化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 210-220.DOI: 10.16085/j.issn.1000-6613.2022-0241
郭振雪1(), 于海斌2, 张国辉2, 张景成2, 卢雁飞2, 何艳贞1, 孙彦民2, 韩恩山1()
收稿日期:
2022-02-16
修回日期:
2022-05-05
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
韩恩山
作者简介:
郭振雪(1997—),女,硕士研究生,研究方向为加氢催化剂开发。E-mail:gzxxxue@163.com。
基金资助:
GUO Zhenxue1(), YU Haibin2, ZHANG Guohui2, ZHANG Jingcheng2, LU Yanfei2, HE Yanzhen1, SUN Yanmin2, HAN Enshan1()
Received:
2022-02-16
Revised:
2022-05-05
Online:
2022-10-20
Published:
2022-11-10
Contact:
HAN Enshan
摘要:
以中和法合成的不同SiO2含量的改性氧化铝为载体,本文制备系列Si改性的NiMo/Al2O3催化剂,采用X射线衍射(XRD)、N2物理吸附(BET)、程序升温脱附(NH3-TPD)、吡啶吸附红外光谱(Py-IR)、程序升温还原(H2-TPR)、高分辨透射电镜(HRTEM)和X射线光电子能谱(XPS)等分析手段进行详细表征。表征结果显示,引入Si减弱了活性金属与载体之间的相互作用,改善了催化剂的孔结构与表面酸性分布,提高了活性相分散度和金属硫化度,促使形成更多的II类NiMoS活性相。以二苯并噻吩(DBT)为模型化合物,在固定床加氢装置上考察了系列催化剂的加氢脱硫(HDS)性能,结果表明,引入Si可降低DBT的加氢反应活化能,提高反应速率常数,进而提高催化剂的加氢脱硫活性。对比DBT转化率在50%时的脱硫产物分布表明引入Si可影响催化剂的反应路径选择性,直接脱硫路径(DDS)选择性从83.69%增加至92.89%,证实了催化剂的表征规律。
中图分类号:
郭振雪, 于海斌, 张国辉, 张景成, 卢雁飞, 何艳贞, 孙彦民, 韩恩山. Si改性对NiMo/Al2O3催化剂加氢脱硫性能的影响[J]. 化工进展, 2022, 41(S1): 210-220.
GUO Zhenxue, YU Haibin, ZHANG Guohui, ZHANG Jingcheng, LU Yanfei, HE Yanzhen, SUN Yanmin, HAN Enshan. Effect of silica modification on the performance of NiMo/Al2O3 catalyst in hydrodesulfurization[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 210-220.
催化剂 | 比表面积 /m2·g-1 | 孔体积 /cm3·g-1 | 孔径比例/% | ||
---|---|---|---|---|---|
<4nm | 4~10nm | >10nm | |||
NiMo/Al-0Si | 225 | 0.51 | 8.6 | 73.8 | 17.6 |
NiMo/Al-2Si | 228 | 0.53 | 6.4 | 75.9 | 17.7 |
NiMo/Al-4Si | 241 | 0.54 | 5.5 | 76.5 | 18.0 |
NiMo/Al-6Si | 255 | 0.58 | 4.4 | 77.3 | 18.3 |
NiMo/Al-8Si | 256 | 0.59 | 2.8 | 78.4 | 18.8 |
表1 NiMo/Al-xSi催化剂的织构性质
催化剂 | 比表面积 /m2·g-1 | 孔体积 /cm3·g-1 | 孔径比例/% | ||
---|---|---|---|---|---|
<4nm | 4~10nm | >10nm | |||
NiMo/Al-0Si | 225 | 0.51 | 8.6 | 73.8 | 17.6 |
NiMo/Al-2Si | 228 | 0.53 | 6.4 | 75.9 | 17.7 |
NiMo/Al-4Si | 241 | 0.54 | 5.5 | 76.5 | 18.0 |
NiMo/Al-6Si | 255 | 0.58 | 4.4 | 77.3 | 18.3 |
NiMo/Al-8Si | 256 | 0.59 | 2.8 | 78.4 | 18.8 |
催化剂 | B酸量 /mmol·g-1 | L酸量 /mmol·g-1 | 总酸量 /mmol·g-1 | B/L |
---|---|---|---|---|
NiMoS/Al-0Si | — | 0.102 | 0.102 | — |
NiMoS/Al-2Si | 0.012 | 0.113 | 0.125 | 0.106 |
NiMoS/Al-4Si | 0.015 | 0.120 | 0.135 | 0.125 |
NiMoS/Al-6Si | 0.018 | 0.130 | 0.148 | 0.138 |
NiMoS/Al-8Si | 0.020 | 0.133 | 0.153 | 0.150 |
表2 NiMoS/Al-xSi催化剂的B酸与L酸分布
催化剂 | B酸量 /mmol·g-1 | L酸量 /mmol·g-1 | 总酸量 /mmol·g-1 | B/L |
---|---|---|---|---|
NiMoS/Al-0Si | — | 0.102 | 0.102 | — |
NiMoS/Al-2Si | 0.012 | 0.113 | 0.125 | 0.106 |
NiMoS/Al-4Si | 0.015 | 0.120 | 0.135 | 0.125 |
NiMoS/Al-6Si | 0.018 | 0.130 | 0.148 | 0.138 |
NiMoS/Al-8Si | 0.020 | 0.133 | 0.153 | 0.150 |
催化剂 | 平均长度/nm | 平均堆垛层数 | fMo |
---|---|---|---|
NiMoS/Al-0Si | 3.91 | 2.81 | 0.30 |
NiMoS/Al-2Si | 3.84 | 3.15 | 0.33 |
NiMoS/Al-4Si | 3.73 | 3.18 | 0.34 |
NiMoS/Al-6Si | 3.51 | 3.23 | 0.38 |
NiMoS/Al-8Si | 3.67 | 3.33 | 0.35 |
表3 催化剂中MoS2片晶的平均片晶长度、堆叠层数及fMo
催化剂 | 平均长度/nm | 平均堆垛层数 | fMo |
---|---|---|---|
NiMoS/Al-0Si | 3.91 | 2.81 | 0.30 |
NiMoS/Al-2Si | 3.84 | 3.15 | 0.33 |
NiMoS/Al-4Si | 3.73 | 3.18 | 0.34 |
NiMoS/Al-6Si | 3.51 | 3.23 | 0.38 |
NiMoS/Al-8Si | 3.67 | 3.33 | 0.35 |
催化剂 | Mo4+/% | Mo5+/% | Mo6+/% | NiS x /% | NiMoS/% | NiO/% |
---|---|---|---|---|---|---|
NiMoS/Al-0Si | 47.13 | 15.44 | 37.43 | 21.70 | 38.30 | 40.00 |
NiMoS/Al-2Si | 51.02 | 15.28 | 33.70 | 16.94 | 39.31 | 43.75 |
NiMoS/Al-4Si | 54.41 | 8.77 | 36.82 | 19.72 | 47.02 | 33.26 |
NiMoS/Al-6Si | 55.43 | 13.57 | 31.00 | 16.94 | 48.97 | 34.09 |
NiMoS/Al-8Si | 53.46 | 10.98 | 35.56 | 24.87 | 45.80 | 29.33 |
表4 NiMoS/Al-xSi催化剂中Mo和Ni原子XPS分析
催化剂 | Mo4+/% | Mo5+/% | Mo6+/% | NiS x /% | NiMoS/% | NiO/% |
---|---|---|---|---|---|---|
NiMoS/Al-0Si | 47.13 | 15.44 | 37.43 | 21.70 | 38.30 | 40.00 |
NiMoS/Al-2Si | 51.02 | 15.28 | 33.70 | 16.94 | 39.31 | 43.75 |
NiMoS/Al-4Si | 54.41 | 8.77 | 36.82 | 19.72 | 47.02 | 33.26 |
NiMoS/Al-6Si | 55.43 | 13.57 | 31.00 | 16.94 | 48.97 | 34.09 |
NiMoS/Al-8Si | 53.46 | 10.98 | 35.56 | 24.87 | 45.80 | 29.33 |
催化剂 | Ea /kJ·mol-1 | EaDDS /kJ·mol-1 | EaHYD /kJ·mol-1 | KHDS /10-4mol·g-1·h-1 |
---|---|---|---|---|
NiMo/Al-0Si | 105.5 | 96.4 | 106.9 | 3.37 |
NiMo/Al-2Si | 98.5 | 92.5 | 102.2 | 3.80 |
NiMo/Al-4Si | 93.0 | 90.7 | 97.8 | 4.21 |
NiMo/Al-6Si | 91.4 | 88.8 | 93.7 | 5.25 |
NiMo/Al-8Si | 92.4 | 86.7 | 98.3 | 4.67 |
表5 催化剂活化能及反应速率常数计算汇总表
催化剂 | Ea /kJ·mol-1 | EaDDS /kJ·mol-1 | EaHYD /kJ·mol-1 | KHDS /10-4mol·g-1·h-1 |
---|---|---|---|---|
NiMo/Al-0Si | 105.5 | 96.4 | 106.9 | 3.37 |
NiMo/Al-2Si | 98.5 | 92.5 | 102.2 | 3.80 |
NiMo/Al-4Si | 93.0 | 90.7 | 97.8 | 4.21 |
NiMo/Al-6Si | 91.4 | 88.8 | 93.7 | 5.25 |
NiMo/Al-8Si | 92.4 | 86.7 | 98.3 | 4.67 |
催化剂 | DDS(BP①)/% | HYD/% | 转化率(DBT)/% | |||
---|---|---|---|---|---|---|
THDBT② | HHDBT③ | CHB④ | DCH⑤ | |||
NiMo/Al-0Si | 83.69 | 0.33 | 13.13 | 0.52 | 2.33 | 49.59 |
NiMo/Al-2Si | 89.35 | 0.14 | 7.94 | 0.42 | 2.15 | 49.63 |
NiMo/Al-4Si | 91.20 | 0.13 | 6.46 | 0.27 | 1.94 | 50.25 |
NiMo/Al-6Si | 92.07 | 0.20 | 5.74 | 0.09 | 1.90 | 50.00 |
NiMo/Al-8Si | 92.89 | 0.13 | 4.75 | 0.28 | 1.95 | 49.70 |
表6 不同催化剂的加氢脱硫产物对比表
催化剂 | DDS(BP①)/% | HYD/% | 转化率(DBT)/% | |||
---|---|---|---|---|---|---|
THDBT② | HHDBT③ | CHB④ | DCH⑤ | |||
NiMo/Al-0Si | 83.69 | 0.33 | 13.13 | 0.52 | 2.33 | 49.59 |
NiMo/Al-2Si | 89.35 | 0.14 | 7.94 | 0.42 | 2.15 | 49.63 |
NiMo/Al-4Si | 91.20 | 0.13 | 6.46 | 0.27 | 1.94 | 50.25 |
NiMo/Al-6Si | 92.07 | 0.20 | 5.74 | 0.09 | 1.90 | 50.00 |
NiMo/Al-8Si | 92.89 | 0.13 | 4.75 | 0.28 | 1.95 | 49.70 |
1 | WANG H Y, LIU S D, SMITH K J. Understanding selectivity changes during hydrodesulfurization of dibenzothiophene on Mo2C/carbon catalysts[J]. Journal of Catalysis, 2019, 369: 427-439. |
2 | ZHOU W W, WEI Q, ZHOU Y S, et al. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo sulfide catalysts supported on meso-microporous Y zeolite with different mesopore sizes[J]. Applied Catalysis B: Environmental, 2018, 238: 212-224. |
3 | ZHOU W W, ZHOU A N, ZHANG Y T, et al. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo supported on Ga-modified Y zeolites catalysts[J]. Journal of Catalysis, 2019, 374: 345-359. |
4 | WANG X L, MEI J L, ZHAO Z, et al. Restrictive diffusion in the hydrodesulfurization over Ni-MoS2/Al2O3 with different crystal forms[J]. Industrial & Engineering Chemistry Research, 2017, 56(36): 10018-10027. |
5 | GRØNBORG S S, ŠARIĆ M, MOSES P G, et al. Atomic scale analysis of sterical effects in the adsorption of 4,6-dimethyldibenzothiophene on a CoMoS hydrotreating catalyst[J]. Journal of Catalysis, 2016, 344: 121-128. |
6 | JAF Z N, ALTARAWNEH M, MIRAN H A, et al. Hydrodesulfurization of thiophene over γ-Mo2N catalyst[J]. Molecular Catalysis, 2018, 459: 21-30. |
7 | TOPSØE H, CLAUSEN B S, CANDIA R, et al. In situ Mössbauer emission spectroscopy studies of unsupported and supported sulfided CoMo hydrodesulfurization catalysts: evidence for and nature of a CoMoS phase[J]. Journal of Catalysis, 1981, 68(2): 433-452. |
8 | YU Q, ZHANG J C, NAN J, et al. Synthesis and hydrodesulfurization performance of NiMo sulfide catalysts supported on an Al-Si mixed oxide[C]//Preceedings of the 2016 International Conference on Civil, Architecture and Environmental Engineering. Taibei, China, 2017: 404-407. |
9 | RAYO P, TORRES-MANCERA P, CENTENO G, et al. Effect of silicon incorporation method in the supports of NiMo catalysts for hydrotreating reactions[J]. Fuel, 2019, 239: 1293-1303. |
10 | ROMERO-GALARZA A, RAMíREZ J, GUTIÉRREZ-ALEJANDRE A, et al. Relevant changes in the properties of Co(Ni)Mo/Al2O3 HDS catalysts modified by small amounts of SiO2 [J]. Journal of Materials Research, 2018, 33(21): 3570-3579. |
11 | ABOUTALEB W A, NAGGER A M A EL, SAYED M A, et al. Influence of CeO2 loading on the catalytic performance of CoNiMoS/CeO2-Al2O3 toward vacuum gas oil hydrotreatment[J]. Materials Chemistry and Physics, 2022, 276: 125165. |
12 | WANG S, ZHANG J C, LIU D, et al. Deep insights into enhanced direct-desulfurization selectivity of thiourea-modified CoMoP/ γ-Al2O3: an investigation of catalyst microstructures[J]. Fuel, 2020, 267: 116993. |
13 | 张国辉, 张玉婷, 张景成, 等. 制备方法对Ni-Mo/Al2O3加氢催化剂性能的影响[J]. 化工进展, 2018, 37(11): 4315-4321. |
ZHANG Guohui, ZHANG Yuting, ZHANG Jingcheng, et al. Influence of preparation method on hydrotreating activity of Ni-Mo/Al2O3 [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4315-4321. | |
14 | 汪佩华, 秦志峰, 吴琼笑, 等. 磷添加方式对NiMo/Al2O3催化剂加氢脱硫性能的影响[J]. 化工进展, 2021, 40(2): 890-900. |
WANG Peihua, QIN Zhifeng, WU Qiongxiao, et al. Effect of phosphorus adding manners on the performance of NiMo/Al2O3 catalyst in hydrodesulfurization[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 890-900. | |
15 | ŠARIĆ M, ROSSMEISL J, MOSES P G. Modeling the adsorption of sulfur containing molecules and their hydrodesulfurization intermediates on the Co-promoted MoS2 catalyst by DFT[J]. Journal of Catalysis, 2018, 358: 131-140. |
16 | CAO Z K, ZHANG X, GUO R, et al. Synergistic effect of acidity and active phases for NiMo catalysts on dibenzothiophene hydrodesulfurization performance[J]. Chemical Engineering Journal, 2020, 400: 125886. |
17 | LIU B, LIU L, WANG Z, et al. Effect of hydrogen spillover in selective hydrodesulfurization of FCC gasoline over the CoMo catalyst[J]. Catalysis Today, 2017, 282: 214-221. |
18 | HENKER M, WENDLANDT K P, VALYON J, et al. Structure of MoO3/Al2O3-SiO2 catalysts[J]. Applied Catalysis, 1991, 69(1): 205-220. |
19 | ARNOLDY P, JONGE J D, MOULIJN J. Temperature-programed reduction of molybdenum (Ⅵ) oxide and molybdenum (Ⅳ) oxide[J]. The Journal of Physical Chemistry, 1985, 89(21): 4517-4526. |
20 | 岳凡, 李蒙, 杨祝红, 等. 介孔TiO2晶须-γ-Al2O3复合载体催化剂的制备及对二苯并噻吩的加氢脱硫性能[J]. 石油学报(石油加工), 2020, 36(4): 667-676. |
YUE Fan, LI Meng, YANG Zhuhong, et al. Preparation of mesoporous TiO2 whisker-γ-Al2O3 composite supported catalyst and its catalytic performance in dibenzothiophene hydrodesulfurization[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(4): 667-676. | |
21 | RAJAGOPAL S, MARINI H, MARZARI J, et al. Silica-alumina-supported acidic molybdenum catalysts-TPR and XRD characterization[J]. Journal of Catalysis, 1994, 147(2): 417-428. |
22 | XU J, HUANG T, FAN Y. Highly efficient NiMo/SiO2-Al2O3 hydrodesulfurization catalyst prepared from gemini surfactant-dispersed Mo precursor[J]. Applied Catalysis B: Environmental, 2017, 203: 839-850. |
23 | HAO L, XIONG G, LIU L P, et al. Preparation of highly dispersed desulfurization catalysts and their catalytic performance in hydrodesulfurization of dibenzothiophene[J]. Chinese Journal of Catalysis, 2016, 37(3): 412-419. |
24 | GLOTOV A P, VUTOLKINA A V, VINOGRADOV N A, et al. Enhanced HDS and HYD activity of sulfide Co-PMo catalyst supported on alumina and structured mesoporous silica composite[J]. Catalysis Today, 2021, 377: 82-91. |
25 | HARRIS S, CHINANELLI R R. Catalysis by transition metal sulfides: the relation between calculated electronic trends and HDS activity[J]. Journal of Catalysis, 1984, 86(2): 400-412. |
26 | SÁNCHEZ-MINERO F, RAMÍIREZ J, NCHEZ-MINERO F, et al. Analysis of the HDS of 4,6-DMDBT in the presence of naphthalene and carbazole over NiMo/Al2O3-SiO2(x) catalysts[J]. Catalysis Today, 2008, 133: 267-276. |
27 | PRINS R, EGOROVA M, RÖTHLISBERGER A, et al. Mechanisms of hydrodesulfurization and hydrodenitrogenation[J]. Catalysis Today, 2006, 111(1-2): 84-93. |
28 | 赵瑞玉, 曹东炜, 曾令有, 等. 助剂Ni与载体的相互作用及其对NiMo/γ-Al2O3催化剂加氢脱硫性能的影响[J]. 燃料化学学报, 2016, 44(5): 564-569. |
ZHAO Ruiyu, CAO Dongwei, ZENG Lingyou, et al. Interaction between Ni promoter and Al2O3 support and its effect on the performance of NiMo/γ-Al2O3 catalyst in hydrodesulphurization[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 564-569. | |
29 | LÓPEZ-BENÍTEZ A, BERHAULT G, GUEVARA-LARA.A. Addition of manganese to alumina and its influence on the formation of supported NiMo catalysts for dibenzothiophene hydrodesulfurization application[J]. Journal of Catalysis, 2016, 344: 59-76. |
30 | LEBEAU B, BONNE M, COMPAROT J D, et al. HDS of 4,6-dimethyldibenzothiophene over CoMoS supported mesoporous SiO2-TiO2 materials[J]. Catalysis Today, 2020: 675-683. |
31 | 李翔, 王安杰, 柳广厦, 等. 芳香杂环含硫化合物C—S键断裂方式[J]. 石油学报(石油加工), 2017, 33(6): 1039-1052. |
LI Xiang, WANG Anjie, LIU Guangxia, et al. Mechanisms of the cleavage of C—S Bonds in polyaromatic sulfur-containing compounds[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(6): 1039-1052. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 王尚彬, 欧红香, 薛洪来, 曹海珍, 王钧奇, 毕海普. 黄原胶和纳米二氧化硅对无氟泡沫性能的影响[J]. 化工进展, 2023, 42(9): 4856-4862. |
[13] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |