeng, GODDARD William A Ⅲ. In silico design of highly selective Mo-V-Te-Nb-O mixed metal oxide catalysts for ammoxidation and oxidative dehydrogenation of propane and ethane[J]. Journal of the American Chemical Society, 2015, 137(41): 13224-13227. |
45 | GODDARD William A, MUELLER Jonathan E, CHENOWETH Kimberly, et al. ReaxFF Monte Carlo reactive dynamics: Application to resolving the partial occupations of the M1 phase of the MoVTeNbO catalyst[J]. Catalysis Today, 2010, 157(1/2/3/4): 71-76. |
46 | ZHU Yuanyuan, SUSHKO Peter V, MELZER Daniel, et al. Formation of oxygen radical sites on MoVTeNbO x by cooperative electron redistribution[J]. Journal of the American Chemical Society, 2017, 139(36): 12342-12345. |
47 | QIAN Shuairen, CHEN Yuxin, WANG Yujie, et al. Identification of the intrinsic active site in phase-pure M1 catalysts for oxidation dehydrogenation of ethane by density functional theory calculations[J]. The Journal of Physical Chemistry C, 2022, 126(41): 17536-17543. |
48 | T Yu KARDASH, LAZAREVA E V, SVINTSITSKIY D A, et al. The evolution of the M1 local structure during preparation of VMoNbTeO catalysts for ethane oxidative dehydrogenation to ethylene[J]. RSC Advances, 2018, 8(63): 35903-35916. |
49 | ANNAMALAI Leelavathi, LIU Yilang, EZENWA Sopuruchukwu, et al. Influence of tight confinement on selective oxidative dehydrogenation of ethane on MoVTeNb mixed oxides[J]. ACS Catalysis, 2018, 8(8): 7051-7067. |
50 | KARDASH T Y, MARCHUK A S, ISHCHENKO A V, et al. In situ study of structural transformations of the active phase of VMoNbTeO catalysts under reduction conditions[J]. Journal of Structural Chemistry, 2019, 60(10): 1599-1611. |
51 | NGUYEN Thi Thao, DENIAU Benoit, BACA Manuel, et al. Influence of Nb content on the structure, cationic and valence distribution and catalytic properties of MoVTe(Sb)NbO M1 phase used as catalysts for the oxidation of light alkanes[J]. Topics in Catalysis, 2016, 59(17): 1496-1505. |
52 | GRASSELLI Robert K. Selectivity issues in (amm)oxidation catalysis[J]. Catalysis Today, 2005, 99(1/2): 23-31. |
53 | GRASSELLI R K, BURRINGTONC J D, BUTTREY D J, et al. Multifunctionality of active centers in (amm)oxidation catalysts: from Bi-Mo-O x to Mo-V-Nb-(Te; Sb)-O x [J]. Topics in Catalysis, 2003, 23(1-4): 5-22. |
54 | BOTELLA P, DEJOZ A, ABELLO M C, et al. Selective oxidation of ethane: developing an orthorhombic phase in Mo-V-X (X=Nb, Sb, Te) mixed oxides[J]. Catalysis Today, 2009, 142(3/4): 272-277. |
55 | ZHU Haibo, LAVEILLE Paco, ROSENFELD Devon C, et al. A high-throughput reactor system for optimization of Mo-V-Nb mixed oxide catalyst composition in ethane ODH[J]. Catalysis Science & Technology, 2015, 5(8): 4164-4173. |
56 | XIE Qi, CHEN Luqian, WENG Weizheng, et al. Preparation of MoVTe(Sb)Nb mixed oxide catalysts using a slurry method for selective oxidative dehydrogenation of ethane[J]. Journal of Molecular Catalysis A: Chemical, 2005, 240(1/2): 191-196. |
57 | HAN Zhisan, YI Xiaodong, XIE Qi, et al. Oxidative dehydrogenation of ethane over MoVTeNbO catalyst prepared by a slurry method[J]. Chinese Journal of Catalysis, 2005, 26(6): 441-442. |
58 | MASSÓ RAMÍREZ Amada, Francisco IVARS-BARCELÓ, LÓPEZ NIETO José M. Optimizing reflux synthesis method of Mo-V-Te-Nb mixed oxide catalysts for light alkane selective oxidation[J]. Catalysis Today, 2020, 356: 322-329. |
59 | CHU Bozhao, TRUTER Lara, NIJHUIS Tjeerd Alexander, et al. Oxidative dehydrogenation of ethane to ethylene over phase-pure M1 MoVTeNbO x catalysts in a micro-channel reactor[J]. Catalysis Science & Technology, 2015, 5(5): 2807-2813. |
60 | DANG Dan, CHEN Xin, YAN Binhang, et al. Catalytic performance of phase-pure M1 MoVTeNbO x /CeO2 composite for oxidative dehydrogenation of ethane[J]. Journal of Catalysis, 2018, 365: 238-248. |
61 | MELZER Daniel, MESTL Gerhard, WANNINGER Klaus, et al. Design and synthesis of highly active MoVTeNb-oxides for ethane oxidative dehydrogenation[J]. Nature Communications, 2019, 10(1): 4012-4020. |
62 | ISHCHENKO E V, ANDRUSHKEVICH T V, POPOVA G Y, et al. Effect of preparation conditions on the phase composition of the MoVTe(Nb) oxide catalyst for the oxidative conversions of propane[J]. Catalysis in Industry, 2010, 2(4): 291-298. |
63 | FINASHINA E D, KUCHEROV A V, KUSTOV L M. Effect of the conditions of preparing mixed oxide catalyst of Mo-V-Te-Nb-O composition on its activity in the oxidative dehydrogenation of ethane[J]. Russian Journal of Physical Chemistry A, 2013, 87(12): 1983-1988. |
64 | NARASCHEWSKI F N, JENTYS A, LERCHER J A. On the role of the vanadium distribution in MoVTeNbO[J]. Topics in Catalysis, 2011, 54(10): 639-649. |
65 | VALENTE Jaime S, Etel MAYA-FLORES, Héctor ARMENDÁRIZ-HERRERA, et al. Metal solution precursors: their role during the synthesis of MoVTeNb mixed oxide catalysts[J]. Catalysis Science & Technology, 2018, 8(12): 3123-3132. |
66 | MAKSIMOVSKAYA Raisa I, BONDAREVA Valentina M, ALESHINA Galina I. NMR spectroscopic studies of interactions in solution during the synthesis of MoVTeNb oxide catalysts[J]. European Journal of Inorganic Chemistry, 2009, 40(4): 4906-4914. |
67 | IVARS F, SOLSONA B, BOTELLA P, et al. Selective oxidation of propane over alkali-doped Mo-V-Sb-O catalysts[J]. Catalysis Today, 2009, 141(3/4): 294-299. |
68 | OLIVER J M, LÓPEZ NIETO J M, BOTELLA P, et al. The effect of pH on structural and catalytic properties of MoVTeNbO catalysts[J]. Applied Catalysis A: General, 2004, 257(1): 67-76. |
69 | LIN Manhua Mandy. Complex metal oxide catalysts for selective oxidation of propane and derivatives Ⅱ. The relationship among catalyst preparation, structure and catalytic properties[J]. Applied Catalysis A: General, 2003, 250(2): 287-303. |
70 | LIN Manhua Mandy. Complex metal-oxide catalysts for selective oxidation of propane and derivatives I. Catalysts preparation and application in propane selective oxidation to acrylic acid[J]. Applied Catalysis A: General, 2003, 250(2): 305-318. |
71 | Ya POPOVA G, ANDRUSHKEVICH T V, DOVLITOVA L S, et al. The investigation of chemical and phase composition of solid precursor of MoVTeNb oxide catalyst and its transformation during the thermal treatment[J]. Applied Catalysis A: General, 2009, 353(2): 249-257. |
72 | DE ARRIBA Agustín, SOLSONA Benjamin, Ester GARCÍA-GONZÁLEZ, et al. Te-doped MoV-Oxide (M1 phase) for ethane ODH. The role of tellurium on morphology, thermal stability and catalytic behaviour[J]. Applied Catalysis A: General, 2022, 643: 118780-118792. |
73 | CHU Bozhao, TRUTER Lara, NIJHUIS T A, et al. Performance of phase-pure M1 MoVTeNbO x catalysts by hydrothermal synthesis with different post-treatments for the oxidative dehydrogenation of ethane[J]. Applied Catalysis A: General, 2015, 498: 99-106. |
74 | CHEN Xin, YANG Qianli, CHU Bozhao, et al. Valence variation of phase-pure M1 MoVTeNb oxide by plasma treatment for improved catalytic performance in oxidative dehydrogenation of ethane[J]. RSC Advances, 2015, 5(111): 91295-91301. |
75 | YU Junjun, XU Ye, GULIANTS Vadim V. Propane ammoxidation over Mo-V-Te-Nb-O M1 phase investigated by DFT: Elementary steps of ammonia adsorption, activation and NH insertion into π-allyl intermediate[J]. Topics in Catalysis, 2014, 57(14): 1145-1151. |
76 | KONYA Takeshi, KATOU Tomokazu, MURAYAMA Toru, et al. An orthorhombic Mo3VO x catalyst most active for oxidative dehydrogenation of ethane among related complex metal oxides[J]. Catalysis Science & Technology, 2013, 3(2): 380-387. |
77 | ISHCHENKO E V, ISHCHENKO A V, BONDAREVA V M, et al. Structural features of promoted MoVTeNbO catalysts for the oxidative dehydrogenation of ethane[J]. Kinetics and Catalysis, 2015, 56(6): 788-795. |
78 | NGUYEN T T, BUREL L, NGUYEN D L, et al. Catalytic performance of MoVTeNbO catalyst supported on SiC foam in oxidative dehydrogenation of ethane and ammoxidation of propane[J]. Applied Catalysis A: General, 2012, 433/434: 41-48. |
79 | MISHANIN I I, KALENCHUK A N, MASLAKOV K I, et al. Deactivation of a mixed oxide catalyst of Mo-V-Te-Nb-O composition in the reaction of oxidative ethane dehydrogenation[J]. Russian Journal of Physical Chemistry A, 2016, 90(6): 1132-1136. |
80 | ISHCHENKO E V, T Yu KARDASH, GULYAEV R V, et al. Effect of K and Bi doping on the M1 phase in MoVTeNbO catalysts for ethane oxidative conversion to ethylene[J]. Applied Catalysis A: General, 2016, 514: 1-13. |
81 | MISHANIN Igor I, BOGDAN Viktor I. Advantages of ethane oxidative dehydrogenation on the MoVTeNbO x catalyst under elevated pressure[J]. Mendeleev Communications, 2019, 29(4): 455-457. |
82 | NGUYEN Thi Thao, DENIAU Benoit, DELICHERE Pierre, et al. Influence of the content and distribution of vanadium in the M1 phase of the MoVTe(Sb)NbO catalysts on their catalytic properties in light alkanes oxidation[J]. Topics in Catalysis, 2014, 57(14): 1152-1162. |
83 | JIMENEZ Juan, MINGLE Kathleen, BUREERUG Teeraya, et al. Statistically guided synthesis of MoV-based mixed-oxide catalysts for ethane partial oxidation[J]. Catalysts, 2018, 8(9): 370-385. |
84 | AOUINE Mimoun, EPICIER Thierry, MILLET Jean-Marc M. In situ environmental STEM study of the MoVTe oxide M1 phase catalysts for ethane oxidative dehydrogenation[J]. ACS Catalysis, 2016, 6(7): 4775-4781. |
85 | MELZER Daniel, MESTL Gerhard, WANNINGER Klaus, et al. On the promoting effects of Te and Nb in the activity and selectivity of M1 MoV-oxides for ethane oxidative dehydrogenation[J].Topics in Catalysis, 2020, 63(19/20): 1754-1764. |
86 | HONG Bangde, LEE ChienLiang. Specific activities of rhombic dodecahedral, octahedral, and cubic Cu2O nanocrystals as glucose oxidation catalysts[J]. Chemical Engineering Journal, 2020, 382: 122994-12300. |
87 | ZHU Chengzhang, WEI Xiaoqian, LI Wanqin, et al. Crystal-plane effects of CeO2{110}and CeO2{100}on photocatalytic CO2 reduction: synergistic interactions of oxygen defects and hydroxyl groups[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(38): 14397-14406. |
88 | HUA Qing, CAO Tian, GU Xiangkui, et al. Crystal-plane-controlled selectivity of Cu2O catalysts in propylene oxidation with molecular oxygen[J]. Angewandte Chemie International Edition, 2014, 53(19): 4856-4861. |
89 | YANG Chengwu, YU Xiaojuan, Stefan HEIßLER, et al. Surface faceting and reconstruction of ceria nanoparticles[J]. Angewandte Chemie International Edition, 2017, 56(1): 375-379. |
90 | Gianvito VILÉ, COLUSSI Sara, KRUMEICH Frank, et al. Opposite face sensitivity of CeO2 in hydrogenation and oxidation catalysis[J]. Angewandte Chemie International Edition, 2014, 53(45): 12069-12072. |
91 | WU Zili, MANN Amanda, LI Meijun, et al. Spectroscopic investigation of surface-dependent acid-base property of ceria nanoshapes[J]. The Journal of Physical Chemistry C, 2015, 119(13): 7340-7350. |
92 | CHEN Shilong, CAO Tian, GAO Yuxian, et al. Probing surface structures of CeO2, TiO2, and Cu2O nanocrystals with CO and CO2 chemisorption[J]. The Journal of Physical Chemistry C, 2016, 120(38): 21472-21485. |
93 | TAN Zicong, LI Guangchao, CHOU HungLung, et al. Differentiating surface Ce species among CeO2 facets by solid-state NMR for catalytic correlation[J]. ACS Catalysis, 2020, 10(7): 4003-4011. |
94 | IVARS F, BOTELLA P, DEJOZ A, et al. Selective oxidation of short-chain alkanes over hydrothermally prepared MoVTeNbO catalysts[J]. Topics in Catalysis, 2006, 38(1): 59-67. |
95 | T Yu KARDASH, LAZAREVA E V, SVINTSITSKIY D A, et al. VMoNbTeO catalysts for ethane oxidative dehydrogenation: The modification by P, Sb and Bi to influence on the catalytic stability[J]. AIP Conference Proceedings, 2019, 2143(1): 020029. |
96 | SVINTSITSKIY Dmitry A, KARDASH Tatyana Yu, LAZAREVA Evgeniya V, et al. NAP-XPS and in situ XRD study of the stability of Bi-modified MoVTeNbO catalysts for oxidative dehydrogenation of ethane[J]. Applied Catalysis A: General, 2019, 579: 141-150. |
97 | LAZAREVA E V, BONDAREVA V M, SVINTSITSKIY D A, et al. Oxidative dehydrogenation of ethane over M1 MoVTeNbO catalysts modified by the addition of Nd, Mn, Ga or Ge[J]. Catalysis Today, 2021, 361: 50-56. |
98 | CHEN Xin, DANG Dan, AN Hang, et al. MnO x promoted phase-pure M1 MoVTeNb oxide for ethane oxidative dehydrogenation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95: 103-111. |
99 | T Yu KARDASH, LAZAREVA E V, SVINTSITSKIY D A, et al. Effect of selenium additives on the physicochemical and catalytic properties of VMoTeNbO catalysts in the oxidative dehydrogenation of ethane[J]. Kinetics and Catalysis, 2019, 60(3): 377-387. |
100 | SCHMICKLER Wolfgang, NAZMUTDINOV Renat R, WANG Qiuhong, et al. Electrochemistry of Ce(Ⅳ)/Ce(Ⅲ) redox couples in mixed solutions for aqueous flow battery: Experimental and molecular modelling study[J]. Electrochimica Acta, 2021, 368: 137601-137608. |
101 | TSURUGI Hayato, MASHIMA Kazushi. Renaissance of homogeneous cerium catalysts with unique Ce(Ⅳ/Ⅲ) couple: Redox-mediated organic transformations involving homolysis of Ce(Ⅳ)-ligand covalent bonds[J]. Journal of the American Chemical Society, 2021, 143(21): 7879-7890. |
102 | CHEN Yuxin, DANG Dan, YAN Binhang, et al. Mixed metal oxides of M1 MoVTeNbO x and TiO2 as composite catalyst for oxidative dehydrogenation of ethane[J]. Catalysts, 2022, 12: 71-86. |
103 | CHEN Yuxin, DANG Dan, YAN Binhang, et al. Nanocomposite catalysts of non-purifified MoVTeNbO x with CeO2 or TiO2 for oxidative dehydrogenation of ethane[J]. Chemical Engineering Science, 2022, 264: 118154-118161. |
104 | BONDAREVA V M, ISHCHENKO E V, T Yu KARDASH, et al. Effect of SiO2 on the physicochemical and catalytic properties of VMoTeNbО catalyst in oxidative conversion of ethane[J]. Russian Journal of Applied Chemistry, 2016, 89(8): 1279-1285. |
105 | BONDAREVA V M, LAZAREVA E V, T Yu KARDASH, et al. Oxidative dehydrogenation of ethane on VMoTeNbО/SiO2 catalysts and the effect of the initial support compound on their physicochemical and catalytic properties[J]. Catalysis in Industry, 2020, 12(3): 226-234. |
106 | BONDAREVA V M, ISHCHENKO E V, T Yu KARDASH, et al. Oxidative dehydrogenation of ethane on VMoTeNbО/Al-Si-O catalysts: Effect of the support on the physicochemical and catalytic properties[J]. Russian Journal of Applied Chemistry, 2017, 90(7): 1136-1142. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 谈继淮, 余敏, 张彤彤, 黄能坤, 王梓雯, 朱新宝. 新型栲胶聚丙氧基醚酯的合成及增塑PVC性能[J]. 化工进展, 2023, 42(9): 4847-4855. |
[3] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[4] | 白志华, 张军. 二乙烯三胺五亚甲基膦酸/Fenton体系氧化脱除NO[J]. 化工进展, 2023, 42(9): 4967-4973. |
[5] | 张智琛, 朱云峰, 成卫戍, 马守涛, 姜杰, 孙冰, 周子辰, 徐伟. 高压聚乙烯失控分解研究进展:反应机理、引发体系与模型[J]. 化工进展, 2023, 42(8): 3979-3989. |
[6] | 孙征楠, 李洪晶, 荆国林, 张福宁, 颜飚, 刘晓燕. EVA及其改性聚合物在原油降凝剂领域的应用[J]. 化工进展, 2023, 42(6): 2987-2998. |
[7] | 黄能坤, 王梓雯, 王文耕, 王学峰, 谈继淮, 朱新宝. 新型氢化二聚酸乙二醇醚酯的合成及其增塑PVC性能[J]. 化工进展, 2023, 42(5): 2638-2646. |
[8] | 王子宗, 刘罡, 王振维. 乙烯丙烯生产过程强化技术进展及思考[J]. 化工进展, 2023, 42(4): 1669-1676. |
[9] | 赵佳琪, 黄亚继, 李志远, 丁雪宇, 祁帅杰, 张煜尧, 刘俊, 高嘉炜. 污泥和聚氯乙烯共热解三相产物特性[J]. 化工进展, 2023, 42(4): 2122-2129. |
[10] | 杨园园, 雷婷, 秦青青, 武晓, 李剑, 秦舒浩, 李嘉乐, 张兵兵, 任露露. PEO改性PVDF/SMA膜结构和性能[J]. 化工进展, 2023, 42(3): 1515-1526. |
[11] | 王德强, 李金忠, 王凯, 骆广生. 氯化溴的微反应连续合成与应用[J]. 化工进展, 2023, 42(11): 5585-5591. |
[12] | 何需要, 陈仁义, 刘明, 李恒龙, 李法社, 张慧聪. TEPA/TBHQ复配对生物柴油氧化安定-腐蚀性的影响[J]. 化工进展, 2023, 42(11): 5661-5668. |
[13] | 王子宗, 索寒生, 赵学良, 闫雅琨. 数字孪生智能乙烯工厂工业互联网平台的设计与构建[J]. 化工进展, 2023, 42(10): 5029-5036. |
[14] | 黄格省, 师晓玉, 丁文娟, 王春娇, 慕彦君, 侯雨璇. 光伏电池封装胶膜材料发展现状与前景分析[J]. 化工进展, 2023, 42(10): 5037-5046. |
[15] | 陆子薇, 廖湘洲, 粟小理, 隋志军. 三氟三氯乙烷加氢脱氯Pd-Cu催化剂失活分析[J]. 化工进展, 2023, 42(1): 282-288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |