化工进展 ›› 2023, Vol. 42 ›› Issue (4): 1677-1687.DOI: 10.16085/j.issn.1000-6613.2022-1058
收稿日期:
2022-06-07
修回日期:
2022-08-15
出版日期:
2023-04-25
发布日期:
2023-05-08
通讯作者:
余子夷
作者简介:
田启凯(1997—),男,硕士研究生,研究方向为微流控混合。E-mail:qikai.tian@njtech.edu.cn。
基金资助:
TIAN Qikai(), ZHENG Haiping, ZHANG Shaobin, ZHANG Jing, YU Ziyi()
Received:
2022-06-07
Revised:
2022-08-15
Online:
2023-04-25
Published:
2023-05-08
Contact:
YU Ziyi
摘要:
以微尺度过程强化为特征的微流控技术具有传质传热效率高、反应速率快、反应器尺寸小、可控性高以及易于放大等特点,被广泛应用于各个方面。其中,在流体混合领域,微流控技术所采用的微通道能够增强多相流体之间的传质,实现样品的快速混合,从而强化反应过程。常用的增强混合的方法可分为改变各通道结合处的通道类型(如从T型变到同轴流动聚焦)、改变通道内部结构(如从普通微通道变为含内部挡板微通道)以及改变流体的流形(如从层流变为泰勒流)三种。本文主要介绍了近年来微尺度过程强化技术在微流控通道设计方面的研究进展,分析了不同类型微流控通道的设计及原理,简述了不同类型微流控通道的混合增强效果,并介绍了微流控通道在制备纳米颗粒等功能材料方面的应用。未来,精细化、集成化且制造简单的微流控装置将会在过程强化中得到更充分的应用。
中图分类号:
田启凯, 郑海萍, 张少斌, 张静, 余子夷. 混合增强的微流控通道进展[J]. 化工进展, 2023, 42(4): 1677-1687.
TIAN Qikai, ZHENG Haiping, ZHANG Shaobin, ZHANG Jing, YU Ziyi. Advances in mixing enhanced microfluidic channels[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1677-1687.
1 | WHITESIDES George M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373. |
2 | EHSAN Samiei, MARYAM Tabrizian, MINA Hoorfar. A review of digital microfluidics as portable platforms for lab-on a-chip applications[J]. Lab On A Chip, 2016, 16(13): 2376-2396. |
3 | 杨冬,高可奕,杨百勤, 等. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379. |
YANG Dong, GAO Keyi, YANG Baiqin, et al. Classification of microfluidic system and applications in nanoparticles synthesis[J]. Progress in Chemistry, 2021, 33(3): 368-379. | |
4 | Cyrus W BEH, PAN Deng, LEE Jason, et al. Direct interrogation of DNA content distribution in nanoparticles by a novel microfluidics-based single-particle analysis[J]. Nano Letters, 2014, 14(8): 4729-4735. |
5 | PRABHAKARPANDION Balabhaskar, SHEN Mingche, NICHOLS Joseph B, et al. Synthetic tumor networks for screening drug delivery systems[J]. Journal of Controlled Release. 2015, 201: 49-55. |
6 | KAMALY Nazila, FREDMAN Gabrielle, FOJAS Jhalique Jane R, et al. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis[J]. ACS Nano, 2016, 10(5): 5280-5292. |
7 | MA Qingming, CAO Jie, GAO Yang. Microfluidic-mediated nano-drug delivery systems: from fundamentals to fabrication for advanced therapeutic applications[J]. Nanoscale, 2020, 12(29): 15499-15908. |
8 | JIAN Zhou, Papautsky IAN. Fundamentals of inertial focusing in microchannels[J]. Lab On A Chip, 2013, 13(6): 1121-1132. |
9 | 李子晓. 微流控芯片中混合器混合效果的影响因素分析[J]. 现代盐化工, 2019, 46(4): 21-24. |
LI Zixiao. Analysis of influencing factors of mixer mixing effect in microfluidic chip[J]. Modern Salt Chemical Industry, 2019, 46(4): 21-24. | |
10 | 王小章,王朝晖,张群明, 等. 通道式微混合器的设计及性能[J]. 纳米技术与精密工程, 2011, 9(6): 555-560. |
WANG Xiaozhang, WANG Chaohui, ZHANG Qunming, et al. Design and performance of micromixer in microchannel[J]. Nanotechnology and Precision Engineering, 2011, 9(6): 555-560. | |
11 | HSIEH Shoushing, LIN Jyunwei, CHEN Jyunhong. Mixing efficiency of Y-type micromixers with different angles[J]. International Journal of Heat and Fluid Flow, 2013, 44: 130-139. |
12 | UDAYA Kumar A, Ganesh D SAI, VAMSI Krishna T, et al. Modeling and investigation on mixing characteristics of T & Y-shaped micromixers for microfluidic devices[J]. Materials Today, 2021, 11: 474. |
13 | TSAI Tsunghan, LIOU Darsun, Longsheng KUO, et al. Rapid mixing between ferro-nanofluid and water in a semi-active Y-type micromixer[J]. Sensors and Actuators A: Physical, 2009, 153(2): 267-273. |
14 | WANG Wentan, ZHAO Shufang, SHAO Ting, et al. Visualization of micro-scale mixing in miscible liquids using μ-LIF technique and drug nano-particle preparation in T-shaped micro-channels[J]. Chemical Engineering Journal, 2012, 192: 252-261. |
15 | Mouheb Nassim AIT, MALSCH Daniéll, MONTILLET Agnès, et al. Numerical and experimental investigations of mixing in T-shaped and cross-shaped micromixers[J]. Chemical Engineering Science, 2012, 68(1): 278-289. |
16 | CRAWFORD Randy, DOGDAS Belma, KEOUGH Edward, et al. Analysis of lipid nanoparticles by Cryo-EM for characterizing siRNA delivery vehicles[J]. International Journal of Pharmaceutics, 2011, 403(1-2): 237-244. |
17 | ABRAMS Marc T, KOSER Martin L, SEITZER Jessica, et al. Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment[J]. Molecular Therapy, 2010, 18(1): 171-180. |
18 | ANSARI Mubashshir A, KIM Kwangyong, ANWAR Khalid, et al. Vortex micro T-mixer with non-aligned inputs[J]. Chemical Engineering Journal, 2012, 181-182: 846-850. |
19 | FANG Ronnie H, CHEN Kevin N H, ARYAL Santosh, et al. Large-scale synthesis of lipid-polymer hybrid nanoparticles using a multi-inlet vortex reactor[J]. Langmuir, 2012, 28(39): 13824-13829. |
20 | BOKARE Anuja, TAKAMI Ashley, KIM Jung Han, et al. Herringbone-patterned 3D-printed devices as alternatives to microfluidics for reproducible production of lipid polymer hybrid nanoparticles[J]. ACS Omega, 2019, 4(3): 4650-4657. |
21 | CHESTER E Markwalter, Prud'homme ROBERT K. Design of a small-scale multi-inlet vortex mixer for scalable nanoparticle production and application to the encapsulation of biologics by inverse flash nanoprecipitation[J]. Journal of Pharmaceutical Sciences, 2018, 107(9): 2465-2471. |
22 | MAEKI Masatoshi, KIMURA Niko, SATO Yusuke, et al. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems[J]. Advanced Drug Delivery Reviews, 2018, 128: 84-100. |
23 | DELAMA Anna, TEIXEIRA Maria Inês, DORATI Rossella, et al. Microfluidic encapsulation method to produce stable liposomes containing iohexol[J]. Journal of Drug Delivery Science and Technology, 2019, 54: 101340. |
24 | PERLI Gabriel, PESSOA Amanda C S N, BALBINO Tiago A, et al. Ionic strength for tailoring the synthesis of monomodal stealth cationic liposomes in microfluidic devices[J]. Colloids and Surfaces B: Biointerfaces, 2019, 179: 233-241. |
25 | JAHN Andreas, STAVIS Samuel M, HONG Jennifer S, et al. Microfluidic mixing and the formation of nanoscale lipid vesicles[J]. ACS Nano, 2010, 4(4): 2077-2087. |
26 | LABABIDI N, SIGAL V, KOENNEKE A, et al. Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration[J]. Beilstein Journal of Nanotechnology, 2019, 10: 2280-2293. |
27 | RHEE Minsoung, VALENCIA Pedro M, RODRIGUEZ Maria I, et al. Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels[J]. Advanced Materials, 2011, 23(12): H79-H83. |
28 | MICHELON Mariano, OLIVEIRA Davi Rocha Bernardes, DE FIGUEIREDO Furtado Guilherme, et al. High-throughput continuous production of liposomes using hydrodynamic flow-focusing microfluidic devices[J]. Colloids and Surfaces B: Biointerfaces, 2017, 156: 349-357. |
29 | HOOD Renee R, DEVOE Don L. High-throughput continuous flow production of nanoscale liposomes by microfluidic vertical flow focusing[J]. Small, 2015, 11(43): 5790-5799. |
30 | KIM Yong Tae, Francois FAY, CORMODE David P, et al. Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics[J]. ACS Nano, 2013, 7(11): 9975-9983. |
31 | YU Yunru, SHANG Luoran, GUO Jiahui, et al. Design of capillary microfluidics for spinning cell-laden microfibers[J]. Nature Protocols, 2018, 13(11): 2557-2579. |
32 | HOOD Renee R, DEVOE Don L. A facile route to the synthesis of monodisperse nanoscale liposomes using 3D microfluidic hydrodynamic focusing in a concentric capillary array[J]. Lab On a Chip, 2014, 14(14): 2403-2409. |
33 | 何秀华,颜杰,王岩. 内置周期挡板的T型微混合器[J]. 光学精密工程, 2015, 23(10): 2877-2886. |
HE Xiuhua, YAN Jie, WANG Yan. T-shaped micromixer with periodic baffles[J]. Optics and Precision Engineering, 2015, 23(10): 2877-2886. | |
34 | FANG Yuqiang, YE Yinghua, SHEN Ruiqi, et al. Mixing enhancement by simple periodic geometric features in microchannels[J]. Chemical Engineering Journal, 2012, 187: 306-310. |
35 | PESSOA Amanda C S N, SIPOLI Caroline C, DE LA TORRE Lucimara G. Effects of diffusion and mixing pattern on microfluidic-assisted synthesis of chitosan/ATP nanoparticles[J]. Lab on a Chip, 2017, 17(13): 2281-2293. |
36 | LIU Chao, FENG Qiang, SUN Jiashu. Lipid nanovesicles by microfluidics: manipulation, synthesis, and drug delivery[J]. Advanced Materials, 2018, 31(45): 1804788. |
37 | PARSA Mohsen Khosravi, HORMOZI Faramarz, JAFARI Davoud. Mixing enhancement in a passive micromixer with convergent-divergent sinusoidal microchannels and different ratio of amplitude to wave length[J]. Comput Fluids, 2014, 105: 82-90. |
38 | FENG Qiang, ZHANG Lu, LIU Chao, et al. Microfluidic based high throughput synthesis of lipid-polymer hybrid nanoparticles with tunable diameters[J]. Biomicrofluidics, 2015, 9(5): 52604. |
39 | 周东健,秦利涛,岳金彩,等. 波浪形微通道中液体混合特性的数值模拟[J]. 化学工程, 2021, 49(10): 68-73. |
ZHOU Dongjian, QIN Litao, YUE Jincai, et al. Numerical simulation of liquid mixing characteristics[J]. Chinese Journal of Chemical Engineering, 2021, 49(10): 68-73. | |
40 | HAO Nanjing, NIE Yuan, XU Zhe, et al. Ultrafast microfluidic synthesis of hierarchical triangular silver core-silica shell nanoplatelet toward enhanced cellular internalization[J]. Journal of Colloid and Interface Science, 2019, 542: 370-378. |
41 | SUN Jiashu, XIANYU Yunlei, LI Mengmeng, et al. A microfluidic origami chip for synthesis of functionalized polymeric nanoparticles[J]. Nanoscale, 2013, 5(12): 5262. |
42 | WEI Wei, SUN Jing, GUO Xiying, et al. Microfluidic-based holonomic constraints of siRNA in the kernel of lipid/polymer hybrid nanoassemblies for improving stable and safe in vivo delivery[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 14839-14854. |
43 | Pamela N NGE, ROGERS Chad I, WOOLLEY Adam T. Advances in microfluidic materials, functions, integration, and applications[J]. Chemical Reviews, 2013, 113(4): 2550-2583. |
44 | ZHU Minze, WHITTAKER Andrew K, JIANG Xingyu, et al. Use of microfluidics to fabricate bioerodable lipid hybrid nanoparticles containing hydromorphone or ketamine for the relief of intractable pain[J]. Pharmaceutical Research, 2020, 37(10): 211. |
45 | LI Xuanyu, JIANG Xingyu. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles[J]. Advanced Drug Delivery Reviews, 2018, 128: 101-114. |
46 | 刘赵淼,赵晟,王文凯,等. 几何构型对平面混沌式微混合器混合性能的影响[J]. 分析化学, 2019, 47(9): 1321-1331. |
LIU Zhaomiao, ZHAO Sheng, WANG Wenkai, et al. Influence of geometric configuration on mixing performance of planar chaotic micro-mixer[J]. Chinese Journal of Analytical Chemistry, 2019, 47(9): 1321-1331. | |
47 | AFZAL Arshad, KIM Kwang-Yong. Passive split and recombination micromixer with convergent-divergent walls[J]. Chemical Engineering Journal, 2012, 203: 182-192. |
48 | LI Jian, XIA Guodong, LI Yifan. Numerical and experimental analyses of planar asymmetric split-and-recombine micromixer with dislocation sub-channels[J]. Journal of Chemical Technology and Biotechnology, 2013, 88(9): 1757-1765. |
49 | SHEU Tsung Sheng, CHEN Sin Jhih, CHEN Jyh Jian. Mixing of a split and recombine micromixer with tapered curved microchannels[J]. Chemical Engineering Science, 2012, 71: 321-332. |
50 | YANG Song, HE Xiuhua, YUAN Shouqi, et al. A bidirectional valveless piezoelectric micropump with double chambers based on Coanda effect[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38(2): 345-353. |
51 | HONG C, CHOI J, AHN C H. A novel in-plane passive microfluidic mixer with modified Tesla structures[J]. Lab on a Chip, 2004, 4(2): 109. |
52 | Jungho AHN, Jihoon KO, LEE Somin, et al. Microfluidics in nanoparticle drug delivery; from synthesis to pre-clinical screening[J]. Advanced Drug Delivery Reviews, 2018, 128: 29-53. |
53 | OEVREEIDE Ingrid H, ZOELLNER Andreas, MIELNIK Michal M, et al. Curved passive mixing structures: a robust design to obtain efficient mixing and mass transfer in microfluidic channels[J]. Journal of Micromechanics and Microengineering, 2020, 31(1): 15006. |
54 | 傅新,刘素芬,阮晓东. 基于拉格朗日跟踪法的微混合器内混沌混合特性[J]. 机械工程学报, 2008, 44(11): 64-68. |
FU Xin, LIU Sufen, RUAN Xiaodong. Chaotic mixing characteristics of micromixer based on Lagrngian tracking method[J]. Journal of Mechanical Engineering, 2008, 44(11): 64-68. | |
55 | STROOCK A D. Chaotic mixer for microchannels[J]. Science, 2002, 295(5555): 647-651. |
56 | CHEUNG Calvin C L, AL-JAMAL Wafa T. Sterically stabilized liposomes production using staggered herringbone micromixer: effect of lipid composition and PEG-lipid content[J]. International Journal of Pharmaceutics, 2019, 566: 687-696. |
57 | LEUNG Alex K K, Yuen Yi C TAM, CHEN Sam, et al. Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems[J]. Journal of Physical Chemistry B, 2015, 119(28): 8698-8706. |
58 | MAEKI Masatoshi, FUJISHIMA Yuka, SATO Yusuke, et al. Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers[J]. PLoS One, 2017, 12(11): e187962. |
59 | TOFTEBERG Terje, SKOLIMOWSKI Maciej, ANDREASSEN Erik, et al. A novel passive micromixer: lamination in a planar channel system[J]. Microfluid Nanofluidics. 2010, 8(2): 209-215. |
60 | 杨华勇,阮晓东,范毓润,等. 交叉导流式微型混沌混合器[J]. 化工学报, 2006(5): 1120-1126. |
YANG Huayong, RUAN Xiaodong, FAN Yurun, et al. Staggered oriented ridges micromixer based on chaotic advection[J]. Journal of Chemical Industry and Engineering (China), 2006(5): 1120-1126. | |
61 | GÜNTHER A, JHUNJHUNWALA M, THALMANN M, et al. Micromixing of miscible liquids in segmented gas-liquid flow[J]. Langmuir, 2005, 21(4): 1547-1555. |
62 | ERFLE Peer, RIEWE Juliane, BUNJES Heike, et al. Optically monitored segmented flow for controlled ultra-fast mixing and nanoparticle precipitation[J]. Microfluid Nanofluidics, 2017, 21(12): 179. |
63 | ABIEV Rufat, SVETLOV Stanislav, HAASE Stefan. Hydrodynamics and mass transfer of gas-liquid and liquid-liquid taylor flow in microchannels[J]. Chemical Engineering & Technology, 2017, 40(11): 1985-1998. |
64 | YUN Junxian, ZHANG Songhong, SHEN Shaochuan, et al. Continuous production of solid lipid nanoparticles by liquid flow-focusing and gas displacing method in microchannels[J]. Chemical Engineering Science, 2009, 64(19): 4115-4122. |
65 | WANG Kai, ZHANG Haomiao, SHEN Yi, et al. Thermoformed fluoropolymer tubing for in-line mixing[J]. Reaction Chemistry & Engineering, 2018, 3(5): 707-713. |
66 | ALAM Afroz, KIM Kwang-Yong. Analysis of mixing in a curved microchannel with rectangular grooves[J]. Chemical Engineering Journal, 2012, 181-182: 708-716. |
67 | CHEN Xueye, LI Tiechuan. A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel[J]. Chemical Engineering Journal, 2017, 313: 1406-1414. |
68 | LIN Ying, YU Xinhai, WANG Zhenyu, et al. Design and evaluation of an easily fabricated micromixer with three-dimensional periodic perturbation[J]. Chemical Engineering Journal, 2011, 171(1): 291-300. |
[1] | 王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9. |
[2] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[3] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[4] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[5] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[6] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[7] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[8] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[9] | 刘卫孝, 刘洋, 高福磊, 汪伟, 汪营磊. 微反应器在含能材料合成与品质提升中的应用[J]. 化工进展, 2023, 42(7): 3349-3364. |
[10] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[11] | 陈蔚阳, 宋欣, 殷亚然, 张先明, 朱春英, 付涛涛, 马友光. 矩形微通道内液相黏度对气泡界面的作用机制[J]. 化工进展, 2023, 42(7): 3468-3477. |
[12] | 李瑞东, 黄辉, 同国虎, 王跃社. 原油精馏塔中铵盐吸湿特性及其腐蚀行为[J]. 化工进展, 2023, 42(6): 2809-2818. |
[13] | 章凯, 金捍宇, 刘思宇, 王帅. 鼓泡流态化气泡间相互作用下相间传质过程的模拟[J]. 化工进展, 2023, 42(6): 2828-2835. |
[14] | 陶梦琦, 刘美红, 康宇驰. 基于micro-PIV的微通道内流体绕流单微圆柱和并联双微圆柱流场特性[J]. 化工进展, 2023, 42(6): 2836-2844. |
[15] | 马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |