化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5599-5611.DOI: 10.16085/j.issn.1000-6613.2021-2422
万欢爱1,2(), 邵礼书1,2(), 刘娜1,2, 毛莉1, 张林1,2, 詹鹏1,2, 陈介南1,2
收稿日期:
2021-11-25
修回日期:
2022-05-31
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
邵礼书
作者简介:
万欢爱(1997—),女,硕士研究生,研究方向为生物质能源与材料。E-mail:wanhuanai921@163.com。
基金资助:
WAN Huan’ai1,2(), SHAO Lishu1,2(), LIU Na1,2, MAO Li1, ZHANG Lin1,2, ZHAN Peng1,2, CHEN Jienan1,2
Received:
2021-11-25
Revised:
2022-05-31
Online:
2022-10-20
Published:
2022-10-21
Contact:
SHAO Lishu
摘要:
开发高效、低成本的放射性碘捕获材料对核能的安全利用和核废料处理具有重要意义。本文针对目前碘捕获材料吸附容量低、成本高等问题,以含有羟基、羧基等活性位点的木质素为基础原料,N,N-亚甲基双丙烯酰胺(MBA)为氮源,对氯甲基苯乙烯(VBC)为功能单体,通过自由基聚合接枝与Friedel-Crafts烷基化两步反应,原位构筑一系列氮修饰木质素基超交联聚合物(NLHCPs),其比表面积最高可达715.8m2/g,且有较高的氮含量(3.95%~4.48%,原子分数)。分别研究了NLHCPs对碘蒸气和碘正己烷溶液的吸附性能,结果表明NLHCP-2的碘蒸气吸附容量最高,可达2.5g/g,吸附作用主要为化学吸附,碘分子在聚合物表面转变成聚碘阴离子的形式。而其对正己烷中碘的吸附等温线更符合Freundlich模型,吸附最大平衡容量可达230.8mg/g,动力学拟合表明其吸附速率主要受扩散过程控制。吸附碘蒸气后的材料,在乙醇中可快速脱附,具有良好循环使用性能。
中图分类号:
万欢爱, 邵礼书, 刘娜, 毛莉, 张林, 詹鹏, 陈介南. 氮修饰木质素基超交联聚合物的制备及其放射性碘捕获[J]. 化工进展, 2022, 41(10): 5599-5611.
WAN Huan’ai, SHAO Lishu, LIU Na, MAO Li, ZHANG Lin, ZHAN Peng, CHEN Jienan. Preparation of nitrogen modified lignin-based hyper-cross-linked polymers and their radioactive iodine capture[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5599-5611.
材料 | 比表面积 /m2·g-1 | 孔体积 /cm3·g-1 | 平均孔径 /nm | 微孔孔容 /cm3·g-1 | 介孔孔容 /cm3·g-1 | 微孔比表面积 /m2·g-1 | 介孔比表面积 /m2·g-1 | 元素原子分数/% | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | N | Cl | I | ||||||||
NLHCP-1 | 715.8 | 0.85 | 4.7 | 0.18 | 0.16 | 367.3 | 39.3 | 86.2 | 7.5 | 4.0 | 1.5 | — |
NLHCP-2 | 364.4 | 0.24 | 2.6 | 0.11 | 0.07 | 245.7 | 27.3 | 70.2 | 23.7 | 4.5 | 1.1 | — |
NLHCP-3 | 190.4 | 0.36 | 7.6 | 0.04 | 0.22 | 58.8 | 45.1 | 80.4 | 13.6 | 4.1 | 0.8 | — |
NLHCP-2@I2 | — | — | — | — | — | — | — | 72.0 | 16.5 | 4.8 | 1.2 | 4.2 |
表1 氮修饰木质素基超高交联聚合物的孔参数和元素含量
材料 | 比表面积 /m2·g-1 | 孔体积 /cm3·g-1 | 平均孔径 /nm | 微孔孔容 /cm3·g-1 | 介孔孔容 /cm3·g-1 | 微孔比表面积 /m2·g-1 | 介孔比表面积 /m2·g-1 | 元素原子分数/% | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | N | Cl | I | ||||||||
NLHCP-1 | 715.8 | 0.85 | 4.7 | 0.18 | 0.16 | 367.3 | 39.3 | 86.2 | 7.5 | 4.0 | 1.5 | — |
NLHCP-2 | 364.4 | 0.24 | 2.6 | 0.11 | 0.07 | 245.7 | 27.3 | 70.2 | 23.7 | 4.5 | 1.1 | — |
NLHCP-3 | 190.4 | 0.36 | 7.6 | 0.04 | 0.22 | 58.8 | 45.1 | 80.4 | 13.6 | 4.1 | 0.8 | — |
NLHCP-2@I2 | — | — | — | — | — | — | — | 72.0 | 16.5 | 4.8 | 1.2 | 4.2 |
序号 | 吸附剂 | 比表面积/m2·g-1 | 温度/K | 吸附量/g·g-1 | 文献 |
---|---|---|---|---|---|
1 | 共轭微孔聚合纳米管(CMPN-1-3) | 1368 | 343 | 2.08 | [ |
2 | 含噻吩基团的共轭微孔聚合物 | 120 | 353 | 3.45 | [ |
3 | 异孔COF空心微球(SIOC-COF-7) | 618 | 348 | 4.81 | [ |
4 | 有机聚合物(pha-HcoP-1) | 217 | 353 | 1.31 | [ |
5 | 有机多孔聚合物(NDB-H) | 117 | 353 | 4.43 | [ |
6 | 多孔芳香骨架材料 (PAF-21 /22) | 104 | 353 | 1.52 | [ |
7 | 共价三嗪聚合物(CTFs) | 1476/897/62 | 348 | 4.31/2.41/1.18 | [ |
8 | 巴比妥酸基吸附剂(UiO-66-NH2) | 406/317 | 353 | 1.17/1.33 | [ |
9 | 木质素基聚合物(NLHCP-2) | 444 | 351 | 2.50 | 本文研究 |
表2 与其他吸附材料的碘蒸气吸附性能比较
序号 | 吸附剂 | 比表面积/m2·g-1 | 温度/K | 吸附量/g·g-1 | 文献 |
---|---|---|---|---|---|
1 | 共轭微孔聚合纳米管(CMPN-1-3) | 1368 | 343 | 2.08 | [ |
2 | 含噻吩基团的共轭微孔聚合物 | 120 | 353 | 3.45 | [ |
3 | 异孔COF空心微球(SIOC-COF-7) | 618 | 348 | 4.81 | [ |
4 | 有机聚合物(pha-HcoP-1) | 217 | 353 | 1.31 | [ |
5 | 有机多孔聚合物(NDB-H) | 117 | 353 | 4.43 | [ |
6 | 多孔芳香骨架材料 (PAF-21 /22) | 104 | 353 | 1.52 | [ |
7 | 共价三嗪聚合物(CTFs) | 1476/897/62 | 348 | 4.31/2.41/1.18 | [ |
8 | 巴比妥酸基吸附剂(UiO-66-NH2) | 406/317 | 353 | 1.17/1.33 | [ |
9 | 木质素基聚合物(NLHCP-2) | 444 | 351 | 2.50 | 本文研究 |
材料 | 准一级动力学 | 准二级动力学 | |||||
---|---|---|---|---|---|---|---|
Qe | K1 | R2 | Qe | K2 | R2 | ||
NLHCP-1 | 167.3 | 5.5×10-3 | 0.9754 | 214.5 | 2.4×10-5 | 0.9817 | |
NLHCP-2 | 189.2 | 2.3×10-2 | 0.9882 | 216.3 | 1.2×10-4 | 0.9548 | |
NLHCP-3 | 175.4 | 1.7×10-2 | 0.9733 | 202.2 | 1.0×10-4 | 0.9512 |
表3 动力学拟合相关参数
材料 | 准一级动力学 | 准二级动力学 | |||||
---|---|---|---|---|---|---|---|
Qe | K1 | R2 | Qe | K2 | R2 | ||
NLHCP-1 | 167.3 | 5.5×10-3 | 0.9754 | 214.5 | 2.4×10-5 | 0.9817 | |
NLHCP-2 | 189.2 | 2.3×10-2 | 0.9882 | 216.3 | 1.2×10-4 | 0.9548 | |
NLHCP-3 | 175.4 | 1.7×10-2 | 0.9733 | 202.2 | 1.0×10-4 | 0.9512 |
材料 | Langmuir模型 | Freundlich模型 | |||||
---|---|---|---|---|---|---|---|
Qm | Ka | R2 | 1/n | Kf | R2 | ||
NLHCP-1 | 186.8 | 6.3×10-3 | 0.9942 | 0.48 | 7.95 | 0.9918 | |
NLHCP-2 | 230.8 | 1.1×10-2 | 0.9652 | 0.43 | 16.23 | 0.9991 | |
NLHCP-3 | 228.2 | 4.5×10-3 | 0.9819 | 0.57 | 5.16 | 0.9423 |
表4 吸附等温线拟合相关参数
材料 | Langmuir模型 | Freundlich模型 | |||||
---|---|---|---|---|---|---|---|
Qm | Ka | R2 | 1/n | Kf | R2 | ||
NLHCP-1 | 186.8 | 6.3×10-3 | 0.9942 | 0.48 | 7.95 | 0.9918 | |
NLHCP-2 | 230.8 | 1.1×10-2 | 0.9652 | 0.43 | 16.23 | 0.9991 | |
NLHCP-3 | 228.2 | 4.5×10-3 | 0.9819 | 0.57 | 5.16 | 0.9423 |
1 | BURNS P C, EWING R C, NAVROTSKY A. Nuclear fuel in a reactor accident[J]. Science, 2012, 335(6073): 1184-1188. |
2 | BANERJEE D, CHEN Xianyin, LOBANOV S S, et al. Iodine adsorption in metal organic frameworks in the presence of humidity[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 10622-10626. |
3 | ABDELMOATY Y H, TESSEMA T D, CHOUDHURY F A, et al. Nitrogen-rich porous polymers for carbon dioxide and iodine sequestration for environmental remediation[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 16049-16058. |
4 | 玮达, 张晓媛, 顾平, 等. 吸附法处理水体中放射性碘核素研究进展[J]. 水处理技术, 2017, 43(9): 6-12. |
BOUNSOU Pankeo, ZHANG Xiaoyuan, GU Ping, et al. Research progress of radioactive iodine treatment by adsorption method from water[J]. Technology of Water Treatment, 2017, 43(9): 6-12. | |
5 | 邓景衡, 余侃萍, 肖国光, 等. 吸附法处理重金属废水研究进展[J]. 工业水处理, 2014, 34(11): 4-7. |
DENG Jingheng, YU KanPing, XIAO Guoguang, et al. Research progress in the treatment of heavy metal wastewater by adsorption[J]. Industrial Water Treatment, 2014, 34(11): 4-7. | |
6 | CHOUNG S, UM W, KIM M, et al. Uptake mechanism for iodine species to black carbon[J]. Environmental Science & Technology, 2013, 47(18): 10349-10355. |
7 | 龙英才, 张玲妹, 杨波, 等. 一种高载银量沸石脱碘吸附剂及其制备方法: CN1486784A[P]. 2004-04-07. |
LONG Yingcai, ZHANG Linmei, YANG Bo, et al. Zeolite deiodination adsorbent with high silver carrying amount and its prepn process: CN1486784A[P]. 2004-04-07. | |
8 | LIANG Lü, LI Luo. Adsorption behavior of calcined layered double hydroxides towards removal of iodide contaminants[J]. Journal of Radioanalytical and Nuclear Chemistry, 2007, 273(1): 221-226. |
9 | 熊伟, 曹骐, 王海军, 等. 载银丝光沸石和载银氧化铝对气态碘的吸附研究[J]. 核动力工程, 2019, 40(1): 131-134. |
XIONG Wei, CAO Qi, WANG Haijun, et al. Study on dynamic adsorption of gaseous iodine by silver loaded mordenite and alumina[J]. Nuclear Power Engineering, 2019, 40(1): 131-134. | |
10 | 梁飞, 李永国, 张计荣, 等. 核燃料后处理厂溶解废气中放射性碘吸附材料的研究与应用[J]. 中国辐射卫生, 2015, 24(4): 423-426. |
LIANG Fei, LI Yongguo, ZHANG Jirong, et al. Research and application of adsorbents for removing radioiodine from dissolver off-gas in nuclear fuel reprocessing plant[J]. Chinese Journal of Radiological Health, 2015, 24(4): 423-426. | |
11 | MAO Ping, QI Bingbing, LIU Ying, et al. AgII doped MIL-101 and its adsorption of iodine with high speed in solution[J]. Journal of Solid State Chemistry, 2016, 237:274-283. |
12 | 王玲钰, 包良进. 放射性尾气中碘的净化处理研究进展[J]. 韩山师范学院学报, 2020, 41(6): 23-38. |
WANG Lingyu, BAO Liangjin. Research progress on iodine removal from radioactive off-gases[J]. Journal of Hanshan Normal University, 2020, 41(6): 23-38. | |
13 | WAHEED A, BAIG N, ULLAH N, et al. Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: a review of recent advances[J]. Journal of Environmental Management, 2021, 287: 112360. |
14 | XU Shujun, LUO Yali, TAN Bi’en. Recent development of hyper-cross-linked microporous organic polymers[J]. Macromolecular Rapid Communications, 2013, 34(6): 471-484. |
15 | TAN Liangxiao, TAN Bi’en. Hypercrosslinked porous polymer materials: design, synthesis, and applications[J]. Chemical Society Reviews, 2017, 46(11): 3322-3356. |
16 | 殷怡琳, 邸明伟. 木质素/聚烯烃复合材料界面增容的研究进展[J]. 化工进展, 2020, 39(8): 3135-3145. |
YIN Yilin, DI Mingwei. Research progress on the interfacial compatibilizing of lignin/polyolefin composites[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3135-3145. | |
17 | 孙蒙崖, 刘娜, 傅英娟. 木质素在材料中的应用研究进展[J]. 现代化工, 2019, 39(2): 31-35. |
SUN Mingya, LIU Na, FU Yingjuan. Research progress in application of lignin in materials[J]. Modern Chemical Industry, 2019, 39(2): 31-35. | |
18 | 田静, 杨益琴, 宋君龙. 木质素的化学改性及其在高分子材料中的应用[J]. 纤维素科学与技术, 2018, 26(4): 76-85. |
TIAN Jing, YANG Yiqing, SONG Junlong. Current advances in chemical modification of lignin and its application in composite materials[J]. Journal of Cellulose Science and Technology, 2018, 26(4): 76-85. | |
19 | JIANG Chenglong, WANG Xiaohong, QIN Deming, et al. Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes[J]. Journal of Hazardous Materials, 2019, 369: 50-61. |
20 | WANG Anqi, ZHENG Zhikeng, LI Ruiqi, et al. Biomass-derived porous carbon highly efficient for removal of Pb(Ⅱ) and Cd(Ⅱ)[J]. Green Energy & Environment, 2019, 4(4): 414-423. |
21 | WANG Shichao, BAI Jixing, INNOCENT M T, et al. Lignin-based carbon fibers: formation, modification and potential applications[J]. Green Energy & Environment, 2022, 7(4): 578-605. |
22 | MA Yanli, LING Lü, GUO Yuanru, et al. Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: swelling behaviors and rapid removal of Pb(Ⅱ) ions[J]. Polymer, 2017, 128: 12-23. |
23 | ZHOU Yan, ZHANG Jianping, LUO Xuegang, et al. Adsorption of Hg(Ⅱ) in aqueous solutions using mercapto-functionalized alkali lignin[J]. Journal of Applied Polymer Science, 2014, 131(18). |
24 | LI Zhili, XIAO Duo, GE Yuanyuan, et al. Surface-functionalized porous lignin for fast and efficient lead removal from aqueous solution[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 15000-15009. |
25 | MENG Qingbo, WEBER J. Lignin-based microporous materials as selective adsorbents for carbon dioxide separation[J]. ChemSusChem, 2014, 7(12): 3312-3318. |
26 | ZHU Dailian, QIN Cunqi, AO Shanshi, et al. Hypercrosslinked functionalized lignosulfonates prepared via Friedel-Crafts alkylation reaction for enhancing Pb(Ⅱ) removal from aqueous[J]. Separation Science and Technology, 2019, 54(17): 2830-2839. |
27 | SAFFAR T, BOUAFIF H, BRAGHIROLI F L, et al. Production of bio-based polyol from oxypropylated pyrolytic lignin for rigid polyurethane foam application[J]. Waste and Biomass Valorization, 2020, 11(11): 6411-6427. |
28 | HUANG Mei, LUO Jia, FANG Zhen, et al. Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub- and super-critical ethanol[J]. Applied Catalysis B: Environmental, 2016, 190: 103-114. |
29 | KUANG Wei, LIU Younian, HUANG Jianhan. Phenol-modified hyper-cross-linked resins with almost all micro/mesopores and their adsorption to aniline[J]. Journal of Colloid and Interface Science, 2017, 487: 31-37. |
30 | SHAO Lishu, HUANG Jiehan. Controllable synthesis of N-vinylimidazole-modified hyper-cross-linked resins and their efficient adsorption of p-nitrophenol and o-nitrophenol[J]. Journal of Colloid and Interface Science, 2017, 507: 42-50. |
31 | THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
32 | LIU Na, CHEN Jienan, WU Zhiping, et al. Construction of microporous lignin-based hypercross-linked polymers with high surface areas for enhanced iodine capture[J]. ACS Applied Polymer Materials 2021, 3(4): 2178-2188. |
33 | CHEN Yingfan, SUN Hanxue, YANG Ruixia. Synthesis of conjugated microporous polymer nano-tubes with large surface areas as absorbents for iodine and CO2 uptake[J]. Journal of Materials Chemistry A, 2015, 3(1): 87-91. |
34 | REN Feng, ZHU Zhaoqi, QING Xin, et al. Novel thiophene-bearing conjugated microporous polymer honeycomb-like porous spheres with ultrahigh iodine uptake[J]. Chemical Communications, 2016, 52(63): 9797-9800. |
35 | YIN Zhijian, XU Shunqi, ZHAN Tianguang, et al. Ultrahigh volatile iodine uptake by hollow microspheres formed from a heteropore covalent organic framework[J]. Chemical Communications, 2017, 53(53): 7266-7269. |
36 | LIN Lin, GUAN Heda, ZOU Donglei, et al. A pharmaceutical hydrogen-bonded covalent organic polymer for enrichment of volatile iodine[J]. RSC Advances, 2017, 7(86): 54407-54415. |
37 | GUO Zongxia, SUN Panli, ZHANG Xiao, et al. Amorphous porous organic polymers based on Schiff-base chemistry for highly efficient iodine capture[J]. Chemistry—An Asian Journal, 2018, 13(16): 2046-2053. |
38 | 闫卓君, 元野, 刘佳, 等. 定向合成带电荷多孔芳香骨架材料用于碘单质的捕获和释放[J]. 化学学报, 2016, 74(1): 67-73. |
YAN Zhuojun, YUAN Ye, LIU Jia, et al. Targeted syntheses of charged porous aromatic frameworks for iodine enrichment and release[J]. Acta Chimica Sinica, 2016, 74(1):67-73. | |
39 | HE Xunming, ZHANG Suyun, TANG Xiang, et al. Exploration of 1D channels in stable and high-surface-area covalent triazine polymers for effective iodine removal[J]. Chemical Engineering Journal, 2019, 371:314-318. |
40 | ZAHID M, ZHANG Dongxiang, XU Xiyan, et al. Barbituric and thiobarbituric acid-based UiO-66-NH2 adsorbents for iodine gas capture: Characterization, efficiency and mechanisms[J]. Journal of Hazardous Materials, 2021, 416: 125835. |
41 | ANSARI M, HASSAN A, ALAM A, et al. A mesoporous polymer bearing 3D-Triptycene, -OH and azo- functionalities: Reversible and efficient capture of carbon dioxide and iodine vapor[J]. Microporous and Mesoporous Materials, 2021, 323: 111242. |
42 | HASSAN A, ALAM A, ANSARI M, et al. Hydroxy functionalized triptycene based covalent organic polymers for ultra-high radioactive iodine uptake[J]. Chemical Engineering Journal, 2022, 427: 130950. |
43 | XIE Wei, CUI Di, Zhang Shuran, et al. Iodine capture in porous organic polymers and metal-organic frameworks materials[J]. Materials Horizons, 2019, 6: 1571-1595. |
44 | XIONG Shaohui, TANG Xiang, PAN Chunyue, et al. Carbazole-bearing porous organic polymers with a mulberry-like morphology for efficient iodine capture[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27335-27342. |
45 | YU Mengtian, GUO Yanzhu, WANG Xing, et al. Lignin-based electrospinning nanofibers for reversible iodine capture and potential applications[J]. International Journal of Biological Macromolecules, 2022, 208: 782-793. |
46 | CHANGANI Z, RAZMJOU A, TAHERI-KAFRANI A, et al. Surface modification of polypropylene membrane for the removal of iodine using polydopamine chemistry[J]. Chemosphere, 2020, 249: 126079. |
47 | LI Xuemei, PENG Yu, JIA Qiong. Construction of hypercrosslinked polymers with dual nitrogen-enriched building blocks for efficient iodine capture[J]. Separation and Purification Technology, 2020, 236: 116260. |
[1] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[5] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[6] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[7] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[8] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[9] | 张雪伟, 黄亚继, 许月阳, 程好强, 朱志成, 李金壘, 丁雪宇, 王圣, 张荣初. 碱性吸附剂对燃煤烟气中SO3的吸附特性[J]. 化工进展, 2023, 42(7): 3855-3864. |
[10] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[11] | 余希希, 张金帅, 雷文, 刘承果. 基于动态共价键自修复的光固化高分子材料研究进展[J]. 化工进展, 2023, 42(7): 3589-3599. |
[12] | 任建鹏, 吴彩文, 刘慧君, 吴文娟. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087-3096. |
[13] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[14] | 杨发容, 顾丽莉, 刘洋, 李伟雪, 蔡洁云, 王惠平. 计算机模拟辅助特丁津分子印迹聚合物的制备及应用[J]. 化工进展, 2023, 42(6): 3157-3166. |
[15] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |