化工进展 ›› 2023, Vol. 42 ›› Issue (8): 4029-4042.DOI: 10.16085/j.issn.1000-6613.2023-0640
杨涵1,2(), 张一波1,2(), 李琦1,2, 张俊1,2,3, 陶莹1,2(), 杨全红1,2,3()
收稿日期:
2023-04-19
修回日期:
2023-05-30
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
陶莹,杨全红
作者简介:
杨涵(1998—),女,硕士研究生,研究方向为钠离子电池。E-mail:hanyang9806@163.com基金资助:
YANG Han1,2(), ZHANG Yibo1,2(), LI Qi1,2, ZHANG Jun1,2,3, TAO Ying1,2(), YANG Quanhong1,2,3()
Received:
2023-04-19
Revised:
2023-05-30
Online:
2023-08-15
Published:
2023-09-19
Contact:
TAO Ying, YANG Quanhong
摘要:
随着电化学储能需求的不断攀升,加之锂资源储量不高、分布不均、成本高等因素影响,作为低成本二次储能电池的代表,钠离子电池迎来新的发展机遇,其研发和产业化迈入快车道。其中,原料丰富、性能优异的碳材料脱颖而出,成为钠离子电池负极的首要选择。本文面向实用化钠离子电池碳负极梳理了碳负极的研究进展,简要介绍了碳负极材料的储钠机制,重点论述了不同类型碳负极的设计思路及其实用化进展,最后分析探讨了实用化钠离子电池碳负极材料发展中面临的挑战及未来研究中需进一步重视的主要问题。
中图分类号:
杨涵, 张一波, 李琦, 张俊, 陶莹, 杨全红. 面向实用化的钠离子电池碳负极:进展及挑战[J]. 化工进展, 2023, 42(8): 4029-4042.
YANG Han, ZHANG Yibo, LI Qi, ZHANG Jun, TAO Ying, YANG Quanhong. Practical carbon anodes for sodium-ion batteries: progress and challenge[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4029-4042.
图5 软木塞高温碳化前后的SEM图(a);与O3型的Na[Cu1/9Ni2/9Fe1/3Mn1/3]O2正极匹配的全电池的倍率性能[58](b);以酚醛树脂为前体、乙醇为造孔剂合成的碳材料的闭孔结构示意图(c);充放电曲线[64](d);沥青预氧化后的电压比容量图[66](e);沥青与树脂复合前体制备高容量碳负极的策略示意图[67](f)
图8 ZnO辅助刻蚀的策略下的碳负极在0.05A/g电流密度下的充放电曲线(a)、倍率性能(b)、在0.05A/g和2A/g电流密度下的循环性能(c)[74];分子筛薄膜包覆的碳负极不同电流密度下预脱溶剂化电解液中的斜坡和平台段的容量占比(d)、不同电流密度下的充放电曲线(e)和在1mol/L NaPF6-G2和预脱溶剂化电解液中0.05~10A/g电流密度下的倍率性能[82](f)
1 | 李慧, 吴川, 吴锋, 等. 钠离子电池: 储能电池的一种新选择[J]. 化学学报, 2014, 72(1): 21-29. |
LI Hui, WU Chuan, WU Feng, et al. Sodium ion battery: A promising energy-storage candidate for supporting renewable electricity[J]. Acta Chimica Sinica, 2014, 72(1): 21-29. | |
2 | ARUMUGAM Manthiram. An outlook on lithium ion battery technology[J]. ACS Central Science, 2017, 3(10): 1063-1069. |
3 | YONG Jiaying, RAMACHANDARAMURTHY Vigna K, TAN Kangmiao, et al. A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 365-385. |
4 | 方铮, 曹余良, 胡勇胜, 等. 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5(2): 149-158. |
FANG Zheng, CAO Yuliang, HU Yongsheng, et al. Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 149-158. | |
5 | VAALMA Christoph, BUCHHOLZ Daniel, WEIL Marcel, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3: 18013. |
6 | ELLIS Brian L, NAZAR Linda F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion in Solid State and Materials Science, 2012, 16(4): 168-177. |
7 | SAUREL Damien, ORAYECH Brahim, XIAO Biwei, et al. From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Advanced Energy Materials, 2018, 8(17): 1703268. |
8 | DELMAS Claude. Sodium and sodium-ion batteries: 50 years of research[J]. Advanced Energy Materials, 2018, 8(17): 1703137. |
9 | MARTIN Winter, BRIAN Barnett, XU Kang. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456. |
10 | HWANG Jang-Yeon, MYUNG Seung-Taek, SUN Yang-Kook. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
11 | MARC Walter, KOVALENKO Maksym V, KRAVCHYK Kostiantyn V. Challenges and benefits of post-lithium-ion batteries[J]. New Journal of Chemistry, 2020, 44(5): 1677-1683. |
12 | 容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池:从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522. |
RONG Xiaohui, LU Yaxiang, QI Xingguo, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. | |
13 | LI Zhi, DING Jia, MITLIN Darid. Tin and Tin compounds for sodium ion battery anodes: phase transformations and performance[J]. Accounts of Chemical Research, 2015, 48(6): 1657-1665. |
14 | ZHU Yujie, WEN Yang, FAN Xiulin, et al. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries[J]. ACS Nano, 2015, 9(3): 3254-3264. |
15 | KIM Youngjin, PARK Yuwon, CHOI Aram, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries[J]. Advanced Materials, 2013, 25(22): 3045-3049. |
16 | LAO Mengmeng, ZHANG Yu, LUO Wenbin, et al. Alloy-based anode materials toward advanced sodium-ion batteries[J]. Advanced Materials, 2017, 29(48): 1700622. |
17 | ASHISH Rudola, RENNIE Anthony J R, RICHARD Heap, et al. Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook[J]. Journal of Materials Chemistry A, 2021, 9(13): 8279-8302. |
18 | WU Chao, DOU Shixue, YU Yan. The state and challenges of anode materials based on conversion reactions for sodium storage[J]. Small, 2018, 14(22): 1703671. |
19 | XU Yang, ZHOU Min, LEI Yong. Organic materials for rechargeable sodium-ion batteries[J]. Materials Today, 2018, 21(1): 60-78. |
20 | PARK Yuwon, SHIN Dong-Seon, Seung Hee WOO, et al. Sodium terephthalate as an organic anode material for sodium ion batteries[J]. Advanced Materials, 2012, 24(26): 3562-3567. |
21 | LI Yunming, HU Yongsheng, TITIRICI Maria-Magdalena, et al. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(18): 1600659. |
22 | NAOAKI Yabuuchi, Kubota KEI, MOUAD Dahbi, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
23 | LI Yunming, HU Yongsheng, QI Xingguo, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: Towards practical applications[J]. Energy Storage Materials, 2016, 5: 191-197. |
24 | KANG Hongyan, LIU Yongchang, CAO Kangzhe, et al. Update on anode materials for Na-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(35): 17899-17913. |
25 | ZHANG Lupeng, WANG Wei Alex, LU Shanfu, et al. Carbon anode materials: A detailed comparison between Na-ion and K-ion batteries[J]. Advanced Energy Materials, 2021, 11(11): 2003640. |
26 | CAO Fei, BARSUKOV Igor V, BANG Hyun Joo, et al. Evaluation of graphite materials as anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(10): 3579. |
27 | WU Yuping, JIANG Changyin, WAN Chunrong, et al. Effects of catalytic oxidation on the electrochemical performance of common natural graphite as an anode material for lithium ion batteries[J]. Electrochemistry Communications, 2000, 2(4): 272-275. |
28 | BESENHARD J O. The electrochemical preparation and properties of ionic alkali metal- and NR4-graphite intercalation compounds in organic electrolytes[J]. Carbon, 1976, 14(2): 111-115. |
29 | JIAN Zelang, LUO Wei, JI Xiulei. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(36): 11566-11569. |
30 | NALIMOVA V A, CHEPURKO S N, AVDEEV V V, et al. Intercalation in the graphite-rubidium system under high pressure[J]. Synthetic Metals, 1991, 40(3): 267-273. |
31 | MORDKOVICH V Z, BAXENDALE M, OHKI Y, et al. Synthesis of new cesium-oxygen graphite intercalation compounds[J]. Journal of Alloys and Compounds, 1995, 226(1/2): L1-L2. |
32 | EBERT L B. Intercalation compounds of graphite[J]. Annual Review of Materials Science, 1976, 6: 181-211. |
33 | DIVINCENZO D P, MELE E J. Cohesion and structure in stage-1 graphite intercalation compounds[J]. Physical Review B, 1985, 32(4): 2538-2553. |
34 | GE Pascal, FOULETIER Mireille. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics, 1988, 28/29/30: 1172-1175. |
35 | RACCICHINI Rinaldo, VARZI Alberto, PASSERINI Stefano, et al. The role of graphene for electrochemical energy storage[J]. Nature Materials, 2015, 14(3): 271-279. |
36 | KIM Haegyeom, HONG Jihyun, PARK Young-Uk, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Advanced Functional Materials, 2015, 25(4): 534-541. |
37 | JACHE Birte, ADELHELM Philipp. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition, 2014, 53(38): 10169-73. |
38 | JIAN Zelang, BOMMIER Clement, LUO Langli, et al. Insights on the mechanism of Na-ion storage in soft carbon anode[J]. Chemistry of Materials, 2017, 29(5): 2314-2320. |
39 | CHENG Dejian, ZHOU Xiuqing, HU Huanying, et al. Electrochemical storage mechanism of sodium in carbon materials: A study from soft carbon to hard carbon[J]. Carbon, 2021, 182: 758-769. |
40 | PENDASHTEH Afshin, ORAYECH Brahim, SUHARD Hugo, et al. Boosting the performance of soft carbon negative electrode for high power Na-ion batteries and Li-ion capacitors through a rational strategy of structural and morphological manipulation[J]. Energy Storage Materials, 2022, 46: 417-430. |
41 | CHU Yue, ZHANG Jun, ZHANG Yibo, et al. Reconfiguring hard carbons with emerging sodium-ion batteries: A perspective[J]. Advanced Materials, 2023, . |
42 | LI Qi, ZHANG Jun, ZHONG Lixiang, et al. Unraveling the key atomic interactions in determining the varying Li/Na/K storage mechanism of hard carbon anodes[J]. Advanced Energy Materials, 2022, 12(37): 2201734. |
43 | CLEMENT Bommier, TODD Wesley Surta, MICHELLE Dolgos, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters, 2015, 15(9): 5888-5892. |
44 | KOMABA Shinichi, MURATA Wataru, ISHIKAWA Toru, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867. |
45 | DAHN J R, XING W, GAO Y. The “falling cards model” for the structure of microporous carbons[J]. Carbon, 1997, 35(6): 825-830. |
46 | BAI Panxing, HE Yongwu, ZOU Xiaoxi, et al. Elucidation of the sodium-storage mechanism in hard carbons[J]. Advanced Energy Materials, 2018, 8(15): 1703217. |
47 | Deshan BIN, LI Yunming, SUN Yonggang, et al. Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode[J]. Advanced Energy Materials, 2018, 8(26): 1800855. |
48 | QIU Shen, XIAO Lifen, SUSHKO Maria L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17): 1700403. |
49 | CAO Yuliang, XIAO Lifen, SUSHKO Maria L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12(7): 3783-3787. |
50 | SUN Ning, GUAN Zhaoruxin, LIU Yuwen, et al. Sodium storage mechanism: Extended “adsorption-insertion” model: A new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials, 2019, 9(32): 1970125. |
51 | ALVIN Stevanus, YOON Dohyeon, CHANDRA Christian, et al. Revealing sodium ion storage mechanism in hard carbon[J]. Carbon, 2019, 145: 67-81. |
52 | MORIKAWA Yusuke, NISHIMURA Shin-ichi, HASHIMOTO Ryu-ichi, et al. Mechanism of sodium storage in hard carbon: An X-ray scattering analysis[J]. Advanced Energy Materials, 2020, 10(3): 1903176. |
53 | REN Qingjuan, WANG Jing, YAN Lei, et al. Manipulating free-standing, flexible and scalable microfiber carbon papers unlocking ultra-high initial Coulombic efficiency and storage sodium behavior[J]. Chemical Engineering Journal, 2021, 425: 131656. |
54 | CHEN Xiaoyang, TIAN Jiyu, LI Peng, et al. An overall understanding of sodium storage behaviors in hard carbons by an “adsorption-intercalation/filling” hybrid mechanism[J]. Advanced Energy Materials, 2022, 12(24): 2200886. |
55 | CHEN Xiaoyang, LIU Changyu, FANG Yongjin, et al. Understanding of the sodium storage mechanism in hard carbon anodes[J]. Carbon Energy, 2022, 4(6): 1133-1150. |
56 | DOU Xinwei, HASA Ivana, SAUREL Damien, et al. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry[J]. Materials Today, 2019, 23: 87-104. |
57 | LIU Ting, LI Xifei. Biomass-derived nanostructured porous carbons for sodium ion batteries: A review[J]. Materials Technology, 2019, 34(4): 232-245. |
58 | LI Yuqi, LU Yaxiang, MENG Qingshi, et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance[J]. Advanced Energy Materials, 2019, 9(48): 1902852. |
59 | MATEI GHIMBEU Camélia, ZHANG Biao, MARTINEZ DE YUSO Alicia, et al. Valorizing low cost and renewable lignin as hard carbon for Na-ion batteries: Impact of lignin grade[J]. Carbon, 2019, 153: 634-647. |
60 | RYBARCZYK Maria K, LI Yunming, QIAO Mo, et al. Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries[J]. Journal of Energy Chemistry, 2019, 29: 17-22. |
61 | CHEN Chen, HUANG Ying, ZHU Yade, et al. Nonignorable influence of oxygen in hard carbon for sodium ion storage[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1497-1506. |
62 | NITA Cristina, ZHANG Biao, DENTZER Joseph, et al. Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries[J]. Journal of Energy Chemistry, 2021, 58: 207-218. |
63 | BEDA Adrian, TABERNA Pierre-Louis, SIMON Patrice, et al. Hard carbons derived from green phenolic resins for Na-ion batteries[J]. Carbon, 2018, 139: 248-257. |
64 | MENG Qingshi, LU Yaxiang, DING Feixiang, et al. Tuning the closed pore structure of hard carbons with the highest Na storage capacity[J]. ACS Energy Letters, 2019, 4(11): 2608-2612. |
65 | WANG Yuwei, XIAO Nan, WANG Zhiyu, et al. Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch[J]. Chemical Engineering Journal, 2018, 342: 52-60. |
66 | LU Yaxiang, ZHAO Chenglong, QI Xingguo, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Advanced Energy Materials, 2018, 8(27): 1800108. |
67 | YIN Xiuping, ZHAO Yufeng, WANG Xuan, et al. Modulating the graphitic domains of hard carbons derived from mixed pitch and resin to achieve high rate and stable sodium storage[J]. Small, 2022, 18(5): 2105568. |
68 | 张思伟, 张俊, 吴思达, 等. 钠离子电池用碳负极材料研究进展[J]. 化学学报, 2017, 75(2): 163-172. |
ZHANG Siwei, ZHANG Jun, WU Sida, et al. Research advances of carbon-based anode materials for sodium-ion batteries[J]. Acta Chimica Sinica, 2017, 75(2): 163-172. | |
69 | ZHANG Siwei, Wei LYU, LUO Chong, et al. Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2016, 3: 18-23. |
70 | LI Qi, LIU Xiangsi, TAO Ying, et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries[J]. National Science Review, 2022, 9(8): nwac084. |
71 | LI Xianwei, SUN Jingying, ZHAO Wenxia, et al. Intergrowth of graphite-like crystals in hard carbon for highly reversible Na-ion storage[J]. Advanced Functional Materials, 2022, 32(2): 2106980. |
72 | YU Xiao, XIN Ling, LI Xianwei, et al. Completely crystalline carbon containing graphite-like crystal enables 99.5% initial coulombic efficiency for Na-ion batteries[J]. Materials Today, 2022, 59: 25-35. |
73 | PU Xiangjun, WANG Huiming, ZHAO Dong, et al. Recent progress in rechargeable sodium-ion batteries: Toward high-power applications[J]. Small, 2019, 15(32): e1805427. |
74 | YIN Xiuping, LU Zhixiu, WANG Jing, et al. Enabling fast Na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage[J]. Advanced Materials, 2022, 34(13): 2109282. |
75 | HONG Zhensheng, ZHEN Yichao, RUAN Yurong, et al. Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance[J]. Advanced Materials, 2018, 30(29): 1802035. |
76 | XIE Fei, NIU Yaoshen, ZHANG Qiangqiang, et al. Screening heteroatom configurations for reversible sloping capacity promises high-power Na-ion batteries[J]. Angewandte Chemie International Edition, 2022, 61(11): e202116394. |
77 | LUO Wei, JIAN Zelang, XING Zhenyu, et al. Electrochemically expandable soft carbon as anodes for Na-ion batteries[J]. ACS Central Science, 2015, 1(9): 516-522. |
78 | LI Zhifei, BOMMIER Clement, CHONG Zhisen, et al. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping[J]. Advanced Energy Materials, 2017, 7(18): 1602894. |
79 | JIN Qianzheng, WANG Kangli, FENG Pingyuan, et al. Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries[J]. Energy Storage Materials, 2020, 27: 43-50. |
80 | CHI Chunlei, LIU Zheng, LU Xiaolong, et al. Balance of sulfur doping content and conductivity of hard carbon anode for high-performance K-ion storage[J]. Energy Storage Materials, 2023, 54: 668-679. |
81 | XIA Jili, YAN Dong, GUO Liping, et al. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage[J]. Advanced Materials, 2020, 32(21): 2000447. |
82 | LU Ziyang, GENG Chuannan, YANG Huijun, et al. Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(40): e2210203119. |
83 | BAUER Alexander, SONG Jie, VAIL Sean, et al. The scale-up and commercialization of nonaqueous Na-ion battery technologies[J]. Advanced Energy Materials, 2018, 8(17): 1702869. |
84 | GOIKOLEA Eider, PALOMARES Verónica, WANG Shijian, et al. Na-ion batteries—Approaching old and new challenges[J]. Advanced Energy Materials, 2020, 10(44): 2002055. |
[1] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[2] | 朱晟, 彭怡婷, 闵宇霖, 刘海梅, 徐群杰. 电化学储能材料及储能技术研究进展[J]. 化工进展, 2021, 40(9): 4837-4852. |
[3] | 赵鹬, 周飞, 张伟伟, 李宁, 李世友, 李贵贤. 磷化钴材料在电化学能源领域的研究进展[J]. 化工进展, 2021, 40(4): 2188-2205. |
[4] | 魏润宏, 徐汝辉, 胡学军, 张克宇, 张业男, 梁风, 姚耀春. SnO2-C复合负极材料的维度设计用于锂、钠离子电池[J]. 化工进展, 2020, 39(7): 2677-2686. |
[5] | 朱子翼,董鹏,张举峰,黎永泰,肖杰,曾晓苑,李雪,张英杰. 新一代储能钠离子电池正极材料的改性研究进展[J]. 化工进展, 2020, 39(3): 1043-1056. |
[6] | 王勇, 刘雯, 郭瑞, 罗英, 解晶莹. 钠离子电池正极材料研究进展[J]. 化工进展, 2018, 37(08): 3056-3066. |
[7] | 张英杰, 朱子翼, 董鹏, 赵少博, 章艳佳, 杨成云, 杨城沣, 韦克毅, 李雪. 钠离子电池碳基负极材料的研究进展[J]. 化工进展, 2017, 36(11): 4106-4115. |
[8] | 史文静, 燕永旺, 徐守冬, 陈良, 刘世斌, 张鼎. 钠离子电池正极材料Na0.44MnO2的研究进展[J]. 化工进展, 2017, 36(09): 3343-3352. |
[9] | 叶飞鹏1,2,王 莉2,连 芳1,何向明2,3,田光宇3,欧阳明高3. 钠离子电池研究进展[J]. 化工进展, 2013, 32(08): 1789-1795. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |