化工进展 ›› 2023, Vol. 42 ›› Issue (9): 4559-4572.DOI: 10.16085/j.issn.1000-6613.2022-1998
收稿日期:
2022-10-26
修回日期:
2023-02-27
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
李平
作者简介:
赵曦(1993—),男,硕士研究生,研究方向为微化工技术。E-mail:2694753316@qq.com。
基金资助:
ZHAO Xi(), MA Haoran, LI Ping(), HUANG Ailing
Received:
2022-10-26
Revised:
2023-02-27
Online:
2023-09-15
Published:
2023-09-28
Contact:
LI Ping
摘要:
微混合器作为微流控设备的重要组成部分,广泛应用于生化领域,由于在微通道下流体流动为层流,混合较差,对于快速反应,混合是影响效率的主要因素。本文对影响混合效率的3种微混合器结构进行了数值模拟,通过变化微混合器的通道宽高比、发散处最大宽度、碰撞处错位高度3个结构参数,模拟研究其在层流下的混合性能。结果表明,流体碰撞处错位高度对混合性能影响最明显。对模拟结果最佳的微混合器(MST)进一步优化其结构得到新的微混合器(MTT),将MTT与MST及普通T型微混合器(MT)进行比较。MTT微混合器出口处的混合指数达到81%,而普通T型微混合器在相同的条件下只有5.3%。通过模拟分析混合过程,有效改善了错位碰撞型微混合器的结构,有利于提高流体混合效率,提高反应速度。
中图分类号:
赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572.
ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572.
流体 | 黏度/kg·m-1·s-1 | 密度/kg·m-3 | 扩散系数/m2·s-1 |
---|---|---|---|
水 | 1.003×10-3 | 9.98×102 | — |
乙醇 | 1.200×10-3 | 7.90×102 | — |
混合物 | 2.890×10-3 | — | 1.2×10-9 |
表1 20℃时流体的性质
流体 | 黏度/kg·m-1·s-1 | 密度/kg·m-3 | 扩散系数/m2·s-1 |
---|---|---|---|
水 | 1.003×10-3 | 9.98×102 | — |
乙醇 | 1.200×10-3 | 7.90×102 | — |
混合物 | 2.890×10-3 | — | 1.2×10-9 |
序号 | 错位高度/mm | 通道发散处最大宽度/mm | 宽高比 |
---|---|---|---|
1 | 0 | 0.2 | 1∶3 |
1∶2 | |||
1∶1 | |||
2∶1 | |||
3∶1 | |||
2 | 0 | 0.2 | 1∶1 |
0.5 | |||
0.8 | |||
1.1 | |||
1.4 | |||
3 | 0 | 1.4 | 1∶1 |
0.1 | |||
0.2 | |||
0.3 | |||
0.4 | |||
0.6 |
表2 结构尺寸不同的微混合器
序号 | 错位高度/mm | 通道发散处最大宽度/mm | 宽高比 |
---|---|---|---|
1 | 0 | 0.2 | 1∶3 |
1∶2 | |||
1∶1 | |||
2∶1 | |||
3∶1 | |||
2 | 0 | 0.2 | 1∶1 |
0.5 | |||
0.8 | |||
1.1 | |||
1.4 | |||
3 | 0 | 1.4 | 1∶1 |
0.1 | |||
0.2 | |||
0.3 | |||
0.4 | |||
0.6 |
序号 | 错位高度 /mm | 通道发散处最大 宽度/mm | 宽高比 | M | Δp/Pa | Mp |
---|---|---|---|---|---|---|
1 | 0 | 0.2 | 1∶3 | 0.1201 | 39802 | 0.00067 |
1∶2 | 0.1466 | 32226 | 0.00101 | |||
1∶1 | 0.1527 | 26794 | 0.00126 | |||
2∶1 | 0.0660 | 31602 | 0.00046 | |||
3∶1 | 0.0272 | 38795 | 0.00016 | |||
2 | 0 | 0.2 | 1∶1 | 0.1527 | 26794 | 0.00126 |
0.5 | 0.1542 | 25611 | 0.00133 | |||
0.8 | 0.1564 | 25492 | 0.00136 | |||
1.1 | 0.1573 | 25482 | 0.00137 | |||
1.4 | 0.1578 | 25487 | 0.00137 | |||
3 | 0 | 1.4 | 1∶1 | 0.1578 | 25487 | 0.00137 |
0.1 | 0.3831 | 27092 | 0.00313 | |||
0.2 | 0.3913 | 27601 | 0.00314 | |||
0.3 | 0.4646 | 28155. | 0.00365 | |||
0.4 | 0.5459 | 28759 | 0.00420 | |||
0.6 | 0.4103 | 29205 | 0.00311 |
表4 模拟结果
序号 | 错位高度 /mm | 通道发散处最大 宽度/mm | 宽高比 | M | Δp/Pa | Mp |
---|---|---|---|---|---|---|
1 | 0 | 0.2 | 1∶3 | 0.1201 | 39802 | 0.00067 |
1∶2 | 0.1466 | 32226 | 0.00101 | |||
1∶1 | 0.1527 | 26794 | 0.00126 | |||
2∶1 | 0.0660 | 31602 | 0.00046 | |||
3∶1 | 0.0272 | 38795 | 0.00016 | |||
2 | 0 | 0.2 | 1∶1 | 0.1527 | 26794 | 0.00126 |
0.5 | 0.1542 | 25611 | 0.00133 | |||
0.8 | 0.1564 | 25492 | 0.00136 | |||
1.1 | 0.1573 | 25482 | 0.00137 | |||
1.4 | 0.1578 | 25487 | 0.00137 | |||
3 | 0 | 1.4 | 1∶1 | 0.1578 | 25487 | 0.00137 |
0.1 | 0.3831 | 27092 | 0.00313 | |||
0.2 | 0.3913 | 27601 | 0.00314 | |||
0.3 | 0.4646 | 28155. | 0.00365 | |||
0.4 | 0.5459 | 28759 | 0.00420 | |||
0.6 | 0.4103 | 29205 | 0.00311 |
错位高度/mm | 截面1 | 截面2 | 截面3 | 错位高度/mm | 截面1 | 截面2 | 截面3 |
---|---|---|---|---|---|---|---|
0 | 0.2 | ||||||
0.4 | 0.6 |
表5 不同错位高度下,流体碰撞处乙醇的质量分数云图
错位高度/mm | 截面1 | 截面2 | 截面3 | 错位高度/mm | 截面1 | 截面2 | 截面3 |
---|---|---|---|---|---|---|---|
0 | 0.2 | ||||||
0.4 | 0.6 |
错位高度/mm | 截面1 | 截面2 | 截面3 | 错位高度/mm | 截面1 | 截面2 | 截面3 |
---|---|---|---|---|---|---|---|
(uy2+uz2)0.5 m/s | |||||||
0 | 0.2 | ||||||
0.4 | 0.6 |
表6 不同错位高度下,流体碰撞处的垂直速度云图
错位高度/mm | 截面1 | 截面2 | 截面3 | 错位高度/mm | 截面1 | 截面2 | 截面3 |
---|---|---|---|---|---|---|---|
(uy2+uz2)0.5 m/s | |||||||
0 | 0.2 | ||||||
0.4 | 0.6 |
1 | 陈卓, 王运东, 徐建鸿. 气液液微分散萃取强化低浓度稀土离子富集回收[J]. 化工进展, 2020, 39(12): 4963-4969. |
CHEN Zhuo, WANG Yundong, XU Jianhong. Enrichment of rare earth elements by gas-liquid-liquid microdispersion extraction technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4963-4969. | |
2 | 李冬媛. 微通道反应器中连续生产生物柴油的工艺研究[D]. 大连: 大连理工大学, 2013. |
LI Dongyuan. Continuous production of biodiesel in A micro-channel reactor[D]. Dalian: Dalian University of Technology, 2013. | |
3 | LUO Xiangyu, CHENG Yifei, ZHANG Weichen, et al. Mixing performance analysis of the novel passive micromixer designed by applying fuzzy grey relational analysis[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121638. |
4 | SANTANA H S, TORTOLA D S, SILVA J L, et al. Biodiesel synthesis in micromixer with static elements[J]. Energy Conversion and Management, 2017, 141: 28-39. |
5 | NGUYEN Nam-Trung, HEJAZIAN M, Chin OOI, et al. Recent advances and future perspectives on microfluidic liquid handling[J]. Micromachines, 2017, 8(6): 186. |
6 | 孟维军, 徐一鸣, 李平, 等. 微通道内连续合成十二烷基苯磺酸的响应面分析及混合过程模拟[J]. 化工进展, 2021, 40(11): 5998-6008. |
MENG Weijun, XU Yiming, LI Ping, et al. Response surface analysis and mixing process simulation of continuous synthesis of dodecylbenzene sulfonic acid in microchannels[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5998-6008. | |
7 | 姜圣坤, 韩博, 赵鑫, 等. 微通道反应器中甲苯过量连续绝热硝化制备单硝基甲苯[J]. 化工进展, 2022, 41(6): 2910-2914. |
JIANG Shengkun, HAN Bo, ZHAO Xin, et al. Preparation of mononitrotoluene by continuous adiabatic nitration of excess toluene in microreactor[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2910-2914. | |
8 | 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4): 427-439. |
CHEN Guangwen, YUAN Quan. Micro-chemical technology[J]. CIESC Journal, 2003, 54(4): 427-439. | |
9 | NOURI D, ZABIHI-HESARI A, PASSANDIDEH-FARD M. Rapid mixing in micromixers using magnetic field[J]. Sensors and Actuators A: Physical, 2017, 255: 79-86. |
10 | ANNABESTANI M, AZIZMOHSENI S, ESMAEILI-DOKHT P, et al. Multiphysics analysis and practical implementation of a soft μ-actuator- based microfluidic micromixer[J]. Journal of Microelectromechanical Systems, 2020, 29(2): 268-276. |
11 | RAZA W, HOSSAIN S, KIM Kwang-Yong. A review of passive micromixers with a comparative analysis[J]. Micromachines, 2020, 11(5): 455. |
12 | OKUDUCU M B, ARAL M M. Performance analysis and numerical evaluation of mixing in 3-D T-shape passive micromixers[J]. Micromachines, 2018, 9(5): 210. |
13 | 陈光文, 赵玉潮, 乐军, 等. 微化工过程中的传递现象[J]. 化工学报, 2013, 64(1): 63-75. |
CHEN Guangwen, ZHAO Yuchao, YUE Jun, et al. Transport phenomena in micro-chemical engineering[J]. CIESC Journal, 2013, 64(1): 63-75. | |
14 | JIANG Yuan, ZHANG Bi, TIAN Yun, et al. Analysis of different shapes of cross-sections and obstacles in variable-radius spiral micromixers on mixing efficiency[J]. Chemical Engineering and Processing-Process Intensification, 2022, 171: 108756. |
15 | AHMADI V E, BUTUN I, ALTAY R, et al. The effects of baffle configuration and number on inertial mixing in a curved serpentine micromixer: Experimental and numerical study[J]. Chemical Engineering Research and Design, 2021, 168: 490-498. |
16 | Honglin LYU, CHEN Xueye, WANG Xiangyang, et al. A novel study on a micromixer with Cantor fractal obstacle through grey relational analysis[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122159. |
17 | AGARWAL T, WANG Liqiu. Numerical analysis of vortex T micromixer with diffuser plates and obstacles[J]. Thermal Science and Engineering Progress, 2022, 28: 101156. |
18 | MONDAL B, MEHTA S K, PATOWARI P K, et al. Numerical study of mixing in wavy micromixers: Comparison between raccoon and serpentine mixer[J]. Chemical Engineering and Processing-Process Intensification, 2019, 136: 44-61. |
19 | MEHRDEL P, KARIMI S, FARRÉ-LLADÓS J, et al. Novel variable radius spiral-shaped micromixer: From numerical analysis to experimental validation[J]. Micromachines, 2018, 9(11): 552. |
20 | ZOU Lili, GONG Yao, CHEN Longsheng, et al. Design and evaluation of two-dimensional passive micromixer based on unbalanced convergence-divergence-splits and reverse-collisions-recombination[J]. Chemical Engineering Science, 2021, 244: 116816. |
21 | AGHASI M ALI, HEKMAT M H. A novel design of split and recombination multilayer micromixers with excellent hydraulic and mixing performance based on the baker’s transformation[J]. Chemical Engineering and Processing-Process Intensification, 2022, 174: 108894. |
22 | WANG Xin, LIU Zhanqiang, CAI Yukui, et al. A cost-effective serpentine micromixer utilizing ellipse curve[J]. Analytica Chimica Acta, 2021, 1155: 338355. |
23 | SINHA A, ZUNAID M. Numerical study of passive mixing in a 3-dimensional helical micromixer with two inlets at offset[J]. Materials Today: Proceedings, 2022, 56: 3676-3681. |
24 | TRIPATHI E, PATOWARI P K, PATI S. Numerical investigation of mixing performance in spiral micromixers based on Dean flows and chaotic advection[J]. Chemical Engineering and Processing-Process Intensification, 2021, 169: 108609. |
25 | FERNÁNDEZ-MAZA C, FALLANZA M, GÓMEZ-COMA L, et al. Performance of continuous-flow micro-reactors with curved geometries. Experimental and numerical analysis[J]. Chemical Engineering Journal, 2022, 437: 135192. |
26 | TOKAS S, ZUNAID M, ANSARI M A. Non-Newtonian fluid mixing in a three-dimensional spiral passive micromixer[J]. Materials Today: Proceedings, 2021, 47: 3947-3952. |
27 | BORGOHAIN P, ARUMUGHAN J, DALAL A, et al. Design and performance of a three-dimensional micromixer with curved ribs[J]. Chemical Engineering Research and Design, 2018, 136: 761-775. |
28 | SOLEHATI N, BAE J, SASMITO A P. Numerical investigation of mixing performance in microchannel T-junction with wavy structure[J]. Computers & Fluids, 2014, 96: 10-19. |
29 | MOUHEB N AIT, MALSCH D, MONTILLET A, et al. Numerical and experimental investigations of mixing in T-shaped and cross-shaped micromixers[J]. Chemical Engineering Science, 2012, 68(1): 278-289. |
30 | ZHAN Xuekuan, JING Dalei. Influence of geometric parameters on the fluidic and mixing characteristics of T-shaped micromixer[J]. Microsystem Technologies, 2020, 26(9): 2989-2996. |
31 | ZHANG Shuai, CHEN Xueye, WU Zhongli, et al. Numerical study on stagger Koch fractal baffles micromixer[J]. International Journal of Heat and Mass Transfer, 2019, 133: 1065-1073. |
32 | XIA G D, LI Y F, WANG J, et al. Numerical and experimental analyses of planar micromixer with gaps and baffles based on field synergy principle[J]. International Communications in Heat and Mass Transfer, 2016, 71: 188-196. |
[1] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[2] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[3] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[4] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[5] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[6] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[7] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[8] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[9] | 王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442. |
[10] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[11] | 卢兴福, 戴波, 杨世亮. 转鼓内圆柱形颗粒混合的超二次曲面离散单元法模拟[J]. 化工进展, 2023, 42(5): 2252-2261. |
[12] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[13] | 马润梅, 杨海超, 李正大, 李双喜, 赵祥, 章国庆. 表面强化镀层对高速轴承腔密封端面变形及摩擦磨损影响分析[J]. 化工进展, 2023, 42(4): 1688-1697. |
[14] | 张成松, 张静, 龚斌, 李明洋, 袁佳新, 李宏业. 自吸射流柔性搅拌桨振动特性[J]. 化工进展, 2023, 42(4): 1728-1738. |
[15] | 王光宇, 孟境辉, 张锴. 煤泥间歇微波干燥模拟及介电性质[J]. 化工进展, 2023, 42(4): 1779-1786. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |