化工进展 ›› 2023, Vol. 42 ›› Issue (4): 2058-2067.DOI: 10.16085/j.issn.1000-6613.2022-1133
收稿日期:
2022-06-16
修回日期:
2022-08-19
出版日期:
2023-04-25
发布日期:
2023-05-08
通讯作者:
张瑞君
作者简介:
宗悦(1993—),女,博士研究生,研究方向为膜法水处理理论与技术。E-mail:zongyue_1993@163.com。
基金资助:
ZONG Yue(), ZHANG Ruijun(), GAO Shanshan, TIAN Jiayu
Received:
2022-06-16
Revised:
2022-08-19
Online:
2023-04-25
Published:
2023-05-08
Contact:
ZHANG Ruijun
摘要:
薄膜复合(TFC)膜凭借其优异的渗透性及选择性常用于水处理过程中的脱盐环节。为解决TFC脱盐膜在贮存/运行过程中因干燥、酸/碱水解、高温破坏或氯氧化导致性能下降的问题,国内外众多学者相继开展了各类提高其稳定性的研究。本文以广泛应用的TFC纳滤/反渗透膜为参照,论述了TFC脱盐膜在上述四种特殊条件下的破坏机制,并归纳了相关的稳定性提升策略。通过系统地梳理耐干、耐酸/碱、耐高温和耐氯四类“特殊稳定型”TFC脱盐膜的最新研究进展,指出了目前存在破坏机制研究工作不够深入、对不同稳定性之间的影响关注不足等问题。最后,展望了未来在进一步研究膜材料失效机制的同时,要兼顾“特殊稳定型”TFC脱盐膜的脱盐效能和耐污染能力,并开展对多重稳定性的TFC脱盐膜材料的探索, 以期为日后的相关研究工作提供参考。
中图分类号:
宗悦, 张瑞君, 高珊珊, 田家宇. “特殊稳定型”压力驱动薄膜复合(TFC)脱盐膜的研究进展[J]. 化工进展, 2023, 42(4): 2058-2067.
ZONG Yue, ZHANG Ruijun, GAO Shanshan, TIAN Jiayu. A review on the pressure-driven thin film composite (TFC) membranes with special stability for desalination[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2058-2067.
基膜 | 分离层 | 膜性能变化 | 参考文献 |
---|---|---|---|
PPESK | MPD-TMC | 测试温度由20℃升至90℃,纯水通量提升200%, Na2SO4截留率由96.8%降至93.2% | [ |
PIP-TMC | 测试温度由20℃升至90℃,纯水通量提升200%, Na2SO4截留率保持在97.7%±0.4% | ||
PMIA | PIP-TMC | 测试温度由25℃升至90℃,纯水通量提升约120%, Na2SO4截留性能不变(高于95%) | [ |
PPEA | PIP-TMC | 测试温度由25℃升至85℃,纯水通量提升200%, NaCl截留率由12.2%降至6.9%,染料ACBK截留率保持不变(99.5%±0.2%) | [ |
PPENK | PIP-TMC | 测试温度由20℃升至80℃,纯水通量提升400%, Na2SO4截留性能不变(95.1%) | [ |
PPBES | PIP-TMC | 测试温度由18℃升至85℃,纯水通量提升375%, Na2SO4截留率由92.0%降至88.5% | [ |
表1 不同基膜上制备的耐高温TFC脱盐膜汇总
基膜 | 分离层 | 膜性能变化 | 参考文献 |
---|---|---|---|
PPESK | MPD-TMC | 测试温度由20℃升至90℃,纯水通量提升200%, Na2SO4截留率由96.8%降至93.2% | [ |
PIP-TMC | 测试温度由20℃升至90℃,纯水通量提升200%, Na2SO4截留率保持在97.7%±0.4% | ||
PMIA | PIP-TMC | 测试温度由25℃升至90℃,纯水通量提升约120%, Na2SO4截留性能不变(高于95%) | [ |
PPEA | PIP-TMC | 测试温度由25℃升至85℃,纯水通量提升200%, NaCl截留率由12.2%降至6.9%,染料ACBK截留率保持不变(99.5%±0.2%) | [ |
PPENK | PIP-TMC | 测试温度由20℃升至80℃,纯水通量提升400%, Na2SO4截留性能不变(95.1%) | [ |
PPBES | PIP-TMC | 测试温度由18℃升至85℃,纯水通量提升375%, Na2SO4截留率由92.0%降至88.5% | [ |
单体名称 | 化学结构 | 原理 | 膜性能变化 | 参考文献 |
---|---|---|---|---|
低聚酚醛树脂 (OPR) | 减少酰胺键数量 | 浸泡1000mg/L NaClO溶液48h, | [ | |
季戊四醇 | 减少酰胺键数量 | 浸泡3000mg/L NaClO溶液48h,水通量从1.34L/(m2·h·bar)增长至1.84L/(m2·h·bar),Na2SO4截留率保持不变(约97%) | [ | |
葡萄糖 | 减少酰胺键数量 | 浸泡10000mg/L NaClO溶液96h (pH=4.5), | [ | |
(3-磺丙基甜菜碱-丙基)- 三甲氧基硅(SPPT) | 与水分子通过静电吸引 形成水层 | [ | ||
3,5-二羟基苯甲酸 (DHBA) | 减少酰胺键数量 | 浸泡100000 | [ | |
3,5-二氨基-1,2,4- 三氮唑(DAT) | [ | |||
间苯二甲胺 (m-XDA) | [ |
表2 用于提升TFC脱盐膜耐氯性的新型单体及有关膜性能变化汇总
单体名称 | 化学结构 | 原理 | 膜性能变化 | 参考文献 |
---|---|---|---|---|
低聚酚醛树脂 (OPR) | 减少酰胺键数量 | 浸泡1000mg/L NaClO溶液48h, | [ | |
季戊四醇 | 减少酰胺键数量 | 浸泡3000mg/L NaClO溶液48h,水通量从1.34L/(m2·h·bar)增长至1.84L/(m2·h·bar),Na2SO4截留率保持不变(约97%) | [ | |
葡萄糖 | 减少酰胺键数量 | 浸泡10000mg/L NaClO溶液96h (pH=4.5), | [ | |
(3-磺丙基甜菜碱-丙基)- 三甲氧基硅(SPPT) | 与水分子通过静电吸引 形成水层 | [ | ||
3,5-二羟基苯甲酸 (DHBA) | 减少酰胺键数量 | 浸泡100000 | [ | |
3,5-二氨基-1,2,4- 三氮唑(DAT) | [ | |||
间苯二甲胺 (m-XDA) | [ |
1 | 冯向东, 封立林, 沈叔云, 等. 某燃煤发电厂反渗透膜系统脱盐率下降案例分析[J]. 水处理技术, 2022, 48(5): 141-144. |
FENG Xiangdong, FENG Lilin, SHEN Shuyun, et al. A case study on the decline of the desalination rate in the reverse osmosis membrane system of a coal-fired power plant[J]. Technology of Water Treatment, 2022, 48(5): 141-144. | |
2 | 倪亭亭, 王云钟, 吴永明, 等. 电厂反渗透浓水回用工程实例[J]. 工业水处理, 2022, 42(3): 182-185. |
NI Tingting, WANG Yunzhong, WU Yongming, et al. Project case of reverse osmosis concentrated water reuse in power plant[J]. Industrial Water Treatment, 2022, 42(3): 182-185. | |
3 | TIAN Jiayu, ZHAO Xingrui, GAO Shanshan, et al. Progress in research and application of nanofiltration (NF) technology for brackish water treatment[J]. Membranes, 2021, 11(9): 662. |
4 | LÓPEZ J, REIG M, VECINO X, et al. Comparison of acid-resistant ceramic and polymeric nanofiltration membranes for acid mine waters treatment[J]. Chemical Engineering Journal, 2020, 382: 122786. |
5 | DALVI Vaibhav, TANG Yupan, STAUDT Claudia, et al. Influential effects of nanoparticles, solvent and surfactant treatments on thin film nanocomposite (TFN) membranes for seawater desalination[J]. Desalination, 2017, 420: 216-225. |
6 | 张翔, 王继文, 赵相山, 等. 国产纳滤膜用于苦咸水脱盐制备饮用水[J]. 膜科学与技术, 2020, 40(4): 87-91. |
ZHANG Xiang, WANG Jiwen, ZHAO Xiangshan, et al. Study on desalination of high salinity brackish water for drinking water production with a domestic nanofiltration membrane[J]. Membrane Science and Technology, 2020, 40(4): 87-91. | |
7 | 郭世伟, 郑力玮, 罗建泉, 等. 纳滤膜在高盐废水处理中的应用研究进展[J]. 膜科学与技术, 2022, 42(2): 175-182. |
GUO Shiwei, ZHENG Liwei, LUO Jianquan, et al. Application progress of nanofiltration membrane in treatment of high salinity wastewater[J]. Membrane Science and Technology, 2022, 42(2): 175-182 | |
8 | 翟建文, 罗敏, 王东, 等. 耐高温膜用于凝结水深度净化处理[J]. 化工进展, 2009, 28(S2): 69-71. |
ZHAI Jianwen, LUO Min, WANG Dong, et al. Thermostable membrane for deeply-purification of condensation water[J]. Chemical Industry and Engineering Progress, 2009, 28(S2): 69-71. | |
9 | 陈宇昊, 刘家辉, 刘娟, 等. 新型复合纳滤膜研究进展[J]. 化工进展, 2021, 40(5): 2665-2675. |
CHEN Yuhao, LIU Jiahui, LIU Juan, et al. Research progress of novel composite nanofiltration membrane[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2665-2675. | |
10 | 张赛晖, 李校阳, 高慧, 等. 制备聚酰胺复合膜中界面聚合反应添加剂的研究进展[J]. 化工进展, 2022, 41(9): 4884-4894. |
ZHANG Saihui, LI Xiaoyang, GAO Hui, et al. Recent progress in additives in interfacial polymerization for the preparation of polyamide composite membrane[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4884-4894. | |
11 | KARAMI P, KHORSHIDI B, SOARES J B, et al. Fabrication of highly permeable and thermally stable reverse osmosis thin film composite polyamide membranes[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2916-2925. |
12 | Dupont, FilmTec™ reverse osmosis membranes technical manual[EB/OL]. 2022. . |
13 | ZONG Yue, ZHANG Ruijun, GAO Shanshan, et al. Anti-drying nanofiltration (NF) membranes constructed on PTFE microfiltration (MF) substrate via novel interfacial polymerization[J]. Journal of Membrane Science, 2021, 638: 119721. |
14 | LOUIE J S, PINNAU I, REINHARD M. Effects of surface coating process conditions on the water permeation and salt rejection properties of composite polyamide reverse osmosis membranes[J]. Journal of Membrane Science, 2011, 367(1/2): 249-255. |
15 | ZVERINA L, KOCH M, ANDERSEN M F, et al. Controlled pore collapse to increase solute rejection of modified PES membranes[J]. Journal of Membrane Science, 2020, 595: 117515. |
16 | KUEHNE M A, SONG R Q, LI N N, et al. Flux enhancement in TFC RO membranes[J]. Environmental Progress, 2001, 20(1): 23-26. |
17 | LI Hongbin, WANG Wei, ZHANG Yufeng. Preparation and characterization of high-selectivity hollow fiber composite nanofiltration membrane by two-way coating technique[J]. Journal of Applied Polymer Science, 2014, 131(23): 41187. |
18 | GAO J, CHUNG T S. Influence of contaminants in glycerol/water mixtures during post-treatment on physicochemical properties and separation performance of air-dried membranes[J]. Journal of Membrane Science, 2019, 572: 223-229. |
19 | XIAO H F, CHU C H, XU W T, et al. Amphibian-inspired amino acid ionic liquid functionalized nanofiltration membranes with high water permeability and ion selectivity for pigment wastewater treatment[J]. Journal of Membrane Science, 2019, 586: 44-52. |
20 | Dupont, DuPont water solutions launches breakthrough dry-tested seawater reverse osmosis elements[EB/OL]. 2022. . |
21 | Apisara BOONYA-ATICHART, BOONTANON Suwanna Kitpati, BOONTANON Narin. Removal of perfluorooctanoic acid (PFOA) in groundwater by nanofiltration membrane[J]. Water Science and Technology, 2016, 74(11): 2627-2633. |
22 | JUN B M, KIM S H, KWAK S K, et al. Effect of acidic aqueous solution on chemical and physical properties of polyamide NF membranes[J]. Applied Surface Science, 2018, 444: 387-398. |
23 | LI Juan, ZHAO Liming, WANG Yaosong, et al. Analysis of membrane fouling by proteins during nanofiltration of chitin alkali wastewater[J]. Journal of Water Reuse and Desalination, 2014, 4(4): 253-262. |
24 | SIEW Y W, ZEDDA K L, VELIZAROV S. Nanofiltration of simulated acid mine drainage: Effect of pH and membrane charge[J]. Applied Sciences, 2020, 10(1): 400. |
25 | DAEMS Nick, MILIS Sam, VERBEKE Rhea, et al. High-performance membranes with full pH-stability[J]. RSC Advances, 2018, 8(16): 8813-8827. |
26 | HOSEINPOUR Hamzeh, PEYRAVI Majid, NOZAD Ahmad, et al. Static and dynamic assessments of polysulfonamide and poly(amide-sulfonamide) acid-stable membranes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67: 453-466. |
27 | ZHU Ye, DOU Pengjia, HE Hailong, et al. Improvement of permeability and rejection of an acid resistant polysulfonamide thin-film composite nanofiltration membrane by a sulfonated poly(ether ether ketone) interlayer[J]. Separation and Purification Technology, 2020, 239: 116528. |
28 | HE Meng, YUAN Tao, DONG Wenjing, et al. High-performance acid-stable polysulfonamide thin-film composite membrane prepared via spinning-assist multilayer interfacial polymerization[J]. Journal of Materials Science, 2019, 54(1): 886-900. |
29 | CAO Yang, LUO Jianquan, CHEN Chulong, et al. Highly permeable acid-resistant nanofiltration membrane based on a novel sulfonamide aqueous monomer for efficient acidic wastewater treatment[J]. Chemical Engineering Journal, 2021, 425: 131791. |
30 | PARK Hee M, TAKABA H, LEE Y T. Preparation and characterization of TFC NF membrane with improved acid resistance behavior[J]. Journal of Membrane Science, 2020, 616: 118620. |
31 | LEE K P, ZHENG J, BARGEMAN Gerrald, et al. pH stable thin film composite polyamine nanofiltration membranes by interfacial polymerisation[J]. Journal of Membrane Science, 2015, 478: 75-84. |
32 | ZENG Yanjun, WANG Lihong, ZHANG Lin, et al. An acid resistant nanofiltration membrane prepared from a precursor of poly(s-triazine-amine) by interfacial polymerization[J]. Journal of Membrane Science, 2018, 546: 225-233. |
33 | ZHANG Yang, WAN Ying, LI Yu, et al. Thin-film composite nanofiltration membrane based on polyurea for extreme pH condition[J]. Journal of Membrane Science, 2021, 635: 119472. |
34 | PARK H M, ISMAEL M, TAKABA H, et al. Acid-resistant thin-film composite nanofiltration membrane prepared from polyamide-polyurea and the behavior of density functional theory study[J]. Journal of Membrane Science, 2022, 645: 120175. |
35 | ZOU Dong, CHEN Xianfu, QIU Minghui, et al. Flux-enhanced α-alumina tight ultrafiltration membranes for effective treatment of dye/salt wastewater at high temperatures[J]. Separation and Purification Technology, 2019, 215: 143-154. |
36 | Meltem AĞTAŞ, Özgün YıLMAZ, DILAVER Mehmet, et al. Hot water recovery and reuse in textile sector with pilot scale ceramic ultrafiltration/nanofiltration membrane system[J]. Journal of Cleaner Production, 2020, 256: 120359. |
37 | KURT E, KOSEOGLU-IMER D Y, DIZGE N, et al. Pilot-scale evaluation of nanofiltration and reverse osmosis for process reuse of segregated textile dyewash wastewater[J]. Desalination, 2012, 302: 24-32. |
38 | KARAMI Pooria, KHORSHIDI Behnam, MCGREGOR Mick, et al. Thermally stable thin film composite polymeric membranes for water treatment: A review[J]. Journal of Cleaner Production, 2020, 250: 119447. |
39 | AMAR N BEN, SAIDANI H, DERATANI A, et al. Effect of temperature on the transport of water and neutral solutes across nanofiltration membranes[J]. Langmuir, 2007, 23(6): 2937-2952. |
40 | WEN Peng, CHEN Yingbo, HU Xiaoyu, et al. Polyamide thin film composite nanofiltration membrane modified with acyl chlorided graphene oxide[J]. Journal of Membrane Science, 2017, 535: 208-220. |
41 | WEI Ju, JIAN Xigao, WU Chunri, et al. Influence of polymer structure on thermal stability of composite membranes[J]. Journal of Membrane Science, 2005, 256(1/2): 116-121. |
42 | CHEN Mingxing, XIAO Changfa, WANG Chun, et al. Preparation and characterization of a novel thermally stable thin film composite nanofiltration membrane with poly (m-phenyleneisophthalamide) (PMIA) substrate[J]. Journal of Membrane Science, 2018, 550: 36-44. |
43 | ZHANG Shouhai, LIU Peng, CHEN Yuning, et al. Preparation of thermally stable composite forward osmosis hollow fiber membranes based on copoly(phthalazinone biphenyl ether sulfone) substrates[J]. Chemical Engineering Science, 2017, 166: 91-100. |
44 | WU Chunrui, ZHANG Shouhai, YANG Daling, et al. Preparation, characterization and application of a novel thermal stable composite nanofiltration membrane[J]. Journal of Membrane Science, 2009, 326(2): 429-434. |
45 | HU Lijie, ZHANG Shouhai, HAN Runlin, et al. Preparation and performance of novel thermally stable polyamide/PPENK composite nanofiltration membranes[J]. Applied Surface Science, 2012, 258(22): 9047-9053. |
46 | HAN Runlin, ZHANG Shouhai, HU Lijie, et al. Preparation and characterization of thermally stable poly(piperazine amide)/PPBES composite nanofiltration membrane[J]. Journal of Membrane Science, 2011, 370(1/2): 91-96. |
47 | YAO Yujian, ZHANG Xuan. Chlorine resistant reverse osmosis membrane: A call for reform of desalination treatment processes [J]. Desalination, 2021, 501: 114907. |
48 | STOLOV Mikhail, FREGER Viatcheslav. Degradation of polyamide membranes exposed to chlorine: An impedance spectroscopy study[J]. Environmental Science & Technology, 2019, 53(5): 2618-2625. |
49 | YAO Yujian, ZHANG Wen, DU Yexin, et al. Toward enhancing the chlorine resistance of reverse osmosis membranes: An effective strategy via an end-capping technology[J]. Environmental Science & Technology, 2019, 53(3): 1296-1304. |
50 | ASEMPOUR F, AKBARI S, KANANI-JAZI M H, et al. Chlorine-resistant TFN RO membranes containing modified poly(amidoamine) dendrimer-functionalized halloysite nanotubes[J]. Journal of Membrane Science, 2021, 623: 119039. |
51 | CHARCOSSET Catherine. Classical and recent developments of membrane processes for desalination and natural water treatment[J]. Membranes, 2022, 12(3): 267. |
52 | CHO Kyungjin, JEONG Seongpil, KIM Heesun, et al. Simultaneous dechlorination and disinfection using vacuum UV irradiation for SWRO process[J]. Desalination, 2016, 398: 22-29. |
53 | KAVITHA J, RAJALAKSHMI M, PHANI A R, et al. Pretreatment processes for seawater reverse osmosis desalination systems—A review[J]. Journal of Water Process Engineering, 2019, 32: 100926. |
54 | ZHAN Shuo, LI Saisai, ZHAN Xia, et al. Green lignin-based polyester nanofiltration membranes with ethanol and chlorine resistance[J]. Journal of Applied Polymer Science, 2022, 139(1): 51427. |
55 | SUN Haixiang, CHEN Yuhao, LIU Jiahui, et al. A novel chlorine-resistant polyacrylate nanofiltration membrane constructed from oligomeric phenolic resin[J]. Separation and Purification Technology, 2021, 262: 118300. |
56 | FENG Xiaoquan, LIU Decheng, YE Hu, et al. High-flux polyamide membrane with improved chlorine resistance for efficient dye/salt separation based on a new N-rich amine monomer[J]. Separation and Purification Technology, 2021, 278: 119533. |
57 | LIU Yi, LIN Bo, LIU Wenchao, et al. Preparation and characterization of a novel nanofiltration membrane with chlorine-tolerant property and good separation performance[J]. RSC Advances, 2018, 8(64): 36430-36440. |
58 | MATSHETSHE Kabo, SIKHWIVHILU Keneiloe, NDLOVU Gebhu, et al. Antifouling and antibacterial β-cyclodextrin decorated graphene oxide/polyamide thin-film nanocomposite reverse osmosis membranes for desalination applications[J]. Separation and Purification Technology, 2021, 278: 119594. |
59 | XUE Jing, SHEN Jianliang, ZHANG Runnan, et al. High-flux nanofiltration membranes prepared with β-cyclodextrin and graphene quantum dots[J]. Journal of Membrane Science, 2020, 612: 118465. |
60 | SHUKLA A K, ALAM J, ALHOSHAN M S, et al. Thin-film nanocomposite membrane incorporated with porous Zn-based metal-organic frameworks: Toward enhancement of desalination performance and chlorine resistance[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28818-28831. |
61 | LIU Sihua, WU Chunrui, HOU Xiaotong, et al. Understanding the chlorination mechanism and the chlorine-induced separation performance evolution of polypiperazine-amide nanofiltration membrane[J]. Journal of Membrane Science, 2019, 573: 36-45. |
62 | ZHANG Jinmiao, LI Shuxuan, REN Dechao, et al. Fabrication of ultra-smooth thin-film composite nanofiltration membrane with enhanced selectivity and permeability on interlayer of hybrid polyvinyl alcohol and graphene oxide [J]. Separation and Purification Technology, 2021, 268: 118649. |
63 | JIANG Yongxiang, LI Shuxuan, SU Jinghua, et al. Two dimensional COFs as ultra-thin interlayer to build TFN hollow fiber nanofiltration membrane for desalination and heavy metal wastewater treatment[J]. Journal of Membrane Science, 2021, 635: 119523. |
64 | CHENG Jun, SHI Wenxin, ZHANG Lanhe, et al. A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC)[J]. Applied Surface Science, 2017, 416: 152-159. |
65 | SHEN Jianliang, WANG Guangzhe, YOU Xinda, et al. Thermal-facilitated interfacial polymerization toward high-performance polyester desalination membrane[J]. Journal of Materials Chemistry A, 2021, 9(13): 8470-8479. |
66 | SHARABATI J A D, ERKOC-ILTER S, GUCLU S, et al. Zwitterionic polysiloxane-polyamide hybrid active layer for high performance and chlorine resistant TFC desalination membranes[J]. Separation and Purification Technology, 2022, 282: 119965. |
67 | YAO Yujian, ZHANG Pingxia, JIANG Chao, et al. High performance polyester reverse osmosis desalination membrane with chlorine resistance[J]. Nature Sustainability, 2021, 4(2): 138-146. |
68 | WANG J T, LI S L, GUAN Y X, et al. Novel RO membranes fabricated by grafting sulfonamide group: Improving water permeability, fouling resistance and chlorine resistant performance[J]. Journal of Membrane Science, 2022, 641: 119919. |
69 | WANG Jing, ZHANG Si, WU Pengfei, et al. In situ surface modification of thin-film composite polyamide membrane with zwitterions for enhanced chlorine resistance and transport properties[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 12043-12052. |
70 | VATANPOUR Vahid, SANADGOL Atefeh. Surface modification of reverse osmosis membranes by grafting of polyamidoamine dendrimer containing graphene oxide nanosheets for desalination improvement[J]. Desalination, 2020, 491: 114442. |
71 | LU Peng, LI Wenjun, YANG Sheng, et al. Layered double hydroxide-modified thin-film composite membranes with remarkably enhanced chlorine resistance and anti-fouling capacity[J]. Separation and Purification Technology, 2019, 220: 231-237. |
72 | XIE Yingqi, YANG Linyan, CHEN Xueming, et al. The role of iron present in water environment in degradation of polyamide membranes by free chlorine[J]. Journal of Membrane Science, 2022, 651: 120458. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[3] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[4] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[5] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[6] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[7] | 吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382. |
[8] | 陆诗建, 刘苗苗, 杨菲, 张俊杰, 陈思铭, 刘玲, 康国俊, 李清方. 改良型CO2湿壁塔内气液两相流动规律及传质特性[J]. 化工进展, 2023, 42(7): 3457-3467. |
[9] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[10] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[11] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[12] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[13] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[14] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
[15] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |