化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1143-1154.DOI: 10.16085/j.issn.1000-6613.2022-0832
吴伟雄1(), 谢世伟1, 马瑞鑫1, 刘吉臻1,2, 汪双凤3, 饶中浩4()
收稿日期:
2022-05-06
修回日期:
2022-06-26
出版日期:
2023-03-15
发布日期:
2023-04-10
通讯作者:
饶中浩
作者简介:
吴伟雄(1989—),男,博士,副教授,研究方向为相变储能热管理。E-mail:weixiongwu@jnu.edu.cn。
基金资助:
WU Weixiong1(), XIE Shiwei1, MA Ruixin1, LIU Jizhen1,2, WANG Shuangfeng3, RAO Zhonghao4()
Received:
2022-05-06
Revised:
2022-06-26
Online:
2023-03-15
Published:
2023-04-10
Contact:
RAO Zhonghao
摘要:
相变热控技术具有设备性能可靠、质量轻、耗能低等优点,在工业和学术界受到广泛关注。利用固-液相变恒温吸热和气-液相变超高导热特性,可实现多相耦合的高效储热传热过程。本文针对固-液/气-液多相耦合热控技术提出多相耦合概念,以典型相变材料和热管耦合系统为切入点,首先介绍相变及多相耦合的工作原理,归纳了两者之间的典型耦合方式:相变材料分别置于热管蒸发段、冷凝段、绝热段,或热管整体嵌入相变材料作为导热骨架;然后着重评述了目前国内外多相耦合热控技术用于电子器件冷却和电池热管理领域的研究进展,并对其他领域(如蓄热/冷)的应用现状进行总结;最后从材料改性、器件耦合、系统协同等角度提出当前面临的问题和未来发展方向。
中图分类号:
吴伟雄, 谢世伟, 马瑞鑫, 刘吉臻, 汪双凤, 饶中浩. 固-液/气-液多相耦合热控技术应用研究进展[J]. 化工进展, 2023, 42(3): 1143-1154.
WU Weixiong, XIE Shiwei, MA Ruixin, LIU Jizhen, WANG Shuangfeng, RAO Zhonghao. Research progress of solid-liquid/gas-liquid multiphase coupling thermal control technology[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1143-1154.
应用领域 | PCM置于HP蒸发段 | PCM置于HP绝热段 | PCM置于HP冷凝段 | HP作为导热骨架整体嵌入PCM |
---|---|---|---|---|
电子器件冷却 | [ | [ | [ | — |
电池热管理 | [ | — | [ | [ |
蓄热/冷等其他领域 | [ | [ | [ | [ |
表1 4种耦合方式在不同领域研究的文献分类
应用领域 | PCM置于HP蒸发段 | PCM置于HP绝热段 | PCM置于HP冷凝段 | HP作为导热骨架整体嵌入PCM |
---|---|---|---|---|
电子器件冷却 | [ | [ | [ | — |
电池热管理 | [ | — | [ | [ |
蓄热/冷等其他领域 | [ | [ | [ | [ |
热管类型 | 电子器件冷却 | 电池热管理 | 蓄热 | 蓄冷 |
---|---|---|---|---|
平板热管 | [ | [ | [ | — |
均温板(VC) | [ | — | — | — |
振荡热管 | [ | [ | [ | [ |
重力热管 | — | — | [ | [ |
环路热管 | — | [ | [ | [ |
其他热管 | [ | [ | [ | [ |
实验研究 | [ | [ | [ | [ |
模拟研究 | [ | [ | [ | [ |
表2 热管类型及研究方式(实验/模拟)的文献分类
热管类型 | 电子器件冷却 | 电池热管理 | 蓄热 | 蓄冷 |
---|---|---|---|---|
平板热管 | [ | [ | [ | — |
均温板(VC) | [ | — | — | — |
振荡热管 | [ | [ | [ | [ |
重力热管 | — | — | [ | [ |
环路热管 | — | [ | [ | [ |
其他热管 | [ | [ | [ | [ |
实验研究 | [ | [ | [ | [ |
模拟研究 | [ | [ | [ | [ |
1 | WU Weixiong, WANG Shuangfeng, WU Wei, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281. |
2 | JIANG Kun, LIAO Gaoliang, Jiaqiang E, et al. Thermal management technology of power lithium-ion batteries based on the phase transition of materials: A review[J]. Journal of Energy Storage, 2020, 32: 101816. |
3 | MURALI G, SRAVYA G S N, JAYA J, et al. A review on hybrid thermal management of battery packs and it’s cooling performance by enhanced PCM[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111513. |
4 | WU Weixiong, YANG Xiaoqing, ZHANG Guoqing, et al. An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack[J]. Energy, 2016, 113: 909-916. |
5 | Johnson Space Center. Space shuttle heat pipe thermal control systems[R]. 1973. |
6 | NAGHAVI M S, ONG K S, MEHRALI M, et al. A state-of-the-art review on hybrid heat pipe latent heat storage systems[J]. Energy Conversion and Management, 2015, 105: 1178-1204. |
7 | ALI H M. Applications of combined/hybrid use of heat pipe and phase change materials in energy storage and cooling systems: A recent review[J]. Journal of Energy Storage, 2019, 26: 100986. |
8 | 周鑫晨, 章学来, 韩兴超, 等. 脉动热管/相变储能耦合技术研究进展[J]. 现代化工, 2018, 38(12): 58-61. |
ZHOU Xinchen, ZHANG Xuelai, HAN Xingchao, et al. Review on coupling technology between pulsating heat pipe and phase change energy storage[J]. Modern Chemical Industry, 2018, 38(12): 58-61. | |
9 | MALDONADO J M, DE GRACIA A, CABEZA L F. Systematic review on the use of heat pipes in latent heat thermal energy storage tanks[J]. Journal of Energy Storage, 2020, 32: 101733. |
10 | REAY D A. Thermal energy storage: the role of the heat pipe in performance enhancement[J]. International Journal of Low-Carbon Technologies, 2015, 10(2): 99-109. |
11 | CABEZA L F, CASTELL A, BARRENECHE C, et al. Materials used as PCM in thermal energy storage in buildings: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1675-1695. |
12 | YANG Xiaohu, YU Jiabang, XIAO Tian, et al. Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam[J]. Applied Energy, 2020, 261: 114385. |
13 | GAUGLER R S. Heat transfer device: US2350348[P]. 1944-06-06. |
14 | COTTER T P. Theory of heat pipes[M]. Los Alamos Scientific Laboratory of the University of California, 1965. |
15 | JOUHARA H, CHAUHAN A, NANNOU T, et al. Heat pipe based systems—Advances and applications[J]. Energy, 2017, 128: 729-754. |
16 | LI Z X, SARAFRAZ M M, MAZINANI A, et al. Operation analysis, response and performance evaluation of a pulsating heat pipe for low temperature heat recovery[J]. Energy Conversion and Management, 2020, 222: 113230. |
17 | CHAN C W, SIQUEIROS E, LING-CHIN J, et al. Heat utilisation technologies: A critical review of heat pipes[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 615-627. |
18 | SOHEL MURSHED S M, NIETO DE CASTRO C A. A critical review of traditional and emerging techniques and fluids for electronics cooling[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 821-833. |
19 | JI Xianbing, LI Hongchuan, XU Jinliang, et al. Integrated flat heat pipe with a porous network wick for high-heat-flux electronic devices[J]. Experimental Thermal and Fluid Science, 2017, 85: 119-131. |
20 | ZHAO Jiateng, RAO Zhonghao, LIU Chenzhen, et al. Experimental investigation on thermal performance of phase change material coupled with closed-loop oscillating heat pipe (PCM/CLOHP) used in thermal management[J]. Applied Thermal Engineering, 2016, 93: 90-100. |
21 | QU Jie, KE Zhiqi, ZUO Anhao, et al. Experimental investigation on thermal performance of phase change material coupled with three-dimensional oscillating heat pipe (PCM/3D-OHP) for thermal management application[J]. International Journal of Heat and Mass Transfer, 2019, 129: 773-782. |
22 | LI Zhiwei, Lucang LYU, LI Ji. Combination of heat storage and thermal spreading for high power portable electronics cooling[J]. International Journal of Heat and Mass Transfer, 2016, 98: 550-557. |
23 | HAYAT M A, ALI H M, JANJUA M M, et al. Phase change material/heat pipe and copper foam-based heat sinks for thermal management of electronic systems[J]. Journal of Energy Storage, 2020, 32: 101971. |
24 | LIN Y R, KOTA K, CHOW L, et al. Design of a thermal management system for directed energy weapons[C]// 41st AIAA Thermophysics Conference. AIAA, 2009: 4248. |
25 | WENG Yingche, CHO Hungpin, CHANG Chihchung, et al. Heat pipe with PCM for electronic cooling[J]. Applied Energy, 2011, 88(5): 1825-1833. |
26 | KRISHNA J, KISHORE P S, SOLOMON A B. Heat pipe with nano enhanced-PCM for electronic cooling application[J]. Experimental Thermal and Fluid Science, 2017, 81: 84-92. |
27 | ZHAO Jiateng, RAO Zhonghao, LIU Chenzhen, et al. Experiment study of oscillating heat pipe and phase change materials coupled for thermal energy storage and thermal management[J]. International Journal of Heat and Mass Transfer, 2016, 99: 252-260. |
28 | BEHI H, GHANBARPOUR M, BEHI M. Investigation of PCM-assisted heat pipe for electronic cooling[J]. Applied Thermal Engineering, 2017, 127: 1132-1142. |
29 | ZHANG Chunwei, YU Meng, FAN Yubin, et al. Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe[J]. Energy, 2020, 195: 116809. |
30 | ZHAO Jiateng, QU Jie, RAO Zhonghao. Thermal characteristic and analysis of closed loop oscillation heat pipe/phase change material (CLOHP/PCM) coupling module with different working media[J]. International Journal of Heat and Mass Transfer, 2018, 126: 257-266. |
31 | GHANBARPOUR A, HOSSEINI M J, RANJBAR A A, et al. Evaluation of heat sink performance using PCM and vapor chamber/heat pipe[J]. Renewable Energy, 2021, 163: 698-719. |
32 | YANG Xiaohu, TAN Sicong, HE Zhizhu, et al. Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock[J]. Energy Conversion and Management, 2018, 160: 467-476. |
33 | WU Weixiong, YANG Xiaoqing, ZHANG Guoqing, et al. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system[J]. Energy Conversion and Management, 2017, 138: 486-492. |
34 | HUANG Qiqiu, LI Xinxi, ZHANG Guoqing, et al. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system[J]. Applied Thermal Engineering, 2018, 141: 1092-1100. |
35 | PUTRA N, SANDI A F, ARIANTARA B, et al. Performance of beeswax phase change material (PCM) and heat pipe as passive battery cooling system for electric vehicles[J]. Case Studies in Thermal Engineering, 2020, 21: 100655. |
36 | CHEN Kai, HOU Junsheng, SONG Mengxuan, et al. Design of battery thermal management system based on phase change material and heat pipe[J]. Applied Thermal Engineering, 2021, 188:116665. |
37 | ZHAO Jiateng, Peizhao LYU, RAO Zhonghao. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack[J]. Experimental Thermal and Fluid Science, 2017, 82: 182-188. |
38 | 赵明旭. 基于相变材料与热管耦合的动力电池热管理研究[D]. 南京: 南京理工大学, 2018. |
ZHAO Mingxu. Research on power battery thermal management based on phase change material coupled with heat pipe[D]. Nanjing: Nanjing University of Science and Technology, 2018. | |
39 | WANG Qingchao, RAO Zhonghao, HUO Yutao, et al. Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system[J]. International Journal of Thermal Sciences, 2016, 102: 9-16. |
40 | JIANG Z Y, QU Z G. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: A comprehensive numerical study[J]. Applied Energy, 2019, 242: 378-392. |
41 | 刘军, 卓威, 张文灿, 等. 基于PCM/泡沫铜/多孔热管复合相变材料的动力电池热管理研究[J]. 功能材料, 2018, 49(7): 7070-7075. |
LIU Jun, ZHUO Wei, ZHANG Wencan, et al. Research on heat management of power cell based on PCM/foamed copper/porous heat pipe composite phase change materials[J]. Journal of Functional Materials, 2018, 49(7): 7070-7075. | |
42 | BIRUR G C, JOHNSON K R, NOVAK K S, et al. Thermal control of Mars lander and rover batteries and electronics using loop heat pipe and phase change material thermal storage technologies[C]// SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000: 555-564. |
43 | ZHANG Wencan, QIU Jieyu, YIN Xiuxing, et al. A novel heat pipe assisted separation type battery thermal management system based on phase change material[J]. Applied Thermal Engineering, 2020, 165: 114571. |
44 | YUAN Qiuqi, XU Xiaoming, TONG Guangyao, et al. Effect of coupling phase change materials and heat pipe on performance enhancement of Li-ion battery thermal management system[J]. International Journal of Energy Research, 2021, 45(4): 5399-5411. |
45 | BEHI H, KARIMI D, GANDOMAN F H, et al. PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles[J]. Case Studies in Thermal Engineering, 2021, 25: 100920. |
46 | YOGEV R, KRIBUS A. PCM storage system with integrated active heat pipe[J]. Energy Procedia, 2014, 49: 1061-1070. |
47 | TIARI S, QIU S G, MAHDAVI M. Discharging process of a finned heat pipe-assisted thermal energy storage system with high temperature phase change material[J]. Energy Conversion and Management, 2016, 118: 426-437. |
48 | CAO Jingyu, LI Jing, ZHAO Pinghui, et al. Performance evaluation of controllable separate heat pipes[J]. Applied Thermal Engineering, 2016, 100: 518-527. |
49 | RIFFAT S B, OMER S A, MA X L. A novel thermoelectric refrigeration system employing heat pipes and a phase change material: An experimental investigation[J]. Renewable Energy, 2001, 23 (2): 313-323. |
50 | CABUSAO G, MOCHIZUKI M, MASHIKO K, et al. Data center energy conservation utilizing a heat pipe based ice storage system[C]//2010 IEEE CPMT Symposium Japan. IEEE, 2010: 1-4. |
51 | SINGH R, MOCHIZUKI M, MASHIKO K, et al. Heat pipe based cold energy storage systems for datacenter energy conservation[J]. Energy, 2011, 36(5): 2802-2811. |
52 | ZHANG Mingyi, LAI Yuanming, ZHANG Jianming, et al. Numerical study on cooling characteristics of two-phase closed thermosyphon embankment in permafrost regions[J]. Cold Regions Science and Technology, 2011, 65(2): 203-210. |
53 | DIALLO T M, YU M, ZHOU J Z, et al. Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger[J]. Energy, 2019, 167: 866-888. |
54 | CHIEH Jenjie, LIN Shuju, CHEN Sihli. Thermal performance of cold storage in thermal battery for air conditioning[J]. International Journal of Refrigeration, 2004, 27(2): 120-128. |
55 | LU Y L, ZHANG W H, YUAN P, et al. Experimental study of heat transfer intensification by using a novel combined shelf in food refrigerated display cabinets (experimental study of a novel cabinets)[J]. Applied Thermal Engineering, 2010, 30(2/3): 85-91. |
56 | FANG Guiyin, LIU Xu, WU Shuangmao. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe[J]. Experimental Thermal and Fluid Science, 2009, 33(8): 1149-1155. |
57 | MOUSAVI AJAROSTAGHI S S, PONCET S, SEDIGHI K, et al. Numerical modeling of the melting process in a shell and coil tube ice storage system for air-conditioning application[J]. Applied Sciences, 2019, 9(13): 2726. |
58 | WANG Tengyue, DIAO Yanhua, ZHU Tingting, et al. Thermal performance of solar air collection-storage system with phase change material based on flat micro-heat pipe arrays[J]. Energy Conversion and Management, 2017, 142: 230-243. |
59 | LI Fengfei, DIAO Yanhua, ZHAO Yaohua, et al. Experimental study on the thermal performance of a new type of thermal energy storage based on flat micro-heat pipe array[J]. Energy Conversion and Management, 2016, 112: 395-403. |
60 | XU Xiaofeng, ZHANG Xuelai, XIAO Yingjie. Research on influence of high and low temperature heat sources for heat transfer characteristics of pulsating heat pipe cold storage device[J]. Heat and Mass Transfer, 2022, 58(2): 233-246. |
61 | MALAN D J, DOBSON R T, DINTER F. Solar thermal energy storage in power generation using phase change material with heat pipes and fins to enhance heat transfer[J]. Energy Procedia, 2015, 69: 925-936. |
62 | AMINI A, MILLER J, JOUHARA H. An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers[J]. Energy, 2017, 136: 163-172. |
63 | ROBAK C W, BERGMAN T L, FAGHRI A. Enhancement of latent heat energy storage using embedded heat pipes[J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16): 3476-3484. |
64 | LOHRASBI S, MIRY S Z, GORJI-BANDPY M, et al. Performance enhancement of finned heat pipe assisted latent heat thermal energy storage system in the presence of nano-enhanced H2O as phase change material[J]. International Journal of Hydrogen Energy, 2017, 42(10): 6526-6546. |
65 | SHABGARD H, BERGMAN T L, SHARIFI N, et al. High temperature latent heat thermal energy storage using heat pipes[J]. International Journal of Heat and Mass Transfer, 2010, 53(15/16): 2979-2988. |
66 | NITHYANANDAM K, PITCHUMANI R. Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power[J]. Applied Energy, 2013, 103: 400-415. |
67 | TIARI S, QIU S G, MAHDAVI M. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material[J]. Energy Conversion and Management, 2015, 89: 833-842. |
68 | TARDY F, SAMI S M. Thermal analysis of heat pipes during thermal storage[J]. Applied Thermal Engineering, 2009, 29(2/3): 329-333. |
69 | ALSHUKRI M J, EIDAN A A, NAJIM S I. Thermal performance of heat pipe evacuated tube solar collector integrated with different types of phase change materials at various location[J]. Renewable Energy, 2021, 171: 635-646. |
70 | SHARIFI N, WANG S M, BERGMAN T L, et al. Heat pipe-assisted melting of a phase change material[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3458-3469. |
71 | KHALIFA A, TAN L P, MAHONY D, et al. Numerical analysis of latent heat thermal energy storage using miniature heat pipes: A potential thermal enhancement for CSP plant development[J]. Applied Thermal Engineering, 2016, 108: 93-103. |
72 | GE Haoshan, LI Haiyan, MEI Shengfu, et al. Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 331-346. |
73 | ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4(9): 3243. |
74 | ZHANG W C, LIANG Z C, WU W X, et al. Design and optimization of a hybrid battery thermal management system for electric vehicle based on surrogate model[J]. International Journal of Heat and Mass Transfer, 2021, 174: 121318. |
75 | MAIDMENT G G, MISSENDEN J F, KARAYIANNIS T G, et al. An investigation of a novel cooling system for chilled food display cabinets[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2005, 219(2): 157-165. |
76 | XU X F, ZHANG X L, MUNYALO J M. Key technologies and research progress on enhanced characteristics of cold thermal energy storage[J]. Journal of Molecular Liquids, 2019, 278: 428-437. |
77 | TURNPENNY J R, ETHERIDGE D W, REAY D A. Novel ventilation cooling system for reducing air conditioning in buildings (I): Testing and theoretical modelling[J]. Applied Thermal Engineering, 2000, 20(11): 1019-1037. |
78 | TURNPENNY J R, ETHERIDGE D W, REAY D A. Novel ventilation system for reducing air conditioning in buildings (II): Testing of prototype[J]. Applied Thermal Engineering, 2001, 21(12): 1203-1217. |
79 | ETHERIDGE D, MURPHY K, REAY D. A PCM/heat pipe cooling system for reducing air conditioning in buildings: Review of options and report on field tests[J]. Building Services Engineering Research and Technology, 2006, 27(1): 27-39. |
80 | YU Cairui, SHEN Dongmei, HE Wei, et al. Parametric analysis of the phase change material wall combining with micro-channel heat pipe and sky radiative cooling technology[J]. Renewable Energy, 2021, 178: 1057-1069. |
81 | HUSSEIN H M S, EL-GHETANY H H, NADA S A. Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit[J]. Energy Conversion and Management, 2008, 49(8): 2237-2246. |
[1] | 惠博, 侯宏艺, 张涛, 车生文. 圆柱形环状脉动热管烧干特性[J]. 化工进展, 2023, 42(S1): 33-40. |
[2] | 徐茂淯, 陶帅, 齐聪, 梁林. 圆盘式环路热管的启动特性及温度波动[J]. 化工进展, 2023, 42(9): 4531-4537. |
[3] | 时雨, 赵运超, 樊智轩, 蒋达华. 夏热冬冷地区相变屋面最佳相变温度的实验研究[J]. 化工进展, 2023, 42(9): 4828-4836. |
[4] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[5] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[6] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[7] | 徐玉珍, 蒋达华, 刘景滔, 陈璞. 粉煤灰基相变储能材料的制备及性能[J]. 化工进展, 2023, 42(5): 2595-2605. |
[8] | 余俊声, 朱晔, 李乾坤, 徐士轩, 张昕阳, 汪城, 屈健. 升降热流条件下的脉动热管性能[J]. 化工进展, 2023, 42(3): 1178-1186. |
[9] | 高婷婷, 蒋振, 吴晓毅, 郝婷婷, 马学虎, 温荣福. 微乳液脉动热管应用于锂离子电池的散热性能[J]. 化工进展, 2023, 42(3): 1167-1177. |
[10] | 赵西坡, 卞武勋, 冉宝清, 刘进超, 尹少鼎, 孙义明. 石蜡固-固相变材料的制备及性能[J]. 化工进展, 2023, 42(2): 897-906. |
[11] | 郝旭波, 牛宝联, 郭昊天, 徐祥和, 张忠斌, 李应林. 相变微胶囊改性及其在光热转换中的应用[J]. 化工进展, 2023, 42(2): 854-871. |
[12] | 杨茂飞, 李金旺, 周刘伟. 亲水改性超薄平板热管传热性能[J]. 化工进展, 2023, 42(2): 692-698. |
[13] | 孙义明, 冉宝清, 卞武勋, 刘进超, 尹少鼎, 赵西坡. 聚丙烯蜡固-固相变材料的制备与工艺优化[J]. 化工进展, 2023, 42(1): 336-345. |
[14] | 张春伟, 李山峰, 郭永朝, 张学军, 江龙. 定热流边界下重力作用PCM熔化过程规律[J]. 化工进展, 2022, 41(8): 4129-4139. |
[15] | 白金刚, 苑正己, 刘雨, 张义师, 吕喜风. 癸酸-石蜡/石墨烯气凝胶定形相变材料的制备及热物性分析[J]. 化工进展, 2022, 41(8): 4441-4448. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |