化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6201-6212.DOI: 10.16085/j.issn.1000-6613.2022-1852
收稿日期:
2022-10-05
修回日期:
2022-10-17
出版日期:
2022-12-20
发布日期:
2022-12-29
通讯作者:
闫国春
作者简介:
闫国春(1968—),男,硕士,高级工程师,主要从事煤化工和石油化工领域的生产与管理工作。E-mail:yangch2019@163.com。
YAN Guochun(), WEN Liang, ZHANG Hua
Received:
2022-10-05
Revised:
2022-10-17
Online:
2022-12-20
Published:
2022-12-29
Contact:
YAN Guochun
摘要:
发展现代煤化工产业对保障国家能源安全、支撑国民经济发展和拓宽石化原料渠道有着重要战略意义。本文简要介绍了现代煤化工产业发展所取得的成绩与存在的问题,从原料特性、工艺技术及产品特性、成本竞争力、项目布局和规模、水耗、能耗、“三废”排放等方面系统分析了现代煤化工产业的竞争优势与劣势,指出与炼油和石化产业相比,现阶段现代煤化工产业仍以单项技术示范为主,多数产品存在交叉和重叠,且同类产品的水耗、能耗、碳排放更高,但在生产特种燃料、高碳低氢化学品、高碳高氧化学品等更符合煤炭原料组成结构和煤化学反应特性产品方面具有市场竞争力和发展潜力。在“双碳”目标下,现代煤化工产业应加快从“替代石化产品”的高碳排放产业向“发挥煤炭原料特性”的绿色低碳产业转型升级,构建具有比较优势的高端化差异化产品体系,坚持清洁低碳化生产,推进与清洁低碳能源、石油化工等多产业的耦合协同,打造具有竞争力的“煤、油、化、新材料、新能源”一体化基地,推动现代煤化工产业高质量可持续发展。
中图分类号:
闫国春, 温亮, 张华. 现代煤化工产业发展路径分析[J]. 化工进展, 2022, 41(12): 6201-6212.
YAN Guochun, WEN Liang, ZHANG Hua. Analysis of development path of modern coal chemical industry[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6201-6212.
指标 | 石油基 石脑油 | 煤直接液化 石脑油 | 费托合成油 石脑油 | 煤焦油加氢 石脑油 |
---|---|---|---|---|
密度(20℃)/kg | 713.1 | 745.2 | 692.2 | 760~790 |
链烷烃质量分数/% | 70.59 | 25.3 | 99.18 | — |
环烷烃质量分数/% | 20.86 | — | 0.82 | — |
芳烃质量分数/% | 8.52 | — | 0 | — |
环烷烃和芳烃质量分数/% | 29.38 | 74.60 | 0.82 | ≥70 |
烯烃质量分数/% | 0.03 | 0.1 | 0 | ≤1 |
硫含量/mg | 2.9 | 0.13 | 0 | ≤10 |
表1 不同来源石脑油性质对比
指标 | 石油基 石脑油 | 煤直接液化 石脑油 | 费托合成油 石脑油 | 煤焦油加氢 石脑油 |
---|---|---|---|---|
密度(20℃)/kg | 713.1 | 745.2 | 692.2 | 760~790 |
链烷烃质量分数/% | 70.59 | 25.3 | 99.18 | — |
环烷烃质量分数/% | 20.86 | — | 0.82 | — |
芳烃质量分数/% | 8.52 | — | 0 | — |
环烷烃和芳烃质量分数/% | 29.38 | 74.60 | 0.82 | ≥70 |
烯烃质量分数/% | 0.03 | 0.1 | 0 | ≤1 |
硫含量/mg | 2.9 | 0.13 | 0 | ≤10 |
指标 | 国Ⅵ车用 柴油 | 煤直接液化 柴油 | 低温费托合成油 柴油 | 煤焦油加氢 柴油 |
---|---|---|---|---|
密度(20℃)/kg | 790~845 | 840~860 | 760~780 | 850~920 |
凝点/℃ | -50~5 | -70~-50 | -6~10 | — |
十六烷值 | ≥51 | 45-51 | 55~77 | 35~57 |
链烷烃质量分数/% | — | 8.0 | 93.9 | — |
环烷烃质量分数/% | — | 89.2 | 5.4 | — |
总芳烃质量分数/% | — | 2.8 | 0.7 | — |
多环芳烃质量分数/% | ≤7 | <2.0 | <0.1 | 1.5~10 |
硫含量/mg | ≤10 | <2.0 | <1 | ≤10 |
表2 不同来源柴油性质对比
指标 | 国Ⅵ车用 柴油 | 煤直接液化 柴油 | 低温费托合成油 柴油 | 煤焦油加氢 柴油 |
---|---|---|---|---|
密度(20℃)/kg | 790~845 | 840~860 | 760~780 | 850~920 |
凝点/℃ | -50~5 | -70~-50 | -6~10 | — |
十六烷值 | ≥51 | 45-51 | 55~77 | 35~57 |
链烷烃质量分数/% | — | 8.0 | 93.9 | — |
环烷烃质量分数/% | — | 89.2 | 5.4 | — |
总芳烃质量分数/% | — | 2.8 | 0.7 | — |
多环芳烃质量分数/% | ≤7 | <2.0 | <0.1 | 1.5~10 |
硫含量/mg | ≤10 | <2.0 | <1 | ≤10 |
工艺路线 | 产品 | 合成气理论规格 [n(CO)∶n(H2)] |
---|---|---|
煤制合成氨 | 氨 | 0∶1 |
煤制甲烷 | 甲烷 | 1∶3 |
煤制甲醇 | 甲醇 | 1∶2 |
煤-甲醇-烯烃 | 乙烯和丙烯 | 1∶2 |
煤-甲醇-芳烃 | 苯、甲苯、二甲苯 | 1∶1.5 |
煤-甲醇-乙醇 | 乙醇 | 1∶2 |
煤-草酸二甲酯-乙二醇 | 乙二醇 | 1∶2 |
煤-草酸二甲酯-乙醇酸甲酯 | 乙醇酸甲酯 | 1∶1.33 |
煤-甲醇-乙酸 | 乙酸 | 1∶1 |
表3 不同煤化工路线对合成气规格要求
工艺路线 | 产品 | 合成气理论规格 [n(CO)∶n(H2)] |
---|---|---|
煤制合成氨 | 氨 | 0∶1 |
煤制甲烷 | 甲烷 | 1∶3 |
煤制甲醇 | 甲醇 | 1∶2 |
煤-甲醇-烯烃 | 乙烯和丙烯 | 1∶2 |
煤-甲醇-芳烃 | 苯、甲苯、二甲苯 | 1∶1.5 |
煤-甲醇-乙醇 | 乙醇 | 1∶2 |
煤-草酸二甲酯-乙二醇 | 乙二醇 | 1∶2 |
煤-草酸二甲酯-乙醇酸甲酯 | 乙醇酸甲酯 | 1∶1.33 |
煤-甲醇-乙酸 | 乙酸 | 1∶1 |
工艺路线 | 典型规模 /万吨·年-1 | 政策门槛 /万吨·年-1 | 投资额 /亿元 | 投资强度 /万元·吨-1 |
---|---|---|---|---|
煤直接液化 | 108 | 100 | 134 | 12400 |
煤间接液化 | 100~400 | 100 | 550 | 13750 |
石油炼制 | 1000~2000 | 1000 | 269 | 1700 |
煤制烯烃 | 30~137 | 50 | 210 | 35000 |
石脑油制乙烯 | 100~150 | 80 | 200 | 13000 |
煤制乙二醇 | 20~60 | 20 | 50 | 12500 |
石脑油制乙二醇 | 20~80 | 20 | 69 | 11500 |
表4 现代煤化工和石油化工工艺路线典型规模与投资强度
工艺路线 | 典型规模 /万吨·年-1 | 政策门槛 /万吨·年-1 | 投资额 /亿元 | 投资强度 /万元·吨-1 |
---|---|---|---|---|
煤直接液化 | 108 | 100 | 134 | 12400 |
煤间接液化 | 100~400 | 100 | 550 | 13750 |
石油炼制 | 1000~2000 | 1000 | 269 | 1700 |
煤制烯烃 | 30~137 | 50 | 210 | 35000 |
石脑油制乙烯 | 100~150 | 80 | 200 | 13000 |
煤制乙二醇 | 20~60 | 20 | 50 | 12500 |
石脑油制乙二醇 | 20~80 | 20 | 69 | 11500 |
重点领域 | 指标名称 | 指标单位 | 标杆水平 | 基准水平 |
---|---|---|---|---|
煤制甲醇 | ||||
褐煤 | 单位产品综合能耗 | 千克标煤/吨 | 1550 | 2000 |
烟煤 | 1400 | 1800 | ||
无烟煤 | 1250 | 1600 | ||
煤制烯烃 | ||||
乙烯和丙烯 | 单位产品能耗 | 千克标煤/吨 | 2800 | 3300 |
煤制乙二醇 | ||||
合成气法 | 单位产品综合能耗 | 千克标煤/吨 | 1000 | 1350 |
表5 煤化工重点领域能效标杆水平和基准水平
重点领域 | 指标名称 | 指标单位 | 标杆水平 | 基准水平 |
---|---|---|---|---|
煤制甲醇 | ||||
褐煤 | 单位产品综合能耗 | 千克标煤/吨 | 1550 | 2000 |
烟煤 | 1400 | 1800 | ||
无烟煤 | 1250 | 1600 | ||
煤制烯烃 | ||||
乙烯和丙烯 | 单位产品能耗 | 千克标煤/吨 | 2800 | 3300 |
煤制乙二醇 | ||||
合成气法 | 单位产品综合能耗 | 千克标煤/吨 | 1000 | 1350 |
工艺路线 | CO2/t·标煤-1 | SO2/kg·标煤-1 | NO x /kg·标煤-1 |
---|---|---|---|
火力发电 | 2.64 | 0.33 | 0.50 |
煤直接液化 | 1.65 | 0.22 | 0.20 |
煤间接液化 | 1.94 | 0.23 | 0.21 |
煤制天然气 | 2.09 | 0.18 | 0.17 |
煤制烯烃 | 2.39 | 0.11 | 0.09 |
煤制乙二醇 | 1.89 | 0.39 | 0.36 |
表6 不同煤炭利用方式CO2、SO2和NO x 排放强度
工艺路线 | CO2/t·标煤-1 | SO2/kg·标煤-1 | NO x /kg·标煤-1 |
---|---|---|---|
火力发电 | 2.64 | 0.33 | 0.50 |
煤直接液化 | 1.65 | 0.22 | 0.20 |
煤间接液化 | 1.94 | 0.23 | 0.21 |
煤制天然气 | 2.09 | 0.18 | 0.17 |
煤制烯烃 | 2.39 | 0.11 | 0.09 |
煤制乙二醇 | 1.89 | 0.39 | 0.36 |
工艺路线 | CO2/t·t-1 |
---|---|
煤直接液化 | 5.34 |
煤间接液化 | 6.86 |
炼油 | 0.36 |
煤制烯烃 | 10.52 |
石脑油制烯烃 | 0.93 |
表7 现代煤化工和石油化工单位产品排放量
工艺路线 | CO2/t·t-1 |
---|---|
煤直接液化 | 5.34 |
煤间接液化 | 6.86 |
炼油 | 0.36 |
煤制烯烃 | 10.52 |
石脑油制烯烃 | 0.93 |
1 | 徐振刚. 中国现代煤化工近25年发展回顾·反思·展望[J]. 煤炭科学技术, 2020, 48(8): 1-25. |
XU Zhengang. Review, rethink and prospect of China’s modern coal chemical industry development in recent 25 years[J]. Coal Science and Technology, 2020, 48(8):1-25. | |
2 | 胡迁林, 赵明. “十四五”时期现代煤化工发展思考[J]. 中国煤炭, 2021, 47(3): 2-8. |
HU Qianlin, ZHAO Ming. Thinking on the development of modern coal chemical industry during the 14th Five-Year Plan period[J]. China Coal, 2021, 47(3): 2-8. | |
3 | 田原宇, 谢克昌, 乔英云, 等. 碳中和约束下的煤化工产业展望[J]. 中外能源, 2022, 27(5): 17-23. |
TIAN Yuanyu, XIE Kechang, QIAO Yingyun, et al. Prospects of coal chemical industry under the constraints of carbon neutrality[J]. Sino-Global Energy, 2022, 27(5): 17-23. | |
4 | 闫国春, 温亮, 薛飞. 现代煤化工产业发展现状、问题与建议[J]. 中国煤炭, 2022, 48(8): 1-6. |
YAN Guochun, WEN Liang, XUE Fei. Development status, problems and suggestions of modern coal chemical industry[J]. China Coal, 2022, 48(8): 1-6. | |
5 | XIE K C. Reviews of clean coal conversion technology in China: Situations & challenges[J]. Chinese Journal of Chemical Engineering, 2021, 35: 62-69. |
6 | 新华社. 习近平在陕西榆林考察时强调 解放思想改革创新再接再厉 谱写陕西高质量发展新篇章[EB/OL].[2021-09-15]. . |
Xinhua News Agency. President Xi Jinping urged northwestern China’s Shaanxi province to comprehensively and faithfully implement the philosophy of innovative, coordinated, green, open and shared development to enable it to write a new chapter of high-quality growth[EB/OL].[2021-09-15]. . | |
7 | 傅向升. 现代煤化工应突出“创新、降碳、集群化”[EB/OL].[2022-08]. . |
FU Xiangsheng. Modern coal chemical industry should highlight “innovation, carbon reduction and clustering”[EB/OL].[2022-08]. . | |
8 | 张胜利, 焦洪桥, 杨靖华, 等. 碳中和背景下现代煤化工产业生态链布局和创新发展路径[J]. 中国煤炭, 2022, 48(8): 7-13. |
ZHANG Shengli, JIAO Hongqiao, YANG Jinghua, et al. Ecological chain layout and innovative development path of modern coal chemical industry under the background of carbon neutrality[J]. China Coal, 2022, 48(8): 7-13. | |
9 | MATHEWS J P, VAN DUIN A C T, CHAFFEE A L. The utility of coal molecular models[J]. Fuel Processing Technology, 2011, 92(4): 718-728. |
10 | SHINN J H. From coal to single-stage and two-stage products: a reactive model of coal structure[J]. Fuel, 1984, 63(9): 1187-1196. |
11 | FENG Song, CUI Chen, LI Kaiyu, et al. Molecular composition modelling of petroleum fractions based on a hybrid structural unit and bond-electron matrix (SU-BEM) framework[J]. Chemical Engineering Science, 2019, 201: 145-156. |
12 | 黄晟, 王静宇, 李振宇. 碳中和目标下石油与化学工业绿色低碳发展路径分析[J]. 化工进展, 2022, 41(4): 1689-1703. |
HUANG Sheng, WANG Jingyu, LI Zhenyu. Analysis of green and low-carbon development path of petroleum and chemical industry under the goal of carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1689-1703. | |
13 | 王泽洋, 王龙延. 煤基燃料油品特性与煤制油产业发展分析[J]. 化工进展, 2019, 38(7): 3079-3087. |
WANG Zeyang, WANG Longyan. Analysis on characteristics of coal-based vehicle fuels and development of coal-to-liquids industry[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3079-3087. | |
14 | LIU Zhenyu, SHI Shidong, LI Yongwang. Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering[J]. Chemical Engineering Science, 2010, 65(1): 12-17. |
15 | 陈学伟, 郭京峰, 贾登伟, 等. 《煤基氢化油》(HG/T 5146—2017)行业标准解读[J]. 煤化工, 2018, 46(1): 17-19, 46. |
CHEN Xuewei, GUO Jingfeng, JIA Dengwei, et al. Interpretation of industrial standard coal-based hydrogenated oil HG/T 5146—2017[J]. Coal Chemical Industry, 2018, 46(1): 17-19, 46. | |
16 | 张雅琳, 张占全, 王燕, 等. 费托合成油和石油基油加工产品对比分析[J]. 化工进展, 2018, 37(10): 3781-3787. |
ZHANG Yalin, ZHANG Zhanquan, WANG Yan, et al. Comparative analysis of products from Fischer-Tropsch oil and petroleum based oil[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3781-3787. | |
17 | 齐振东. 煤直接液化产品特性、市场应用及新产品开发[J]. 煤化工, 2021, 49(5): 19-23. |
QI Zhendong. Study on product property, application and new product development of direct coal liquefaction[J]. Coal Chemical Industry, 2021, 49(5): 19-23. | |
18 | 李海军. 煤直接液化车用汽油制备研究[J]. 煤化工, 2016, 44(2): 10-14. |
LI Haijun. Study on the vehicle gasoline preparation via direct coal liquefaction[J]. Coal Chemical Industry, 2016, 44(2): 10-14. | |
19 | 王峰, 郭中山, 王铁峰. 工业浆态床中温费托合成产品分析与产品加工方案优化[J]. 煤炭学报, 2020, 45(4): 1267-1274. |
WANG Feng, GUO Zhongshan, WANG Tiefeng. Analysis and processing optimization of products from medium temperature Fischer-Tropsch synthesis in industrial slurry bed reactor[J]. Journal of China Coal Society, 2020, 45(4): 1267-1274. | |
20 | 王建立, 温亮. 现代煤化工产业竞争力分析及高质量发展路径研究[J]. 中国煤炭, 2021, 47(3): 9-14. |
WANG Jianli, WEN Liang. Competitiveness analysis and high quality development path research of modern coal chemical industry[J]. China Coal, 2021, 47(3): 9-14. | |
21 | 贾振斌, 刘永. 煤直接液化产品的组成、特性及应用[J]. 中国煤炭, 2020, 46(5): 81-86. |
JIA Zhenbin, LIU Yong. Composition, characteristics and application of direct coal liquefaction products[J]. China Coal, 2020, 46(5): 81-86. | |
22 | 武鹏, 吕元, 郭中山, 等. 煤间接液化及产品加工成套技术开发研究进展[J]. 煤炭学报, 2020, 45(4): 1222-1243. |
WU Peng, Yuan LYU, GUO Zhongshan, et al. R & D progress of indirect coal liquefaction and product processing integrated technology[J]. Journal of China Coal Society, 2020, 45(4): 1222-1243. | |
23 | 张型伟. 煤基中间相沥青的制备及其均相结构性能研究[D]. 北京: 北京化工大学, 2020. |
ZHANG Xingwei. Study on preparation of coal-based mesophase pitch and its homogeneous structure properties[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
24 | 程俊霞,赵雪飞,朱亚明,等. 我国煤系针状焦技术发展现状分析[J]. 洁净煤技术, 2022, 28(1): 84-93. |
CHENG Junxia, ZHAO Xuefei, ZHU Yaming, et al. Analysis on the technology development status of coal-based needle coke in China[J]. Clean Coal Technology, 2022, 28(1): 84-93. | |
25 | 王磊, 黄涛, 赵亮富. “双碳”背景下我国针状焦市场前景预测及对策研究[J]. 中国能源, 2022(8): 27-32. |
WANG Lei, HUANG Tao, ZHAO Liangfu. Forecast and countermeasures of Chinese needle coke market in the context of carbon peak & carbon neutrality[J]. Energy of China, 2022(8): 27-32. | |
26 | 郭淑静, 王军峰, 张伟, 等. 合成气直接转化制C2+含氧化合物中接力催化路径设计的研究进展[J]. 天然气化工—C1化学与化工, 2022, 47(4): 41-47. |
GUO Shujing, WANG Junfeng, ZHANG Wei, et al. Research progress in relay catalysis path design for syngas direct conversion to C2+ oxygenates[J]. Natural Gas Chemical Industry, 2022, 47(4): 41-47. | |
27 | 叶茂, 朱文良, 徐庶亮, 等. 关于煤化工与石油化工的协调发展[J]. 中国科学院院刊, 2019, 34(4): 417-425. |
YE Mao, ZHU Wenliang, XU Shuliang, et al. Coordinated development of coal chemical and petrochemical industries in China[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 417-425. | |
28 | YAMANE K, SATO H, ICHIKAWA Y, et al. Development of an industrial production technology for high-molecular-weight polyglycolic acid[J]. Polymer Journal, 2014, 46(11): 769-775. |
29 | Kuredux. Polyglycolic acid (PGA) resin[EB/OL].[2022-03]. . |
30 | 谢克昌. “十四五”期间现代煤化工发展还存在制约因素[J]. 中国石油企业, 2020(9): 11-12. |
XIE Kechang. Restricting factors in the development of modern coal chemical industry during the 14th Five-Year Plan period[J]. China Petroleum Enterprise, 2020(9): 11-12. | |
31 | 中华人民共和国国家发展和改革委员会. 关于发布《高耗能行业重点领域能效标杆水平和基准水平(2021年版)》的通知[EB/OL].[2021-11-15]. . |
National Development and Reform Commission. Notice on the issuance of “Advanced and benchmark levels of energy efficiency in the key areas of high energy consumption industries (2021 edition)”[EB/OL].[2021-11-15]. . | |
32 | 中华人民共和国国家发展和改革委员会. 关于发布《高耗能行业重点领域节能降碳改造升级实施指南(2022年版)》的通知[EB/OL].[2022-02-11]. . |
National Development and Reform Commission. Notice on the issuance of “Implementation guide for energy conservation and carbon reduction in the key areas of high energy consumption industries (2022 edition)”[EB/OL].[2022-02-11]. . | |
33 | 新华社. 中央经济工作会议举行 习近平李克强作重要讲话[EB/OL].[2021-12-10]. . |
Xinhua News Agency. Xi Jinping and Li Keqiang addresses the Central Economic Work Conference[EB/OL].[2021-12-10]. . | |
34 | 高天明, 周凤英, 闫强, 等. 煤炭不同利用方式主要大气污染物排放比较[J]. 中国矿业, 2017, 26(7): 74-80, 95. |
GAO Tianming, ZHOU Fengying, YAN Qiang, et al. Comparison of main air pollutant emission in different ways of coal utilization[J]. China Mining Magazine, 2017, 26(7): 74-80, 95. | |
35 | 中国电力企业联合会. 中国电力行业年度发展报告2022[M]. 北京: 中国建材工业出版社, 2022. |
China Electricity Council. China power industry annual development report 2022[M]. Beijing: China Building Materials Press, 2022. | |
36 | 张媛媛, 王永刚, 田亚峻. 典型现代煤化工过程的二氧化碳排放比较[J]. 化工进展, 2016, 35(12): 4060-4064. |
ZHANG Yuanyuan, WANG Yonggang, TIAN Yajun. Comparative studies on carbon dioxide emissions of typical modern coal chemical processes[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 4060-4064. | |
37 | XIANG Dong, QIAN Yu, MAN Yi, et al. Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process[J]. Applied Energy, 2014, 113: 639-647. |
38 | 刘殿栋, 王钰. 现代煤化工产业碳减排、碳中和方案探讨[J]. 煤炭加工与综合利用, 2021(5): 67-72. |
LIU Diandong, WANG Yu. Discussion on scheme of carbon reduction and carbon neutralization in modern coal chemical industry[J]. Coal Processing & Comprehensive Utilization, 2021(5): 67-72. | |
39 | 蔡博峰,李琦,张贤,等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)——中国CCUS路径研究 [R]//生态环境部环境规划院,中国科学院武汉岩土力学研究所,中国21世纪议程管理中心, 2021. |
CAI Bofeng, LI Qi, ZHANG Xian, et al. Annual report on carbon dioxide capture, utilization and storage in China (2021)——Research on CCUS pathway in China[R]// Chinese Academy of Environmental Planning, Ministry of Ecology Enviromment of China, Insitute of Rock and Soil Mechanics, Chinese Academy of Sciences, The Administrative Center for China’s Agenda 21, 2021. | |
40 | CHEN Siyuan, LIU Jiangfeng, ZHANG Qi, et al. A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112537. |
41 | 相宏伟, 杨勇, 李永旺. 碳中和目标下的煤化工变革与发展[J]. 化工进展, 2022, 41(3): 1399-1408. |
XIANG Hongwei, YANG Yong, LI Yongwang. Transformation and development of coal chemical industry under the goal of carbon neutralization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1399-1408. | |
42 | 张军. 现代煤化工水系统特性分析及优化研究[D]. 徐州: 中国矿业大学, 2019. |
ZHANG Jun. Characteristic analysis and optimization research on water system in modern coal chemical industry[D]. Xuzhou: China University of Mining and Technology, 2019. | |
43 | 张文, 林长喜, 彭永臻. 现代煤化工废水近零排放技术集成与优化建议[J]. 环境工程, 2021, 39(11): 41-45, 109. |
ZHANG Wen, LIN Changxi, PENG Yongzhen. Recommendations on integration and optimization of near-zero discharge technology for wastewater from modern coal chemical industry[J]. Environmental Engineering, 2021, 39(11): 41-45, 109. | |
44 | XIONG Rihua, WEI Chang. Current status and technology trends of zero liquid discharge at coal chemical industry in China[J]. Journal of Water Process Engineering, 2017, 19: 346-351. |
45 | 曲江山, 张建波, 孙志刚, 等. 煤气化渣综合利用研究进展[J]. 洁净煤技术, 2020, 26(1): 184-193. |
QU Jiangshan, ZHANG Jianbo, SUN Zhigang, et al. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technology, 2020, 26(1): 184-193. | |
46 | LIU Xiaodong, JIN Zhengwei, JING Yunhuan, et al. Review of the characteristics and graded utilisation of coal gasification slag[J]. Chinese Journal of Chemical Engineering, 2021, 35: 92-106. |
47 | IRENA. Renewable power generation costs in 2021[R]. Abu Dhabi: International Renewable Energy Agency, 2022. |
48 | 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819. |
ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819. |
[1] | 舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478. |
[2] | 李文秀, 杨宇航, 黄艳, 王涛, 王镭, 方梦祥. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057. |
[3] | 孙晖, 孟祥海, 魏景海, 周红军, 徐春明. 绿电制氢生产氨的新场景与实践[J]. 化工进展, 2023, 42(2): 1098-1102. |
[4] | 陶雨萱, 郭亮, 高聪, 宋伟, 陈修来. 代谢工程改造微生物固定二氧化碳研究进展[J]. 化工进展, 2023, 42(1): 40-52. |
[5] | 杨学萍. 碳中和背景下现代煤化工技术路径探索[J]. 化工进展, 2022, 41(7): 3402-3412. |
[6] | 甘凤丽, 江霞, 常玉龙, 靳紫恒, 汪华林, 师敬伟. 石化行业碳中和技术路径探索[J]. 化工进展, 2022, 41(3): 1364-1375. |
[7] | 张春, 王学瑞, 刘华, 高雪超, 张玉亭, 顾学红. 面向工业过程碳减排的分子筛膜技术研究进展[J]. 化工进展, 2022, 41(3): 1376-1390. |
[8] | 朱家华, 穆立文, 蒋管聪, 刘立, 熊晶晶, 陆小华. 生物质协同流程工业节能、降污、减碳路径思考[J]. 化工进展, 2022, 41(3): 1111-1114. |
[9] | 陈健, 姬存民, 卜令兵. 碳中和背景下工业副产气制氢技术研究与应用[J]. 化工进展, 2022, 41(3): 1479-1486. |
[10] | 何盛宝, 黄格省. 化工新材料产业及其在低碳发展中的作用[J]. 化工进展, 2022, 41(3): 1634-1644. |
[11] | 谭天伟, 陈必强, 张会丽, 崔子恒. 加快推进绿色生物制造 助力实现“碳中和”[J]. 化工进展, 2021, 40(3): 1137-1141. |
[12] | 杨庆春, 杨庆, 张金亮, 高明林, 梅树美, 张大伟. 耦合SOEC的煤制乙二醇新工艺开发与系统评价[J]. 化工进展, 2021, 40(11): 6061-6070. |
[13] | 李俊杰,程婉静,梁媚,严晓辉,杨靖东,张岳玲,冯连勇,田亚峻,谢克昌. 基于熵权-层次分析法的中国现代煤化工行业可持续发展综合评价[J]. 化工进展, 2020, 39(4): 1329-1338. |
[14] | 谢文俊,李小森,邹颖楠,徐纯刚. 含环戊烷体系中二氧化碳水合物形成分解热特性[J]. 化工进展, 2020, 39(1): 129-136. |
[15] | 王明华, 蒋文化, 韩一杰. 现代煤化工发展现状及问题分析[J]. 化工进展, 2017, 36(08): 2882-2887. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |