化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1583-1594.DOI: 10.16085/j.issn.1000-6613.2022-0816
收稿日期:
2022-05-05
修回日期:
2022-07-13
出版日期:
2023-03-15
发布日期:
2023-04-10
通讯作者:
李聪明
作者简介:
王晓月(1991—),男,博士研究生,研究方向为多相催化CO2转化利用。E-mail:1220509409@qq.com。
基金资助:
WANG Xiaoyue(), ZHANG Weimin, YAO Zhengyang, GUO Xiaohong, LI Congming()
Received:
2022-05-05
Revised:
2022-07-13
Online:
2023-03-15
Published:
2023-04-10
Contact:
LI Congming
摘要:
逆水煤气变换(RWGS)反应是将二氧化碳(CO2)加氢转化为甲醇、低碳烯烃、芳烃以及汽油等高附加值化学品和燃料的关键步骤,对于实现CO2资源化利用具有重要意义。本文综述了近年来RWGS反应的研究进展,包括RWGS反应热力学分析、催化机理、可选择的催化剂种类以及提升催化剂性能策略等方面。文章从热力学角度分析,RWGS反应在高温下有利,而低温下存在甲烷化竞争反应。RWGS反应机理主要包括氧化还原机理以及缔合机理,其中缔合机理包括甲酸盐路径和羧酸盐路径等。相比于其他催化体系,负载型金属催化剂展现出较优异的RWGS反应性能。另外,通过添加碱金属助剂、形成双金属合金以及选择合适载体和减小金属颗粒尺寸以优化金属-载体相互作用等手段可实现低温高效稳定的RWGS反应催化剂的设计开发。
中图分类号:
王晓月, 张伟敏, 姚正阳, 郭晓宏, 李聪明. 逆水煤气变换反应研究进展[J]. 化工进展, 2023, 42(3): 1583-1594.
WANG Xiaoyue, ZHANG Weimin, YAO Zhengyang, GUO Xiaohong, LI Congming. Research progress of reverse water gas shift reaction[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1583-1594.
1 | WANG W, WANG S P, MA X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703-3727. |
2 | ARESTA M, DIBENEDETTO A, ANGELINI A. Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. Technological use of CO2 [J]. Chemical Reviews, 2014, 114(3): 1709-1742. |
3 | POROSOFF M D, YAN B H, CHEN J G G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities[J]. Energy & Environmental Science, 2016, 9(1): 62-73. |
4 | LEUNG D Y C, CARAMANNA G, MAROTO-VALER M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443. |
5 | FAZLOLLAHI F, BOWN A, SAEIDI S, et al. Transient natural gas liquefaction process comparison-dynamic heat exchanger under transient changes in flow[J]. Applied Thermal Engineering, 2016, 109: 775-788. |
6 | OUYANG B, TAN W L, LIU B. Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation[J]. Catalysis Communications, 2017, 95: 36-39. |
7 | BAHRI S, VENEZIA A M, UPADHYAYULA S. Utilization of greenhouse gas carbon dioxide for cleaner Fischer-Tropsch diesel production[J]. Journal of Cleaner Production, 2019, 228: 1013-1024. |
8 | POROSOFF M D, YANG X F, BOSCOBOINIK J A, et al. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO[J]. Angewandte Chemie International Edition, 2014, 53(26): 6705-6709. |
9 | YUAN F, ZHANG G H, ZHU J, et al. Boosting light olefin selectivity in CO2 hydrogenation by adding Co to Fe catalysts within close proximity[J]. Catalysis Today, 2021, 371: 142-149. |
10 | YANG S, LI M Z, NAWAZ M A, et al. High selectivity to aromatics by a Mg and Na co-modified catalyst in direct conversion of syngas[J]. ACS Omega, 2020, 5(20): 11701-11709. |
11 | CHANG C D, LANG W H, SILVESTRI A J. Synthesis gas conversion to aromatic hydrocarbons[J]. Journal of Catalysis, 1979, 56(2): 268-273. |
12 | JIA X Y, SUN K H, WANG J, et al. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst[J]. Journal of Energy Chemistry, 2020, 50: 409-415. |
13 | WANG S, WANG P F, QIN Z F, et al. Enhancement of light olefin production in CO2 hydrogenation over In2O3-based oxide and SAPO-34 composite[J]. Journal of Catalysis, 2020, 391: 459-470. |
14 | SU X, XU J H, LIANG B L, et al. Catalytic carbon dioxide hydrogenation to methane: A review of recent studies[J]. Journal of Energy Chemistry, 2016, 25(4): 553-565. |
15 | KAISER P, UNDE R B, KERN C, et al. Production of liquid hydrocarbons with CO2 as carbon source based on reverse water-gas shift and Fischer-Tropsch synthesis[J]. Chemie Ingenieur Technik, 2013, 85(4): 489-499. |
16 | KATTEL S, YAN B H, CHEN J G, et al. CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support[J]. Journal of Catalysis, 2016, 343: 115-126. |
17 | VOVCHOK D, ZHANG C, HWANG S, et al. Deciphering dynamic structural and mechanistic complexity in Cu/CeO2/ZSM-5 catalysts for the reverse water-gas shift reaction[J]. ACS Catalysis, 2020, 10 (17): 10216-10228. |
18 | KALAMARAS C M, PANAGIOTOPOULOU P, KONDARIDES D I, et al. Kinetic and mechanistic studies of the water-gas shift reaction on Pt/TiO2 catalyst[J]. Journal of Catalysis, 2009, 264(2): 117-129. |
19 | CAO Z R, GUO L, LIU N Y, et al. Theoretical study on the reaction mechanism of reverse water-gas shift reaction using a Rh-Mo6S8 cluster[J]. RSC Advances, 2016, 6(110): 108270-108279. |
20 | KIM S S, LEE H H, HONG S C. A study on the effect of support’s reducibility on the reverse water-gas shift reaction over Pt catalysts[J]. Applied Catalysis A: General, 2012, 423/424: 100-107. |
21 | GUO J L, DUCHESNE P N, WANG L, et al. High-performance, scalable, and low-cost copper hydroxyapatite for photothermal CO2 reduction[J]. ACS Catalysis, 2020, 10: 13668-13681. |
22 | ZHU M H, TIAN P F, KURTZ R, et al. Strong metal-support interactions between copper and iron oxide during the high-temperature water-gas shift reaction[J]. Angewandte Chemie International Edition, 2019, 58(27): 9083-9087. |
23 | ZHU M H, TIAN P F, FORD M E, et al. Nature of reactive oxygen intermediates on copper-promoted iron-chromium oxide catalysts during CO2 activation[J]. ACS Catalysis, 2020, 10(14): 7857-7863. |
24 | WANG L C, KHAZANEH T, WIDMANN D, et al. TAP reactor studies of the oxidizing capability of CO2 on an Au/CeO2 catalyst – A first step toward identifying a redox mechanism in the reverse water-gas shift reaction[J]. Journal of Catalysis, 2013, 302:20-30. |
25 | BOBADILLA L F, SANTOS J L, IVANOVA S, et al. Unravelling the role of oxygen vacancies in the mechanism of the reverse water-gas shift reaction by operando DRIFTS and ultraviolet-visible spectroscopy[J]. ACS Catalysis, 2018, 8(8): 7455-7467. |
26 | LIANG B L, DUAN H M, SU X, et al. Promoting role of potassium in the reverse water gas shift reaction on Pt/mullite catalyst[J]. Catalysis Today, 2017, 281: 319-326. |
27 | CHEN C S, CHENG W H, LIN S S. Study of reverse water gas shift reaction by TPD, TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst[J]. Applied Catalysis A: General, 2003, 238(1): 55-67. |
28 | WANG X, HONG Y C, SHI H, et al. Kinetic modeling and transient DRIFTS-MS studies of CO2 methanation over Ru/Al2O3 catalysts[J]. Journal of Catalysis, 2016, 343: 185-195. |
29 | CHEN X D, SU X, LIANG B L, et al. Identification of relevant active sites and a mechanism study for reverse water gas shift reaction over Pt/CeO2 catalysts[J]. Journal of Energy Chemistry, 2016, 25(6): 1051-1057. |
30 | KIM S S, PARK K H, HONG S C. A study of the selectivity of the reverse water-gas-shift reaction over Pt/TiO2 catalysts[J]. Fuel Processing Technology, 2013, 108: 47-54. |
31 | GOGUET A, MEUNIER F C, TIBILETTI D, et al. Spectrokinetic investigation of reverse water-gas-shift reaction intermediates over a Pt/CeO2 catalyst[J]. The Journal of Physical Chemistry B, 2004, 108(52): 20240-20246. |
32 | KIM S S, LEE H H, HONG S C. The effect of the morphological characteristics of TiO2 supports on the reverse water-gas shift reaction over Pt/TiO2 catalysts[J]. Applied Catalysis B: Environmental, 2012, 119/120: 100-108. |
33 | WANG X, SHI H, KWAK J H, et al. Mechanism of CO2 hydrogenation on Pd/Al2O3 catalysts: Kinetics and transient DRIFTS-MS studies[J]. ACS Catalysis, 2015, 5(11): 6337-6349. |
34 | MATSUBU J C, YANG V N, CHRISTOPHER P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity[J]. Journal of the American Chemical Society, 2015, 137(8): 3076-3084. |
35 | CHEN X D, SU X, SU H Y, et al. Theoretical insights and the corresponding construction of supported metal catalysts for highly selective CO2 to CO conversion[J]. ACS Catalysis, 2017, 7(7): 4613-4620. |
36 | ZHOU G L, DAI B C, XIE H M, et al. CeCu composite catalyst for CO synthesis by reverse water-gas shift reaction: effect of Ce/Cu mole ratio[J]. Journal of CO2 Utilization, 2017, 21:292-301. |
37 | KATTEL S, YAN B H, YANG Y X, et al. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper[J]. Journal of the American Chemical Society, 2016, 138(38): 12440-12450. |
38 | CHEN C S, CHENG W H, LIN S S. Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction[J]. Applied Catalysis A: General, 2004, 257(1): 97-106. |
39 | WANG L H, LIU H, LIU Y, et al. Influence of preparation method on performance of Ni-CeO2 catalysts for reverse water-gas shift reaction[J]. Journal of Rare Earths, 2013, 31(6): 559-564. |
40 | WU H C, CHANG C Y, WU J H, et al. Methanation of CO2 and reverse water gas shift reactions on Ni/SiO2 catalysts: the influence of particle size on selectivity and reaction pathway[J]. Catalysis Science & Technology, 2015, 5(8): 4154-4163. |
41 | ZHANG Z M, TIAN Y, ZHANG L J, et al. Impacts of nickel loading on properties, catalytic behaviors of Ni/γ-Al2O3 catalysts and the reaction intermediates formed in methanation of CO2 [J]. International Journal of Hydrogen Energy, 2019, 44(18): 9291-9306. |
42 | RANJBAR A, IRANKHAH A, AGHAMIRI S F. Reverse water gas shift reaction and CO2 mitigation: nanocrystalline MgO as a support for nickel based catalysts[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4945-4952. |
43 | WINTER L R, CHEN R, CHEN X, et al. Elucidating the roles of metallic Ni and oxygen vacancies in CO2 hydrogenation over Ni/CeO2 using isotope exchange and in situ measurements[J]. Applied Catalysis B: Environmental, 2019, 245: 360-366. |
44 | WINTER L R, GOMEZ E, YAN B H, et al. Tuning Ni-catalyzed CO2 hydrogenation selectivity via Ni-ceria support interactions and Ni-Fe bimetallic formation[J]. Applied Catalysis B: Environmental, 2018, 224: 442-450. |
45 | SUN F M, YAN C F, WANG Z D, et al. Ni/Ce-Zr-O catalyst for high CO2 conversion during reverse water gas shift reaction (RWGS)[J]. International Journal of Hydrogen Energy, 2015, 40(46): 15985-15993. |
46 | WANG W, ZHANG Y, WANG Z Y, et al. Reverse water gas shift over In2O3-CeO2 catalysts[J]. Catalysis Today, 2016, 259: 402-408. |
47 | LI K Z, CHEN J G. CO2 hydrogenation to methanol over ZrO2-containing catalysts: Insights into ZrO2 induced synergy[J]. ACS Catalysis, 2019, 9(9): 7840-7861. |
48 | SU J J, ZHOU H B, LIU S, et al. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrO x /AlPO-18 bifunctional catalysts[J]. Nature Communications, 2019, 10: 1297. |
49 | PARK S W, JOO O S, JUNG K D, et al. ZnO/Cr2O3 catalyst for reverse-water-gas-shift reaction of CAMERE process[J]. Korean Journal of Chemical Engineering, 2000, 17(6): 719-722. |
50 | PARK S W, JOO O S, JUNG K D, et al. Development of ZnO/Al2O3 catalyst for reverse-water-gas-shift reaction of CAMERE (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) process[J]. Applied Catalysis A: General, 2001, 211(1): 81-90. |
51 | DAZA Y A, KENT R A, YUNG M M, et al. Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskite-type oxides[J]. Industrial & Engineering Chemistry Research, 2014, 53(14): 5828-5837. |
52 | GAO J J, WU Y, JIA C M, et al. Controllable synthesis of α-MoC1- x and β-Mo2C nanowires for highly selective CO2 reduction to CO[J]. Catalysis Communications, 2016, 84: 147-150. |
53 | ZHANG X, ZHU X B, LIN L L, et al. Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction[J]. ACS Catalysis, 2017, 7(1): 912-918. |
54 | GONG J, CHU M Y, GUAN W H, et al. Regulating the interfacial synergy of Ni/Ga2O3 for CO2 hydrogenation toward the reverse water–gas shift reaction[J]. Industrial & Engineering Chemistry Research, 2021, 60(26): 9448-9455. |
55 | AITBEKOVA A, WU L H, WRASMAN C J, et al. Low-temperature restructuring of CeO2-supported Ru nanoparticles determines selectivity in CO2 catalytic reduction[J]. Journal of the American Chemical Society, 2018, 140(42): 13736-13745. |
56 | LI S W, XU Y, CHEN Y F, et al. Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction[J]. Angewandte Chemie International Edition, 2017, 56(36): 10761-10765. |
57 | GONZÁLEZ-CASTANO M, NAVARRO DE MIGUEL J C, SINHA F, et al. Cu supported Fe-SiO2 nanocomposites for reverse water gas shift reaction[J]. Journal of CO2 Utilization, 2021, 46: 101493. |
58 | YANG X L, SU X, CHEN X D, et al. Promotion effects of potassium on the activity and selectivity of Pt/zeolite catalysts for reverse water gas shift reaction[J]. Applied Catalysis B: Environmental, 2017, 216: 95-105. |
59 | YUAN H J, ZHU X L, HAN J Y, et al. Rhenium-promoted selective CO2 methanation on Ni-based catalyst[J]. Journal of CO2 Utilization, 2018, 26: 8-18. |
60 | POROSOFF M D, CHEN J G. Trends in the catalytic reduction of CO2 by hydrogen over supported monometallic and bimetallic catalysts[J]. Journal of Catalysis, 2013, 301: 30-37. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[4] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[5] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[6] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[7] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[8] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[11] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[12] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[13] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[14] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[15] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |