化工进展 ›› 2023, Vol. 42 ›› Issue (2): 803-813.DOI: 10.16085/j.issn.1000-6613.2022-0758
收稿日期:
2022-04-25
修回日期:
2022-06-10
出版日期:
2023-02-25
发布日期:
2023-03-13
通讯作者:
赵毅
作者简介:
赵毅(1980—),男,教授,研究方向为高性能沥青材料。E-mail:1585513635@qq.com。
基金资助:
ZHAO Yi1(), YANG Zhen2, WANG Jia1, LI Jingwen2, ZHENG Yu1,3
Received:
2022-04-25
Revised:
2022-06-10
Online:
2023-02-25
Published:
2023-03-13
Contact:
ZHAO Yi
摘要:
沥青作为高分子聚合物,其成分、结构复杂,普通宏观实验无法研究其自愈合时内部结构的变化。为研究探寻沥青胶结料自愈合的特点,本文从高分子聚合物的角度出发,分析总结沥青胶结料自愈合微观机理;研究沥青分子模型构建的2类方法,指出沥青分子模型组合法与沥青平均分子模拟的区别;提出沥青分子结构模型合理性验证的4类方法,即沥青分子密度、径向分布函数(RDF)、溶解度参数与内聚能计算、玻璃态转化温度;提出以沥青分子的均方位移(MSD)和扩散系数等参量作为评定指标判定沥青胶结料的自愈合程度;将沥青分子自愈合性能的影响因素归纳为愈合温度、沥青内部结构特征,并归纳总结了目前沥青分子自愈合行为分子动力学模拟面临的问题与发展方向。
中图分类号:
赵毅, 杨臻, 王佳, 李静雯, 郑煜. 沥青胶结料自愈合行为分子动力学模拟研究进展[J]. 化工进展, 2023, 42(2): 803-813.
ZHAO Yi, YANG Zhen, WANG Jia, LI Jingwen, ZHENG Yu. Research progress on molecular dynamics simulation of self-healing behavior of asphalt binder[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 803-813.
1 | YAO Hui, LIU Junfu, XU Mei, et al. Discussion on molecular dynamics (MD) simulations of the asphalt materials[J]. Advances in Colloid and Interface Science, 2022,299: 102565. |
2 | 裴建新. 沥青裂缝自修复微胶囊的制备与表征[J]. 化工进展, 2016, 35(9): 2898-2904. |
PEI Jianxin. Preparation and properties of self-healing microcapsule for asphalt crack[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2898-2904. | |
3 | 徐建平, 赵毅, 梁乃兴, 等. 基于疲劳累积损伤的高模量沥青路面使用寿命预估[J]. 长安大学学报(自然科学版), 2018, 38(2): 26-33. |
XU Jianping, ZHAO Yi, LIANG Naixing, et al. Life prediction of high modulus asphalt pavement based on fatigue cumulative damage[J]. Journal of Chang’an University (Natural Science Edition), 2018, 38(2): 26-33. | |
4 | SUN Daquan, SUN Guoqiang, ZHU Xingyi, et al. A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement[J]. Advances in Colloid and Interface Science, 2018, 256: 65-93. |
5 | HE Liang, LI Guannan, Songtao LYU, et al. Self-healing behavior of asphalt system based on molecular dynamics simulation[J]. Construction and Building Materials, 2020, 254: 119225. |
6 | 何亮, 李冠男, 郑雨丰, 等. 沥青体系的分子动力学研究进展及展望[J]. 材料导报, 2020, 34(19): 19083-19093. |
HE Liang, LI Guannan, ZHENG Yufeng, et al. Research progress and prospect of molecular dynamics of asphalt systems[J]. Materials Reports, 2020, 34(19): 19083-19093. | |
7 | QU Xin, LIU Quan, GUO Meng, et al. Study on the effect of aging on physical properties of asphalt binder from a microscale perspective[J]. Construction and Building Materials, 2018, 187: 718-729. |
8 | DONG Zejiao, LIU Zhiyang, WANG Peng, et al. Nanostructure characterization of asphalt-aggregate interface through molecular dynamics simulation and atomic force microscopy[J]. Fuel, 2017, 189: 155-163. |
9 | LU Yang, WANG Linbing. Nano-mechanics modelling of deformation and failure behaviours at asphalt-aggregate interfaces[J]. International Journal of Pavement Engineering, 2011, 12(4): 311-323. |
10 | 郭鹏坤, 李攀, 常春, 等. 计算机模拟技术在生物质转化中的应用研究进展[J]. 化工进展, 2020, 39(8): 3027-3040. |
GUO Pengkun, LI Pan, CHANG Chun, et al. Advances in the application of computer simulation technology in biomass conversion[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3027-3040. | |
11 | GREENFIELD Michael L. Molecular modelling and simulation of asphaltenes and bituminous materials[J]. International Journal of Pavement Engineering, 2011, 12(4): 325-341. |
12 | HALWACHI Hassan K AL, YAKOVLEV Dmitry S, BOEK Edo S. Systematic optimization of asphaltene molecular structure and molecular weight using the quantitative molecular representation approach[J]. Energy & Fuels, 2012, 26(10): 6177-6185. |
13 | 丁勇杰. 基于分子模拟技术的沥青化学结构特征研究[D]. 重庆: 重庆交通大学, 2013. |
DING Yongjie. Study on chemical structure characteirstic of asphalt using molecular simulation[D]. Chongqing: Chongqing Jiaotong University, 2013. | |
14 | 李光升, 解强, 张香兰, 等. 基于分子模拟的低温煤焦油中酚类化合物的溶解特性[J]. 化工进展, 2020, 39(1): 137-144. |
LI Guangsheng, XIE Qiang, ZHANG Xianglan, et al. Solubility of phenolic compounds in low temperature coal tar based on molecular simulation[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 137-144. | |
15 | DICKIE John P, YEN Teh Fu. Macrostructures of the asphaltic fractions by various instrumental methods[J]. Analytical Chemistry, 1967, 39(14): 1847-1852. |
16 | KOWALEWSKI I, VANDENBROUCKE M, HUC A Y, et al. Preliminary results on molecular modeling of asphaltenes using structure elucidation programs in conjunction with molecular simulation programs[J]. Energy & Fuels, 1996, 10(1): 97-107. |
17 | HOU Yue, WANG Linbing, WANG Dawei, et al. Characterization of bitumen micro-mechanical behaviors using AFM, phase dynamics theory and MD simulation[J]. Materials, 2017, 10(2): 208. |
18 | 汪海年, 丁鹤洋, 冯珀楠, 等. 沥青混合料分子模拟技术综述[J]. 交通运输工程学报, 2020, 20(2): 1-14. |
WANG Hainian, DING Heyang, FENG Ponan, et al. Advances on molecular simulation technique in asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 1-14. | |
19 | BHASIN Amit, BOMMAVARAM Rammohan, GREENFIELD Michael L, et al. Use of molecular dynamics to investigate self-healing mechanisms in asphalt binders[J]. Journal of Materials in Civil Engineering, 2011, 23(4): 485-492. |
20 | SUN Daquan, SUN Guoqiang, ZHU Xingyi, et al. Intrinsic temperature sensitive self-healing character of asphalt binders based on molecular dynamics simulations[J]. Fuel, 2018, 211: 609-620. |
21 | SUN Daquan, LIN Tianban, ZHU Xingyi, et al. Indices for self-healing performance assessments based on molecular dynamics simulation of asphalt binders[J]. Computational Materials Science, 2016, 114: 86-93. |
22 | SUN Daquan, SUN Guoqiang, ZHU Xingyi, et al. Identification of wetting and molecular diffusion stages during self-healing process of asphalt binder via fluorescence microscope[J]. Construction and Building Materials, 2017, 132: 230-239. |
23 | 邱欣, 徐文毅, 杨青, 等. 沥青黏结剂性能诊断与评价中的分子动力学模拟技术[J]. 浙江师范大学学报(自然科学版), 2020, 43(3): 284-292. |
QIU Xin, XU Wenyi, YANG Qing, et al. Molecular dynamics simulation technique in performance diagnosis and evaluation of asphalt binders[J]. Journal of Zhejiang Normal University (Natural Sciences), 2020, 43(3): 284-292. | |
24 | XU Guangji, WANG Hao. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188: 1-10. |
25 | Lei LYU, LI Dong, CHEN Yuxian, et al. Dynamic chemistry based self-healing of asphalt modified by diselenide-crosslinked polyurethane elastomer[J]. Construction and Building Materials, 2021, 293: 123480. |
26 | AGZENAI Yahya, POZUELO Javier, SANZ Javier, et al. Advanced self-healing asphalt composites in the pavement performance field: Mechanisms at the nano level and new repairing methodologies[J]. Recent Patents on Nanotechnology, 2015, 9(1): 43-50. |
27 | HAGER Martin D, GREIL Peter, LEYENS Christoph, et al. Self-healing materials[J]. Advanced Materials, 2010, 22(47): 5424-5430. |
28 | CAI Jianchao, CHEN Yin, LIU Yang, et al. Capillary imbibition and flow of wetting liquid in irregular capillaries: A 100-year review[J]. Advances in Colloid and Interface Science, 2022, 304: 102654. |
29 | ANUPAM B R, SAHOO U C, CHANDRAPPA A K. A methodological review on self-healing asphalt pavements[J]. Construction and Building Materials, 2022, 321: 126395. |
30 | LI Yan, HAO Peiwen, ZHANG Mengya. Fabrication, characterization and assessment of the capsules containing rejuvenator for improving the self-healing performance of asphalt materials: A review[J]. Journal of Cleaner Production, 2021, 287: 125079. |
31 | WOOL R P, O’CONNOR K M. A theory crack healing in polymers[J]. Journal of Applied Physics, 1981, 52(10): 5953-5963. |
32 | WOOL R P, O’CONNOR K M. Time dependence of crack healing[J]. Journal of Polymer Science: Polymer Letters Edition, 1982, 20(1): 7-16. |
33 | KIM Young Hwa, WOOL Richard P. A theory of healing at a polymer-polymer interface[J]. Macromolecules, 1983, 16(7): 1115-1120. |
34 | DE GENNES P G. Reptation of a polymer chain in the presence of fixed obstacles[J]. The Journal of Chemical Physics, 1971, 55(2): 572-579. |
35 | 朱建勇, 何兆益. 沥青胶结料自愈合研究进展[J]. 材料导报, 2018, 32(5): 847-854. |
ZHU Jianyong, HE Zhaoyi. Research progress on self-healing of asphalt binder[J]. Materials Review, 2018, 32(5): 847-854. | |
36 | 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为: 理论研究, 评价方法, 影响因素, 数值模拟[J]. 材料导报, 2019, 33(5): 1517-1525. |
WANG Yongdan, LIU Ziming, HAO Peiwen. Self-healing behavior of fatigue damage in asphalt binders: Theoretical studies, evaluation approaches, influencing factors, numerical simulation[J]. Introduction to Materials, 2019, 33(5): 1517-1525. | |
37 | GASKIN Joshua. On bitumen microstructure and the effects of crack healing[D]. Nottingham: The University of Nottingham, 2013. |
38 | LYTTON R L. Characterizing asphalt pavements for performance[J]. Transportation Research Record: Journal of the Transportation Research Board, 2000, 1723(1): 5-16. |
39 | ZOLLINGER C. Application of surface energy measurements to evaluate moisture susceptibility of asphalt and aggregates[J]. Materials Science, 2005, 9:1-5. |
40 | HEFER A, LITTLE D, LYTTON R L. A synthesis of theories and mechanisms of bitumen-aggregate adhesion including recent advances in quantifying the effects of water[C]. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 2005, 74: 139-195. |
41 | SCHAPERY R A. On the mechanics of crack closing and bonding in linear viscoelastic media[J]. International Journal of Fracture, 1989, 39(1): 163-189. |
42 | LYTTON R, UZAN J, FERNANDO E, et al. Development and validation of performance prediction models and specifications for asphalt binders and paving mixes[J]. Engineering, 1993,17:1-2. |
43 | 余可心, 孙国强, 孙大权. 基于分子动力学模拟的沥青-再生剂扩散研究进展[J]. 石油沥青, 2021, 35(2): 27-34. |
YU Kexin, SUN Guoqiang, SUN Daquan. Research progress of diffusion between asphalt and regenerant based on molecular dynamics simulation[J]. Petroleum Asphalt, 2021, 35(2): 27-34. | |
44 | 苏曼曼, 司春棣, 张洪亮. 纳米ZnO改性沥青分子动力学模拟研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(11): 118-127. |
SU Manman, SI Chundi, ZHANG Hongliang. Molecular dynamics simulation of nano-ZnO modified asphalt[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(11): 118-127. | |
45 | 王鹏, 黄世军, 赵凤兰, 等. 沥青质微观聚集特征的分子动力学研究[J]. 油气地质与采收率, 2021, 28(4): 77-85. |
WANG Peng, HUANG Shijun, ZHAO Fenglan, et al. Molecular dynamics study of microcosmic aggregation of asphaltenes[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(4): 77-85. | |
46 | 丛玉凤, 廖克俭, 翟玉春. 分子模拟在SBS改性沥青中的应用[J]. 化工学报, 2005, 56(5): 769-773. |
CONG Yufeng, LIAO Kejian, ZHAI Yuchun. Application of molecular simulation for study of SBS modified asphalt[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(5): 769-773. | |
47 | CONG Yufeng, HUANG Wei, LIAO Kejian, et al. Study on composition and structure of Liaoshu asphalt[J]. Petroleum Science and Technology, 2004, 22(11/12): 1447-1454. |
48 | DING Yongjie, HUANG Baoshan, SHU Xiang, et al. Use of molecular dynamics to investigate diffusion between virgin and aged asphalt binders[J]. Fuel, 2016, 174: 267-273. |
49 | STORM D A, EDWARDS J C, DECANIO S J, et al. Molecular representations of ratawi and Alaska north slope asphaltenes based on liquid- and solid-state NMR[J]. Energy & Fuels, 1994, 8(3): 561-566. |
50 | 唐伯明, 丁勇杰, 朱洪洲, 等. 沥青分子聚集状态变化特征研究[J]. 中国公路学报, 2013, 26(3): 50-56, 76. |
TANG Boming, DING Yongjie, ZHU Hongzhou, et al. Study on agglomeration variation pattern of asphalt molecules[J]. China Journal of Highway and Transport, 2013, 26(3): 50-56, 76. | |
51 | LU Yang, WANG Linbing. Nanoscale modelling of mechanical properties of asphalt-aggregate interface under tensile loading[J]. International Journal of Pavement Engineering, 2010, 11(5): 393-401. |
52 | 王吉. 沥青材料自愈合行为的分子动力学模拟[D]. 长春: 吉林大学, 2021. |
WANG Ji. Molecular dynamics simulation of self-healing behavior of asphalt materials[D]. Changchun: Jilin University, 2021. | |
53 | 谢士杰. 聚合物玻璃化转变行为的分子动力学模拟研究[D]. 长春: 吉林大学, 2015. |
XIE Shijie. Molecular dynamics simulation study on the glass transition behavior of polymers[D]. Changchun: Jilin University, 2015. | |
54 | WILLIAMS Malcolm L, LANDEL Robert F, FERRY John D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids[J]. Journal of the American Chemical Society, 1955, 77(14): 3701-3707. |
55 | 单超. 基于分子模拟技术的沥青-矿料界面力学性能研究[D]. 长春: 吉林大学, 2021. |
SHAN Chao. Study on mechanical properties of asphalt-mineral aggregate interface based on molecular simulation technology[D]. Changchun: Jilin University, 2021. | |
56 | ZHENG Chuanfeng, SHAN Chao, LIU Jian, et al. Microscopic adhesion properties of asphalt-mineral aggregate interface in cold area based on molecular simulation technology[J]. Construction and Building Materials, 2021, 268: 121151. |
57 | 曹雪娟, 苏玥, 邓梅. 基于分子动力学模拟的聚合物改性剂与沥青相互作用研究[J]. 化工新型材料, 2021, 49(9): 234-239. |
CAO Xuejuan, SU Yue, DENG Mei. Investigation on interaction between polymer modifier and asphalt based on molecular dynamics simulation[J]. New Chemical Materials, 2021, 49(9): 234-239. | |
58 | 张德勤. 石油沥青的生产与应用[M]. 北京: 中国石化出版社, 2001. |
ZHANG Deqin. Production and application of petroleum asphalt [M]. Beijing: China Petrochemical Press, 2001. | |
59 | 刘福军, 辛诚, 管明阳, 等 基于分子动力学模拟研究废食用油-老化沥青的扩散行为 [J]. 公路工程, 2022, 47(5): 120-125, 131. |
LIU Fujun, XIN Cheng, GUAN Mingyang, et al. Research on diffusion behavior of waste edible oil-aged asphalt based on molecular dynamics simulation[J]. Highway Engineering, 2022, 47(5): 120-125, 131. | |
60 | 罗磊. 沥青与矿料界面相互作用的分子动力学模拟研究[D]. 西安: 长安大学, 2021. |
LUO Lei. Molecular dynamics simulation of asphalt-aggregate interfacial interaction[D]. Xi’an: Chang’an University, 2021. | |
61 | BANDURA A V, KUBICKI J D, SOFO J O. Periodic density functional theory study of water adsorption on the α-quartz (101) surface[J]. The Journal of Physical Chemistry C, 2011, 115(13): 5756-5766. |
62 | 邱延峻, 苏婷, 郑鹏飞, 等. 基于分子模拟的沥青胶结料物理老化机理研究[J]. 建筑材料学报, 2020, 23(6): 1464-1470. |
QIU Yanjun, SU Ting, ZHENG Pengfei, et al. Physical aging mechanism of asphalt binder based on molecular simulation[J]. Journal of Building Materials, 2020, 23(6): 1464-1470. | |
63 | 杨健, 郭乃胜, 郭晓阳, 等. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(S2): 138-144. |
YANG Jian, GUO Naisheng, GUO Xiaoyang, et al. Adhesion of foamed asphalt-aggregate interface based on molecular dynamics[J]. Materials Reports, 2021, 35(S2): 138-144. | |
64 | XU Guangji, WANG Hao. Molecular dynamics study of interfacial mechanical behavior between asphalt binder and mineral aggregate[J]. Construction and Building Materials, 2016, 121: 246-254. |
65 | XU Guangji, WANG Hao. Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation[J]. Computational Materials Science, 2016, 112: 161-169. |
66 | PAINTER P. The characterization of asphalt and asphalt recyclability[R]. Strategic Highway Research Program, National Research Council, Washington D C, 1993: 1-32. |
67 | 朱建勇. 沥青胶结料自愈合行为的分子动力学模拟[J]. 建筑材料学报, 2018, 21(3): 433-439. |
ZHU Jianyong. Molecular dynamic simulation of self-healing behavior of asphalt binder[J]. Journal of Building Materials, 2018, 21(3): 433-439. | |
68 | 朱建勇, 何兆益. 抗剥落剂与沥青相容性的分子动力学研究[J]. 公路交通科技, 2016, 33(1): 34-40. |
ZHU Jianyong, HE Zhaoyi. Research of compatiblity of asphalt and anti-stripping agent using molecular dynamics[J]. Journal of Highway and Transportation Research and Development, 2016, 33(1): 34-40. | |
69 | 王吉, 郑传峰. 沥青混合料界面黏附黏结效应分子动力学研究[J]. 路基工程, 2021(2): 15-21. |
WANG Ji, ZHENG Chuanfeng. Study on molecular dynamics of interfacial adhesion and cohesion of asphalt mixture[J]. Subgrade Engineering, 2021(2): 15-21. | |
70 | 汤文, 王基双, 吕悦晶. 基于分子动力学的沥青自愈合行为研究[J]. 武汉科技大学学报, 2020, 43(2): 123-127. |
TANG Wen, WANG Jishuang, LV Yuejing. Study on self-healing behavior of asphalt binder based on molecular dynamics[J]. Journal of Wuhan University of Science and Technology, 2020, 43(2): 123-127. | |
71 | JONES D R. SHRP materials reference library: Asphalt cements. A concise data compilation[R]. Strategic Highway Research Program, National Research Council, Washington D C, 1993, 10: 1-33. |
72 | XU Guangji, WANG Hao. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188: 1-10. |
73 | YAO Hui, DAI Qingli, YOU Zhanping. Investigation of the asphalt-aggregate interaction using molecular dynamics[J]. Petroleum Science and Technology, 2017, 35(6): 586-593. |
74 | SHEN Shihui, LU Xin, LIU Liping, et al. Investigation of the influence of crack width on healing properties of asphalt binders at multi-scale levels[J]. Construction and Building Materials, 2016, 126: 197-205. |
75 | GONG Yan, XU Jian, YAN Erhu, et al. The self-healing performance of carbon-based nanomaterials modified asphalt binders based on molecular dynamics simulations[J]. Frontiers in Materials, 2021, 7: 599551. |
76 | 徐业守, 徐赵东, 郭迎庆, 等. 基于分子动力学模拟的天然橡胶黏弹性材料力学行为[J]. 东南大学学报(自然科学版), 2021, 51(3): 365-370. |
XU Yeshou, XU Zhaodong, GUO Yingqing, et al. Mechanical behaviors of natural rubber viscoelastic materials based on molecular dynamics simulation[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(3): 365-370. | |
77 | 高新文, 刘朝晖. 生物油再生沥青自愈合机理分析[J]. 中国公路学报, 2019, 32(4): 235-242. |
GAO Xinwen, LIU Zhaohui. Self-healing mechanism of bio-oil recycled asphalt[J]. China Journal of Highway and Transport, 2019, 32(4): 235-242. | |
78 | HU Dongliang, PEI Jianzhong, LI Rui, et al. Using thermodynamic parameters to study self-healing and interface properties of crumb rubber modified asphalt based on molecular dynamics simulation[J]. Frontiers of Structural and Civil Engineering, 2020, 14(1): 109-122. |
79 | 许建业, 刘富良, 林添坂, 等. 沥青混凝土疲劳损伤自愈合行为研究进展(4)——沥青自愈合分子动力学模拟[J]. 石油沥青, 2016, 30(2): 61-66. |
XU Jianye, LIU Fuliang, LIN Tianban, et al. Review on self-healing behavior of asphalt concrete(4)—Molecular dynamics simulation of self-healing in asphalt[J]. Petroleum Asphalt, 2016, 30(2): 61-66. | |
80 | YU Tengjiang, ZHANG Haitao, WANG Ying. Multi-gradient analysis of temperature self-healing of asphalt nano-cracks based on molecular simulation[J]. Construction and Building Materials, 2020, 250: 118859. |
81 | SCHULER Bruno, MEYER Gerhard, Diego PEÑA, et al. Unraveling the molecular structures of asphaltenes by atomic force microscopy[J]. Journal of the American Chemical Society, 2015, 137(31): 9870-9876. |
82 | XU Meng, YI Junyan, FENG Decheng, et al. Analysis of adhesive characteristics of asphalt based on atomic force microscopy and molecular dynamics simulation[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12393-12403. |
[1] | 王少凡, 周颖, 郝康安, 黄安荣, 张如菊, 吴翀, 左晓玲. 具有pH响应性的自愈合蓝光水凝胶[J]. 化工进展, 2023, 42(9): 4837-4846. |
[2] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[3] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[4] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[5] | 赵毅, 杨臻, 张新为, 王刚, 杨旋. 不同裂缝损伤和愈合温度条件下沥青自愈合行为的分子模拟[J]. 化工进展, 2023, 42(6): 3147-3156. |
[6] | 徐贤, 崔楼伟, 刘杰, 施俊合, 朱永红, 刘姣姣, 刘涛, 郑化安, 李冬. 原料组成对半焦中间相结构发展的影响[J]. 化工进展, 2023, 42(5): 2343-2352. |
[7] | 蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
[8] | 李晶晶, 赵曜, 徐沣驰, 李康建. 不同径流冲刷作用下多孔炉渣沥青混合料重金属的浸出特性[J]. 化工进展, 2023, 42(10): 5520-5530. |
[9] | 孙宪航, 任铸, 张国军, 孙媛, 范开峰, 黄维秋. 超临界CO2作用下甲苯在活性炭中的脱附机理[J]. 化工进展, 2022, 41(S1): 631-636. |
[10] | 李昊, 郭荣鑫, 晏永. 高模量沥青及其混合料低温性能研究进展[J]. 化工进展, 2022, 41(S1): 351-365. |
[11] | 邱艺娟, 林佳伟, 秦济锐, 吴嘉茵, 林凤采, 卢贝丽, 唐丽荣, 黄彪. 双重动态共价键交联纳米纤维素导电水凝胶及其柔性传感器[J]. 化工进展, 2022, 41(8): 4406-4416. |
[12] | 张辛铖, 何林, 隋红, 李鑫钢. 重质油包水乳液破乳过程及降黏强化机制[J]. 化工进展, 2022, 41(7): 3534-3544. |
[13] | 张石重, 陈占秀, 刘峰瑞, 庞润宇, 王清. 纳米结构表面液体沸腾传热的分子动力学模拟[J]. 化工进展, 2022, 41(5): 2311-2321. |
[14] | 刘竞, 郑新国, 李铁军, 王财平, 赵彦旭, 李颖, 楼梁伟, 沈伟. 可再分散乳化沥青粉末改性水泥砂浆的力学性能和微观形貌[J]. 化工进展, 2022, 41(4): 2015-2021. |
[15] | 章雪莹, 马俊, 何林, 隋红, 李鑫钢. 沥青岩中界面活性沥青质分子结构及其在矿物表面吸附特征[J]. 化工进展, 2022, 41(2): 628-636. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |