化工进展 ›› 2023, Vol. 42 ›› Issue (10): 5299-5309.DOI: 10.16085/j.issn.1000-6613.2022-2180
宋亚丽1(), 李紫燕1, 杨彩荣1, 黄龙2, 张宏忠1()
收稿日期:
2022-11-23
修回日期:
2023-06-04
出版日期:
2023-10-15
发布日期:
2023-11-11
通讯作者:
张宏忠
作者简介:
宋亚丽(1988—),女,博士,讲师,主要研究方向为光催化技术在水体修复中的应用。E-mail:songyl@zzuli.edu.cn。
基金资助:
SONG Yali1(), LI Ziyan1, YANG Cairong1, HUANG Long2, ZHANG Hongzhong1()
Received:
2022-11-23
Revised:
2023-06-04
Online:
2023-10-15
Published:
2023-11-11
Contact:
ZHANG Hongzhong
摘要:
石墨相氮化碳(g-C3N4)是一种非金属光催化材料,其具有制备成本低、制备过程简单、绿色、无二次污染、带隙能可调控、热稳定性高等特点,使其成为人们在能源与环境领域研究和关注的焦点。然而,g-C3N4还存在比表面积小、禁带宽度较大、光生电子和空穴复合过快等缺点,限制了其发展。非金属元素掺杂可以对g-C3N4进行改性以有效解决以上问题,使其带隙减小,拓宽光谱响应范围,抑制光生电子-空穴对的复合,提高光吸收能力,来提高其光催化性能。本文对非金属元素掺杂g-C3N4的合成方法、应用等方面进行综述,从非金属单元素掺杂(单元素自掺杂和其他单元素掺杂)、非金属多元素共掺杂方面进行了总结。最后指出了在非金属元素掺杂g-C3N4方面,仍需要关注g-C3N4产量偏低、可见光利用效率不足、回收较难等问题,并强调了非金属元素掺杂g-C3N4在治理环境污染和应对能源危机方面的重要作用。
中图分类号:
宋亚丽, 李紫燕, 杨彩荣, 黄龙, 张宏忠. 非金属元素掺杂石墨相氮化碳光催化材料的研究进展[J]. 化工进展, 2023, 42(10): 5299-5309.
SONG Yali, LI Ziyan, YANG Cairong, HUANG Long, ZHANG Hongzhong. Research progress of non-metallic element doped graphitic carbon nitride photocatalytic materials[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5299-5309.
序号 | 前体物质 | 掺杂元素 | 取代位点 | 带隙能量(掺杂后/未掺杂)/eV | 光催化活性评价指标 | 去除率或产氢率或产氨率(掺杂后/未掺杂) |
---|---|---|---|---|---|---|
1 | 尿素+咪唑 | N | C1 | 2.26/2.72 | 罗丹明B去除率 | 93.5%/47%(提高2倍)[ |
2 | 双氰胺+二甲基甲酰胺 | C | N3 | 2.66/2.72 | 产氢率 | 8.88μmol·h-1/1.70μmol·h-1(提高5.2倍)[ |
3 | 氰胺+硫脲 | S | N2 | — | 产氢率 | 12.16μmol·h-1/2.03μmol·h-1(提高6.0倍)[ |
4 | 尿素+1-丁基-3-甲基咪唑六氟磷酸盐 | P | — | 2.31/2.70 | 四环素去除率 | 85%/40%(提高2.1倍)[ |
5 | 尿素 | O | N2 | 2.78/2.86 | 磺胺嘧啶去除率 | 72.64%/38.84%(提高1.8倍)[ |
6 | 尿素 | O | N1 | — | 罗丹明B去除率 | 99%/33%(提高3倍)[ |
7 | 硼酸+尿素 | B | — | 2.44/2.7 | 亚甲基蓝去除率 | 86%/11%(提高7.8倍)[ |
8 | 尿素+卤化铵 | F | N3 | 2.55/2.78 | 全氟辛酸去除率 | 74.3%/57.1%(提高1.3倍)[ |
9 | 三聚氯氰+双氰胺+乙腈 | Cl | N2 | 1.78/1.82 | 罗丹明B去除率 | 99.6%/16.8%(提高5.9倍)[ |
10 | 三聚氰胺+铵盐 | Br | 层间N | 2.75/2.78 | 土霉素去除率 | 75%/30%(提高2.5倍)[ |
11 | 双氰胺+碘酸钾 | I | N2 | 2.68/2.76 | 产氨率 | 200.8mg·L-1·g-1/71.9 mg·L-1·g-1(提高2.8倍)[ |
表1 非金属单元素掺杂g-C3N4的光催化特性
序号 | 前体物质 | 掺杂元素 | 取代位点 | 带隙能量(掺杂后/未掺杂)/eV | 光催化活性评价指标 | 去除率或产氢率或产氨率(掺杂后/未掺杂) |
---|---|---|---|---|---|---|
1 | 尿素+咪唑 | N | C1 | 2.26/2.72 | 罗丹明B去除率 | 93.5%/47%(提高2倍)[ |
2 | 双氰胺+二甲基甲酰胺 | C | N3 | 2.66/2.72 | 产氢率 | 8.88μmol·h-1/1.70μmol·h-1(提高5.2倍)[ |
3 | 氰胺+硫脲 | S | N2 | — | 产氢率 | 12.16μmol·h-1/2.03μmol·h-1(提高6.0倍)[ |
4 | 尿素+1-丁基-3-甲基咪唑六氟磷酸盐 | P | — | 2.31/2.70 | 四环素去除率 | 85%/40%(提高2.1倍)[ |
5 | 尿素 | O | N2 | 2.78/2.86 | 磺胺嘧啶去除率 | 72.64%/38.84%(提高1.8倍)[ |
6 | 尿素 | O | N1 | — | 罗丹明B去除率 | 99%/33%(提高3倍)[ |
7 | 硼酸+尿素 | B | — | 2.44/2.7 | 亚甲基蓝去除率 | 86%/11%(提高7.8倍)[ |
8 | 尿素+卤化铵 | F | N3 | 2.55/2.78 | 全氟辛酸去除率 | 74.3%/57.1%(提高1.3倍)[ |
9 | 三聚氯氰+双氰胺+乙腈 | Cl | N2 | 1.78/1.82 | 罗丹明B去除率 | 99.6%/16.8%(提高5.9倍)[ |
10 | 三聚氰胺+铵盐 | Br | 层间N | 2.75/2.78 | 土霉素去除率 | 75%/30%(提高2.5倍)[ |
11 | 双氰胺+碘酸钾 | I | N2 | 2.68/2.76 | 产氨率 | 200.8mg·L-1·g-1/71.9 mg·L-1·g-1(提高2.8倍)[ |
序号 | 前驱体物质 | 掺杂元素 | 取代位置 | 催化活性评价 指标 | 去除率或产氢率 | 参考文献 | ||
---|---|---|---|---|---|---|---|---|
g-C3N4 | 单元素掺杂 | 多元素共掺杂 | ||||||
1 | 三聚氰胺+六氯三磷腈+硫 | P、S | P取代C1位点 S取代N2位点 | 甲基蓝去除率 | 58% | 69%(P掺杂) 55%(S掺杂) | 完全降解 | [ |
2 | 双氰胺+谷胱甘肽 | C、O | C取代N1位点 O取代N2位点 | 产氢率 | 0.23mmol·h-1·g-1 | — | 18.38mmol·h-1·g-1 | [ |
3 | 植酸+三聚氰胺 | P、C | — | 产氢率 | 153.9μmol·g-1·h-1 | — | 1493.3μmol·g-1·h-1 | [ |
4 | 三聚氰胺+乙醇 | C、O | C取代N3位点 O取代N2位点 | 产氢率 | 93μmol·g-1·h-1 | — | 395μmol·g-1·h-1 | [ |
5 | 双氰胺+尿素+ 四氟硼酸乙基吡啶 | B、F | — | 产氢率 | 36μmol·h-1 | — | 343.5μmol·h-1 | [ |
6 | 三聚氰胺+H2O2+三硫氰酸 | S、O | S取代N2位点 O取代N2位点 | 罗丹明B去除率 | 20 % | 48%(S掺杂) | 75% | [ |
7 | 三聚氰胺+磷酸铵+氯化铵 | P、Cl | P取代C1位点 Cl占据间隙位点 | 罗丹明B去除率 | 60% | 66.02%(P掺杂) 97.91%(Cl掺杂) | 99.62% | [ |
8 | 硫脲+磷酸氢二胺 | S、P | — | 罗丹明B去除率 | 15% | 23%(S掺杂) | 66% | [ |
9 | 双氰胺+硝酸+磷酸氢二铵 | P、O | — | 罗丹明B去除率 | 13% | 37%(O掺杂) | 95% | [ |
10 | 六氯环三磷腈+硫脲 | P、S | — | 四环素去除率 | 32.95% | 43.48%(P掺杂) 73.50%(S掺杂) | 85.85% | [ |
11 | 三聚氰胺+硫脲+ 磷酸氢二铵 | P、S和O | P取代C1位点 O取代N2位点 S占据间隙位点 | 产氢率 | 467.33μmol·g-1·h-1 | 574μmol·g-1·h-1(S掺杂) 1141μmol·g-1·h-1(P掺杂) | 2479μmol·g-1·h-1 | [ |
表2 非金属多元素掺杂g-C3N4的光催化特性
序号 | 前驱体物质 | 掺杂元素 | 取代位置 | 催化活性评价 指标 | 去除率或产氢率 | 参考文献 | ||
---|---|---|---|---|---|---|---|---|
g-C3N4 | 单元素掺杂 | 多元素共掺杂 | ||||||
1 | 三聚氰胺+六氯三磷腈+硫 | P、S | P取代C1位点 S取代N2位点 | 甲基蓝去除率 | 58% | 69%(P掺杂) 55%(S掺杂) | 完全降解 | [ |
2 | 双氰胺+谷胱甘肽 | C、O | C取代N1位点 O取代N2位点 | 产氢率 | 0.23mmol·h-1·g-1 | — | 18.38mmol·h-1·g-1 | [ |
3 | 植酸+三聚氰胺 | P、C | — | 产氢率 | 153.9μmol·g-1·h-1 | — | 1493.3μmol·g-1·h-1 | [ |
4 | 三聚氰胺+乙醇 | C、O | C取代N3位点 O取代N2位点 | 产氢率 | 93μmol·g-1·h-1 | — | 395μmol·g-1·h-1 | [ |
5 | 双氰胺+尿素+ 四氟硼酸乙基吡啶 | B、F | — | 产氢率 | 36μmol·h-1 | — | 343.5μmol·h-1 | [ |
6 | 三聚氰胺+H2O2+三硫氰酸 | S、O | S取代N2位点 O取代N2位点 | 罗丹明B去除率 | 20 % | 48%(S掺杂) | 75% | [ |
7 | 三聚氰胺+磷酸铵+氯化铵 | P、Cl | P取代C1位点 Cl占据间隙位点 | 罗丹明B去除率 | 60% | 66.02%(P掺杂) 97.91%(Cl掺杂) | 99.62% | [ |
8 | 硫脲+磷酸氢二胺 | S、P | — | 罗丹明B去除率 | 15% | 23%(S掺杂) | 66% | [ |
9 | 双氰胺+硝酸+磷酸氢二铵 | P、O | — | 罗丹明B去除率 | 13% | 37%(O掺杂) | 95% | [ |
10 | 六氯环三磷腈+硫脲 | P、S | — | 四环素去除率 | 32.95% | 43.48%(P掺杂) 73.50%(S掺杂) | 85.85% | [ |
11 | 三聚氰胺+硫脲+ 磷酸氢二铵 | P、S和O | P取代C1位点 O取代N2位点 S占据间隙位点 | 产氢率 | 467.33μmol·g-1·h-1 | 574μmol·g-1·h-1(S掺杂) 1141μmol·g-1·h-1(P掺杂) | 2479μmol·g-1·h-1 | [ |
1 | WEI Bo, WANG Wei, SUN Jianfei, et al. Insight into the effect of boron doping on electronic structure, photocatalytic and adsorption performance of g-C3N4 by first-principles study[J]. Applied Surface Science, 2020, 511: 145549. |
2 | ZHOU Yue, Wenhua LYU, ZHU Binglong, et al. Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-doping for remarkable visible-light-driven hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5801-5807. |
3 | LIU Mingquan, JIAO Yingying, QIN Junchao, et al. Boron doped C3N4 nanodots/nonmetal element (S, P, F, Br) doped C3N4 nanosheets heterojunction with synergistic effect to boost the photocatalytic hydrogen production performance[J]. Applied Surface Science, 2021, 541: 148558. |
4 | WANG Xinchen, MAEDA Kazuhiko, THOMAS Arne, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. |
5 | 王衍坤, 方元行, 王心晨. 氮化碳光催化分解水的研究进展[J]. 福州大学学报(自然科学版), 2021, 49(5): 577-587. |
WANG Yankun, FANG Yuanxing, WANG Xinchen. Progresses of carbon nitride polymers for water splitting[J]. Journal of Fuzhou University (Natural Science Edition), 2021, 49(5): 577-587. | |
6 | CHEN Jingling, HONG Zhenhua, CHEN Yilin, et al. One-step synthesis of sulfur-doped and nitrogen-deficient g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light[J]. Materials Letters, 2015, 145: 129-132. |
7 | YANG Liuqing, HUANG Jianfeng, SHI Li, et al. A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental, 2017, 204: 335-345. |
8 | ARUMUGAM Malathi, TAHIR Muhammad, PRASERTHDAM Piyasan. Effect of nonmetals (B, O, P, and S) doped with porous g-C3N4 for improved electron transfer towards photocatalytic CO2 reduction with water into CH4 [J]. Chemosphere, 2022, 286: 131765. |
9 | 吴桧, 陈雪燕, 邹贵容, 等. 石墨相氮化碳在光催化降解领域的研究进展[J]. 辽宁化工, 2021, 50(9): 1318-1320. |
WU Hui, SHEN Xueyan, ZOU Guirong, et al. Research progress of graphite carbon nitride in the photocatalytic degradation field[J]. Liaoning Chemical Industry, 2021, 50(9): 1318-1320. | |
10 | SHI Yuxing, LI Lingling, XU Zheng, et al. One-step simple green method to prepare carbon-doped graphitic carbon nitride nanosheets for boosting visible-light photocatalytic degradation of tetracycline[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(11): 3122-3133. |
11 | PATTANAYAK D S, PAL D, MISHRA J, et al. Noble metal–free doped graphitic carbon nitride (g-C3N4) for efficient photodegradation of antibiotics: Progress, limitations, and future directions[J]. Environmental Science and Pollution Research, 2022, 30: 25546-25558. |
12 | WANG Xing, LIANG Yinghua, AN Weijia, et al. Removal of chromium (Ⅵ) by a self-regenerating and metal free g-C3N4/graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light[J]. Applied Catalysis B: Environmental, 2017, 219: 53-62. |
13 | XING Weinan, CHENG Ke, ZHANG Yichi, et al. Incorporation of nonmetal group dopants into g-C3N4 framework for highly improved photocatalytic H2 production[J]. Nanomaterials, 2021, 11(6): 1480. |
14 | MISHRA Bhagyashree P, BABU Pradeepta, PARIDA Kulamani. Phosphorous, boron and sulfur doped g-C3N4 nanosheet: Synthesis, characterization, and comparative study towards photocatalytic hydrogen generation[J]. Materials Today: Proceedings, 2021, 35: 258-262. |
15 | 谢磊, 刘帅, 孙有为, 等. 石墨相氮化碳光催化剂的研究进展[J]. 石油化工高等学校学报, 2021, 34(6): 27-34. |
XIE Lei, LIU Shuai, SUN Youwei, et al. Research progress of graphite phase carbon nitride photocatalysts[J]. Journal of Petrochemical Universities, 2021, 34(6): 27-34. | |
16 | 李琛, 孙官超, 周烈兴, 等. g-C3N4结构调控及其复合体系的研究进展[J]. 水处理技术, 2022, 48(5): 18-23. |
LI Chen, SUN Guanchao, ZHOU Liexing, et al. Research progress of structural regulation on g-C3N4 and corresponding composite system[J]. Technology of Water Treatment, 2022, 48(5): 18-23. | |
17 | 毛德贤, 王显恒, 王乾. 氮化碳复合材料光催化性能研究进展[J]. 内蒙古石油化工, 2020, 46(9): 18-19. |
MAO Dexian, WANG Xianheng, WANG Qian. The research progress in photocatalytic performance for carbon nitride composites[J]. Inner Mongolia Petrochemical Industry, 2020, 46(9): 18-19. | |
18 | 梁海欧, 许瞳, 白杰, 等. 类石墨相氮化碳改性研究进展[J]. 化学通报, 2022, 85(1): 72-77, 51. |
LIANG Haiou, XU Tong, BAI Jie, et al. Research advances in the modification of graphitic carbon nitride[J]. Chemistry, 2022, 85(1): 72-77, 51. | |
19 | 黎小芳, 沈群, 李覃, 等. 光催化材料石墨相氮化碳研究进展[J]. 中南民族大学学报(自然科学版), 2021, 40(5): 441-452. |
LI Xiaofang, SHEN Qun, LI Qin, et al. Research progress of photocatalytic graphitic carbon nitride[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2021, 40(5): 441-452. | |
20 | LUO Yidan, WANG Jiaming, YU Shuohan, et al. Nonmetal element doped g-C3N4 with enhanced H2 evolution under visible light irradiation[J]. Journal of Materials Research, 2018, 33(9): 1268-1278. |
21 | MA Xinguo, Yanhui LYU, XU Jing, et al. A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: A first-principles study[J]. The Journal of Physical Chemistry C, 2012, 116(44): 23485-23493. |
22 | GUO Shien, DENG Zhaopeng, LI Mingxia, et al. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition, 2016, 55(5): 1830-1834. |
23 | HE Fang, WANG Zhenxing, LI Yuexiang, et al. The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts[J]. Applied Catalysis B: Environmental, 2020, 269: 118828. |
24 | JIANG Longbo, YUAN Xingzhong, PAN Yang, et al. Doping of graphitic carbon nitride for photocatalysis: A reveiw[J]. Applied Catalysis B: Environmental, 2017, 217: 388-406. |
25 | QUYEN Vu THI, KIM Hoon Jae, KIM JiTae, et al. Synthesizing S-doped graphitic carbon nitride for improvement photodegradation of tetracycline under solar light[J]. Solar Energy, 2021, 214: 288-293. |
26 | 彭小明, 罗文栋, 胡锋平, 等. 石墨类氮化碳改性方法的研究进展[J]. 水处理技术, 2019, 45(12): 1-6, 12. |
PENG Xiaoming, LUO Wendong, HU Fengping, et al. Research progress of the modified method for graphitic carbon nitride[J]. Technology of Water Treatment, 2019, 45(12): 1-6, 12. | |
27 | 张家晶, 郑永杰, 金春雪, 等. g-C3N4基光催化剂改性的研究进展[J]. 现代化工, 2021, 41(3): 42-47. |
ZHANG Jiajing, ZHENG Yongjie, JIN Chunxue, et al. Research progress on modification of g-C3N4-based photocatalyst[J]. Modern Chemical Industry, 2021, 41(3): 42-47. | |
28 | 王福禄, 王建华, 李子强. 氮化碳光催化材料的掺杂改性研究进展[J]. 精细石油化工, 2020, 37(3): 69-76. |
WANG Fulu, WANG Jianhua, LI Ziqiang. Research progress on modification of carbon nitride photocatalyst by doping method[J]. Speciality Petrochemicals, 2020, 37(3): 69-76. | |
29 | HUANG Yan, NING Lichao, FENG Zibo, et al. Graphitic carbon nitride nanosheets with low ON1-doping content as efficient photocatalysts for organic pollutant degradation[J]. Environmental Science: Nano, 2021, 8(2): 460-469. |
30 | QI Huilan, LIU Yanan, LI Chengyun, et al. Precursor-reforming protocol to synthesis of porous N-doped g-C3N4 for highly improved photocatalytic water treatments[J]. Materials Letters, 2020, 264: 127329. |
31 | CAO Jingsheng, FAN Huiqing, WANG Chao, et al. Facile synthesis of carbon self-doped g-C3N4 for enhanced photocatalytic hydrogen evolution[J]. Ceramics International, 2020, 46(6): 7888-7895. |
32 | GE Lei, HAN Changcun, XIAO Xinlai, et al. Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C3N4 photocatalysts[J]. Materials Research Bulletin, 2013, 48(10): 3919-3925. |
33 | ZHAO Kun, KHAN Iltaf, QI Kezhen, et al. Ionic liquid assisted preparation of phosphorus-doped g-C3N4 photocatalyst for decomposition of emerging water pollutants[J]. Materials Chemistry and Physics, 2020, 253: 123322. |
34 | CAO Shihai, ZHANG Yu, DING Keqiang, et al. Efficient visible light driven degradation of antibiotic pollutants by oxygen-doped graphitic carbon nitride via the homogeneous supramolecular assembly of urea[J]. Environmental Research, 2022, 210: 112920. |
35 | YAN Qian, HUANG Guifang, LI Dongfeng, et al. Facile synthesis and superior photocatalytic and electrocatalytic performances of porous B-doped g-C3N4 nanosheets[J]. Journal of Materials Science & Technology, 2018, 34(12): 2515-2520. |
36 | CHEN Zesen, CHEN Weirui, LIAO Gaozu, et al. Flexible construct of N vacancies and hydrophobic sites on g-C3N4 by F doping and their contribution to PFOA degradation in photocatalytic ozonation[J]. Journal of Hazardous Materials, 2022, 428: 128222. |
37 | CAO Mengyu, WANG Ke, TUDELA Ignacio, et al. Improve photocatalytic performance of g-C3N4 through balancing the interstitial and substitutional chlorine doping[J]. Applied Surface Science, 2021, 536: 147784. |
38 | HONG Jeonghyun, HWANG Dae Kun, SELVARAJ Rengaraj, et al. Facile synthesis of Br-doped g-C3N4 nanosheets via one-step exfoliation using ammonium bromide for photodegradation of oxytetracycline antibiotics[J]. Journal of Industrial and Engineering Chemistry, 2019, 79: 473-481. |
39 | HU Xiuli, ZHANG Wenjun, YONG Yuwen, et al. One-step synthesis of iodine-doped g-C3N4 with enhanced photocatalytic nitrogen fixation performance[J]. Applied Surface Science, 2020, 510: 145413. |
40 | ZHOU Yajun, ZHANG Lingxia, HUANG Weimin, et al. N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light[J]. Carbon, 2016, 99: 111-117. |
41 | JIANG Longbo, YUAN Xingzhong, ZENG Guangming, et al. Nitrogen self-doped g-C3N4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation[J]. Journal of Colloid and Interface Science, 2019, 536: 17-29. |
42 | LIU Wenshi, WANG Baogang. Biomimetic synthesis of C-doped g-C3N4 spinous hollow microspheres from sunflower pollen with enhanced visible-light photocatalytic performance[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2021, 29(12): 966-973. |
43 | CHEN Zhou, FAN Tingting, YU Xiang, et al. Gradual carbon doping of graphitic carbon nitride towards metal-free visible light photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2018, 6(31): 15310-15319. |
44 | LIU Guangqing, XUE Mengwei, LIU Qinpu, et al. Facile synthesis of C-doped hollow spherical g-C3N4 from supramolecular self-assembly for enhanced photoredox water splitting[J]. International Journal of Hydrogen Energy, 2019, 44(47): 25671-25679. |
45 | WANG Wei, LIU Chengyin, XU Shanshan, et al. Intermediate-hydrothermal strategy of carbon doped g-C3N4 for improved photocatalytic degradation and disinfection capacity[J]. Inorganic Chemistry Communications, 2022, 139: 109335. |
46 | GUO Hui, SHU Zhu, CHEN Donghang, et al. One-step synthesis of S-doped g-C3N4 nanosheets for improved visible-light photocatalytic hydrogen evolution[J]. Chemical Physics, 2020, 533: 110714. |
47 | LIN Yanru, DIZON Gian Vincent Canlas, YAMADA Kanta, et al. Sulfur-doped g-C3N4 nanosheets for photocatalysis: Z-scheme water splitting and decreased biofouling[J]. Journal of Colloid and Interface Science, 2020, 567: 202-212. |
48 | LIU Gang, NIU Ping, SUN Chenghua, et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4 [J]. Journal of the American Chemical Society, 2010, 132(33): 11642-11648. |
49 | WANG Ke, LI Qin, LIU Baoshun, et al. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance[J]. Applied Catalysis B: Environmental, 2015, 176/177: 44-52. |
50 | WANG Yuelin, TIAN Yu, YAN Likai, et al. DFT study on sulfur-doped g-C3N4 nanosheets as a photocatalyst for CO2 reduction reaction[J]. The Journal of Physical Chemistry C, 2018, 122(14): 7712-7719. |
51 | LEBLANC Gabriel, CHEN Gongping, GIZZIE Evan A, et al. Enhanced photocurrents of photosystem I films on P-doped silicon[J]. Advanced Materials, 2012, 24(44): 5959-5962. |
52 | RAN Jingrun, MA Tianyi, GAO Guoping, et al. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production[J]. Energy & Environmental Science, 2015, 8(12): 3708-3717. |
53 | ZHANG Wendong, ZHANG Jie, DONG Fan, et al. Facile synthesis of in situ phosphorus-doped g-C3N4 with enhanced visible light photocatalytic property for NO purification[J]. RSC Advances, 2016, 6(91): 88085-88089. |
54 | MEI Riguo, MA Lei, AN Liang, et al. Layered spongy-like O-doped g-C3N4: An efficient non-metal oxygen reduction catalyst for alkaline fuel cells[J]. Journal of the Electrochemical Society, 2017, 164(4): F354-F363. |
55 | SHE Xiaojie, LIU Liang, JI Haiyan, et al. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light[J]. Applied Catalysis B: Environmental, 2016, 187: 144-153. |
56 | YANG Yajing, BIAN Zhaoyong. Oxygen doping through oxidation causes the main active substance in g-C3N4 photocatalysis to change from holes to singlet oxygen[J]. Science of the Total Environment, 2021, 753: 141908. |
57 | CHEN Pengfei, XING Pingxing, CHEN Zhiqiang, et al. Rapid and energy-efficient preparation of boron doped g-C3N4 with excellent performance in photocatalytic H2-evolution[J]. International Journal of Hydrogen Energy, 2018, 43(43): 19984-19989. |
58 | SAGARA Nobuhiro, KAMIMURA Sunao, TSUBOTA Toshiki, et al. Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light[J]. Applied Catalysis B: Environmental, 2016, 192: 193-198. |
59 | XIA Xiang, XIE Cong, XU Baogang, et al. Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation[J]. Journal of Industrial and Engineering Chemistry, 2022, 105: 303-312. |
60 | WANG Dongbo, HUANG Xianqing, HUANG Ying, et al. Self-assembly synthesis of petal-like Cl-doped g-C3N4 nanosheets with tunable band structure for enhanced photocatalytic activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611: 125780. |
61 | TONG Jincheng, ZHANG Li, LI Fei, et al. Rapid and high-yield production of g-C3N4 nanosheets via chemical exfoliation for photocatalytic H2 evolution[J]. RSC Advances, 2015, 5(107): 88149-88153. |
62 | ZHU Bicheng, ZHANG Jinfeng, JIANG Chuanjia, et al. First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst[J]. Applied Catalysis B: Environmental, 2017, 207: 27-34. |
63 | ZHAO Zaiwang, SUN Yanjuan, DONG Fan, et al. Template synthesis of carbon self-doped g-C3N4 with enhanced visible to near-infrared absorption and photocatalytic performance[J]. RSC Advances, 2015, 5(49): 39549-39556. |
64 | HU Chechia, HUNG Wei-Zeng, WANG Maosheng, et al. Phosphorus and sulfur codoped g-C3N4 as an efficient metal-free photocatalyst[J]. Carbon, 2018, 127: 374-383. |
65 | WU Jiaojiao, LI Nan, ZHANG Xiaohong, et al. Heteroatoms binary-doped hierarchical porous g-C3N4 nanobelts for remarkably enhanced visible-light-driven hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 226: 61-70. |
66 | ZHAO Zhengliang, SHU Zhu, ZHOU Jun, et al. Facile one-pot synthesis of C, O-codoped nano-structured g-C3N4 with superior photocatalytic hydrogen evolution[J]. Materials Research Bulletin, 2022, 145: 111565. |
67 | WANG Hao, WANG Bo, BIAN Yaru, et al. Enhancing photocatalytic activity of graphitic carbon nitride by codoping with P and C for efficient hydrogen generation[J]. ACS Applied Materials & Interfaces, 2017, 9(26): 21730-21737. |
68 | LIU Qinqin, SHEN Jiyou, YU Xiaohui, et al. Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-Codoped and exfoliated ultrathin g-C3N4 nanosheets[J]. Applied Catalysis B: Environmental, 2019, 248: 84-94. |
69 | WANG Hao, YANG Chuanfeng, LI Ming, et al. Enhanced photocatalytic hydrogen production of restructured B/F codoped g-C3N4 via post-thermal treatment[J]. Materials Letters, 2018, 212: 319-322. |
70 | YOU Ran, DOU Hailong, CHEN Lu, et al. Graphitic carbon nitride with S and O codoping for enhanced visible light photocatalytic performance[J]. RSC Advances, 2017, 7(26): 15842-15850. |
71 | YANG Yanqing, JIN Hufang, ZHANG Chi, et al. Nitrogen-deficient modified P-Cl co-doped graphitic carbon nitride with enhanced photocatalytic performance[J]. Journal of Alloys and Compounds, 2020, 821: 153439. |
72 | HU Shaozheng, MA Lin, XIE Ying, et al. Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions[J]. Dalton Transactions, 2015, 44(48): 20889-20897. |
73 | MA Huiqiang, LI Yang, LI Shuang, et al. Novel PO codoped g-C3N4 with large specific surface area: Hydrothermal synthesis assisted by dissolution-precipitation process and their visible light activity under anoxic conditions[J]. Applied Surface Science, 2015, 357: 131-138. |
74 | JIANG Longbo, YUAN Xingzhong, ZENG Guangming, et al. Phosphorus- and sulfur-codoped g-C3N4: Facile preparation, mechanism insight, and application as efficient photocatalyst for tetracycline and methyl orange degradation under visible light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 5831-5841. |
[1] | 陈彰旭, 李燕辉, 任红云, 张丽丹, 郑炳云. g-C3N4/MIL-125(Ti)磁性复合材料制备及其去除罗丹明B[J]. 化工进展, 2022, 41(12): 6469-6476. |
[2] | 周杰, 孙月, 包妍, 刘泽珏, 张沙沙, 朱蓓蓓, 王璐, 管国锋. 低维石墨相氮化碳合成方法研究进展[J]. 化工进展, 2022, 41(12): 6430-6442. |
[3] | 王文霞, 刘小丰, 陈浠, 许艳虹, 蒙振邦, 郑俊霞, 安太成. 多孔g-C3N4基光催化材料的制备及应用研究进展[J]. 化工进展, 2022, 41(1): 300-309. |
[4] | 张轩, 郑丽君. 光解水制氢单相催化剂研究进展[J]. 化工进展, 2021, 40(S1): 215-222. |
[5] | 李酽, 宋双, 连晓雪. MoS2/ZnO纳米复合材料的光学和光催化性能[J]. 化工进展, 2021, 40(7): 3870-3877. |
[6] | 段丽媛, 李国强, 张舒婷, 王宏宇, 赵永乐, 张永发. 二次等温热缩聚改性对g-C3N4光催化剂性能的影响[J]. 化工进展, 2021, 40(6): 3389-3400. |
[7] | 孙金龙, 张宇, 刘福跃, 田浩然, 刘崎峰. 基于碳基催化剂活化过二硫酸盐降解有机污染物的研究进展[J]. 化工进展, 2021, 40(3): 1653-1666. |
[8] | 李筱玲, 邓寒霜, 赵艳艳. Ag/g-C3N4光催剂的构建及降解7-氨基头孢烷酸机理[J]. 化工进展, 2020, 39(9): 3716-3722. |
[9] | 周琱玉,李涛涛,王辉,乔珺威,梁伟. Au@TiO2纳米管阵列的制备及光催化性能[J]. 化工进展, 2019, 38(03): 1403-1410. |
[10] | 杨冬, 周致远, 丁菲, 赵旭阳, 陈瑶, 姜忠义. 特殊形貌g-C3N4基光催化材料的研究进展[J]. 化工进展, 2019, 38(01): 495-504. |
[11] | 张英杰, 朱子翼, 董鹏, 赵少博, 章艳佳, 杨成云, 杨城沣, 韦克毅, 李雪. 钠离子电池碳基负极材料的研究进展[J]. 化工进展, 2017, 36(11): 4106-4115. |
[12] | 郭雅容, 陈志鸿, 刘琼, 张正国, 方晓明. 石墨相氮化碳光催化剂研究进展[J]. 化工进展, 2016, 35(07): 2063-2070. |
[13] | 李家德, 方稳, 周晚琴, 余长林. 银基半导体光催化剂研究进展[J]. 化工进展, 2015, 34(1): 113-118. |
[14] | 尹 莉,陈德良,李 涛,张 毅,张 锐. 贵金属/WO3复合纳米晶的气敏与光催化研究进展[J]. 化工进展, 2012, 31(01 ): 133-143. |
[15] | 廖建军,李士普,曹献坤,曹 阳,林仕伟. 有序TiO2纳米管阵列光催化性能研究进展 [J]. 化工进展, 2011, 30(9): 2003-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |