化工进展 ›› 2022, Vol. 41 ›› Issue (9): 4937-4945.DOI: 10.16085/j.issn.1000-6613.2021-2364
收稿日期:
2021-11-18
修回日期:
2022-01-10
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
侯雪丹
作者简介:
蒲福龙(1996—),男,硕士研究生,研究方向为生物质转化。E-mail:2111906059@mail2.gdut.edu.cn。
基金资助:
PU Fulong(), WU Shangwei, ZHENG Yingling, ZHENG Yuyi, HOU Xuedan(
)
Received:
2021-11-18
Revised:
2022-01-10
Online:
2022-09-25
Published:
2022-09-27
Contact:
HOU Xuedan
摘要:
基于乳酸的深度共熔溶剂(DES)在脱木素和木质纤维素转化方面显示出巨大潜力。本文以乳酸为氢键供体(HBD),氯化胆碱、盐酸胍、精氨酸、甜菜碱盐酸盐为氢键受体(HBA)合成了4种DES,并分别提取了木质素,对比研究了4种木质素对微晶纤维素酶水解效率的影响。结果表明,4种DES提取木质素的疏水性与其对酶蛋白吸附能力线性正相关,而两者与木质素与酶水解效率呈线性负相关性。非特异性吸附是该类木质素抑制纤维素酶水解效率最重要的因素,而疏水性作用则是引起酶蛋白吸附的主要原因。结构分析表明木质素的脂肪族羟基和酚羟基主导的氢键相互作用是促进酶蛋白吸附、降低酶水解效率的原因之一。此外,由羧基产生的静电斥力对纤维素酶水解效率的影响较弱。随着DES提取木质素能力的增强,木质素的羟基和羧基含量逐渐增高,其对纤维素酶的抑制作用增大。氯化胆碱-乳酸因其优良的木质素提取和生物质解构能力,提取的木质素对酶的抑制作用最强,其次是乳酸-盐酸胍和乳酸-甜菜碱盐酸盐,最后是乳酸-精氨酸。
中图分类号:
蒲福龙, 伍尚炜, 郑映玲, 郑玉意, 侯雪丹. 基于乳酸的深度共熔溶剂提取秸秆木质素对纤维素酶水解效率的影响[J]. 化工进展, 2022, 41(9): 4937-4945.
PU Fulong, WU Shangwei, ZHENG Yingling, ZHENG Yuyi, HOU Xuedan. Effect of lignin extracted by lactic acid-based deep eutectic solvent from rice straw on cellulase hydrolysis efficiency[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4937-4945.
样品 | Гmax/mg∙g-1 | K/mL∙mg-1 | R/L∙g-1 |
---|---|---|---|
L-LC | 46.35 | 3.39 | 0.157 |
L-LGH | 29.81 | 5.57 | 0.166 |
L-LArg | 4.52 | 5.69 | 0.026 |
L-LBH | 25.79 | 2.47 | 0.064 |
表1 Langmuir吸附等温线参数
样品 | Гmax/mg∙g-1 | K/mL∙mg-1 | R/L∙g-1 |
---|---|---|---|
L-LC | 46.35 | 3.39 | 0.157 |
L-LGH | 29.81 | 5.57 | 0.166 |
L-LArg | 4.52 | 5.69 | 0.026 |
L-LBH | 25.79 | 2.47 | 0.064 |
样品 | 疏水性/L∙g-1 | R2 |
---|---|---|
L-LC | 0.0153 | 0.9874 |
L-LGH | 0.0112 | 0.9856 |
L-LArg | 0.0332 | 0.9874 |
L-LBH | 0.0103 | 0.9262 |
表2 木质素疏水性数据
样品 | 疏水性/L∙g-1 | R2 |
---|---|---|
L-LC | 0.0153 | 0.9874 |
L-LGH | 0.0112 | 0.9856 |
L-LArg | 0.0332 | 0.9874 |
L-LBH | 0.0103 | 0.9262 |
图6 木质素的HSQC图谱methoxy—甲氧基结构;A(Aα、Aγ)—β-O-4醚键结构;B(Bβ)—树脂醇结构;C(Cγ)—苯基香豆素结构;Ara(Ara(2,3,4)、Ara5)—阿拉伯糖结构;Xyl(Xyl4)—木糖结构;G(G2、G5、G6)—愈创木基结构;S(S2,6、S2,6cond’)—紫丁香结构;H(H2,6)—对羟苯基结构;PCA(PCAβ、PCA2,6)—愈创木基结构;FA(FAβ)—阿魏酸结构
1 | HUANG Caoxing, LIN Wenqian, LAI Chenhuan, et al. Coupling the post-extraction process to remove residual lignin and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues[J]. Bioresource Technology, 2019, 285: 121355. |
2 | 曹运齐, 解先利, 郭振强, 等. 木质纤维素预处理技术研究进展[J]. 化工进展, 2020, 39(2): 489-495. |
CAO Yunqi, XIE Xianli, GUO Zhenqiang, et al. Research progress on lignocellulose pretreatment technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 489-495. | |
3 | VERMAAS J V, PETRIDIS L, QI X H et al. Mechanism of lignin inhibition of enzymatic biomass deconstruction[J]. Biotechnology for Biofuels, 2015, 8: 217. |
4 | RAHIKAINEN J, MIKANDER S, MARJAMAA K, et al. Inhibition of enzymatic hydrolysis by residual lignins from softwood—study of enzyme binding and inactivation on lignin-rich surface[J]. Biotechnology and Bioengineering, 2011, 108(12): 2823-2834. |
5 | 金永灿, 陈慧, 吴文娟, 等. 水溶性木质素对纤维原料酶水解的影响研究进展[J]. 林业工程学报, 2020, 5(4): 12-19. |
JIN Yongcan, CHEN Hui, WU Wenjuan, et al. Investigations of the effect of water-soluble lignin on enzymatic hydrolysis of lignocellulose[J]. Journal of Forestry Engineering, 2020, 5(4): 12-19. | |
6 | NAKAGAME S, CHANDRA R P, KADLA J F, et al. The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose[J]. Bioresource Technology, 2011, 102(6): 4507-4517. |
7 | YOO C G, LI M, MENG X Z, et al. Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis[J]. Green Chemistry, 2017, 19(8): 2006-2016. |
8 | PAN Xuejun. Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose[J]. Journal of Biobased Materials and Bioenergy, 2008, 2(1): 25-32. |
9 | SEWALT V J H, GLASSER W G, BEAUCHEMIN K A. Lignin impact on fiber degradation. 3. Reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and by additives[J]. Journal of Agricultural and Food Chemistry, 1997, 45(5): 1823-1828. |
10 | GUO Fenfen, SHI Wenjing, SUN Wan, et al. Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism[J]. Biotechnology for Biofuels, 2014, 7(1): 38. |
11 | YU Z Y, GWAK K S, TREASURE T, et al. Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass[J]. ChemSusChem, 2014, 7(7): 1942-1950. |
12 | ALCANFOR A A C, DOS SANTOS L P M, DIAS D F, et al. Electrodeposition of indium on copper from deep eutectic solvents based on choline chloride and ethylene glycol[J]. Electrochimica Acta, 2017, 235: 553-560. |
13 | KRYSTOF M, PÉREZ-SÁNCHEZ M, DOMÍNGUEZ DE MARÍA P. Lipase-catalyzed (trans)esterification of 5-hydroxy- methylfurfural and separation from HMF esters using deep-eutectic solvents[J]. ChemSusChem, 2013, 6(4): 630-634. |
14 | LOOW Y L, NEW E K, YANG G H, et al. Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion[J]. Cellulose, 2017, 24(9): 3591-3618. |
15 | LYNAM J G, KUMAR N, WONG M J. Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density[J]. Bioresource Technology, 2017, 238: 684-689. |
16 | 司马国宝, 王帅, 崔莹, 等. 低共熔溶剂对木质纤维素分离及木质素提取的研究进展[J]. 现代化工, 2019, 39(9): 26-30. |
SIMA Guobao, WANG Shuai, CUI Ying, et al. Research progress in lignocellulose separation and lignin extraction by deep eutectic solvents[J]. Modern Chemical Industry, 2019, 39(9): 26-30. | |
17 | 李鹏辉, 任建鹏, 吴文娟. 木质素在低共熔溶剂中降解的研究进展[J]. 中国造纸, 2022, 41(1): 78-85. |
LI Penghui, REN Jianpeng, WU Wenjuan. Research progress of lignin degradation in deep eutectic solvents[J]. China Pulp & Paper, 2022, 41(1): 78-85. | |
18 | FRANCISCO M, VAN DEN BRUINHORST A, KROON M C. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing[J]. Green Chemistry, 2012, 14(8): 2153. |
19 | BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254. |
20 | HUANG Caoxing, HE Juan, MIN Douyong, et al. Understanding the nonproductive enzyme adsorption and physicochemical properties of residual lignins in moso bamboo pretreated with sulfuric acid and kraft pulping[J]. Applied Biochemistry and Biotechnology, 2016, 180(8): 1508-1523. |
21 | MÜLLER R H, RÜHL D, LÜCK M, et al. Influence of fluorescent labelling of polystyrene particles on phagocytic uptake, surface hydrophobicity, and plasma protein adsorption[J]. Pharmaceutical Research, 1997, 14(1): 18-24. |
22 | ZAWADZKI M, RAGAUSKAS A. N-hydroxy compounds as new internal standards for the ~31P-NMR determination of lignin hydroxy functional groups[J]. Holzforschung, 2001, 55(3): 283-285. |
23 | WEN Jialong, SUN Shaolong, YUAN Tongqi, et al. Understanding the chemical and structural transformations of lignin macromolecule during torrefaction[J]. Applied Energy, 2014, 121: 1-9. |
24 | 冯国坚. 胆碱类溶剂作用于生物质的结构与功能关系及分子机制[D]. 广州: 广东工业大学, 2021. |
FENG Guojian. The structure-function relationships and molecular mechanism of choline-based solvents on biomass fractionation[D]. Guangzhou: Guangdong University of Technology, 2021. | |
25 | ALVAREZ-VASCO C, MA R S, QUINTERO M, et al. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization[J]. Green Chemistry, 2016, 18(19): 5133-5141. |
26 | COSTA LOPES A M DA, GOMES J R B, COUTINHO J A P, et al. Novel insights into biomass delignification with acidic deep eutectic solvents: a mechanistic study of β-O-4 ether bond cleavage and the role of the halide counterion in the catalytic performance[J]. Green Chemistry, 2020, 22(8): 2474-2487. |
27 | ZHONG Lei, WANG Chao, YANG Guihua, et al. Rapid and efficient microwave-assisted guanidine hydrochloride deep eutectic solvent pretreatment for biological conversion of castor stalk[J]. Bioresource Technology, 2022, 343: 126022. |
28 | HOU Xuedan, LI Aolin, LIN Kaipeng, et al. Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment[J]. Bioresource Technology, 2018, 249: 261-267. |
29 | WANG Jinye, XU Yong, MENG Xianzhi, et al. Production of xylo-oligosaccharides from poplar by acetic acid pretreatment and its impact on inhibitory effect of poplar lignin[J]. Bioresource Technology, 2021, 323: 124593. |
30 | YAO L, YANG H T, YOO C G, et al. A mechanistic study of cellulase adsorption onto lignin[J]. Green Chemistry, 2021, 23(1): 333-339. |
31 | LAN T Q, WANG S R, LI H, et al. Effect of lignin isolated from p-toluenesulfonic acid pretreatment liquid of sugarcane bagasse on enzymatic hydrolysis of cellulose and cellulase adsorption[J]. Industrial Crops and Products, 2020, 155: 112768. |
32 | SAMMOND D W, YARBROUGH J M, MANSFIELD E, et al. Predicting enzyme adsorption to lignin films by calculating enzyme surface hydrophobicity[J]. Journal of Biological Chemistry, 2014, 289(30): 20960-20969. |
33 | SAKKOS J K, MUTLU B R, WACKETT L P, et al. Adsorption and biodegradation of aromatic chemicals by bacteria encapsulated in a hydrophobic silica gel[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 26848-26858. |
34 | GEORGELIS N, YENNAWAR N H, COSGROVE D J. Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(37): 14830-14835. |
35 | SONG Y L, CHANDRA R P, ZHANG X, et al. Non-productive celluase binding onto deep eutectic solvent (DES) extracted lignin from willow and corn stover with inhibitory effects on enzymatic hydrolysis of cellulose[J]. Carbohydrate Polymers, 2020, 250: 116956. |
36 | LOURENÇON T V, HANSEL F A, SILVA T A DA, et al. Hardwood and softwood kraft lignins fractionation by simple sequential acid precipitation[J]. Separation and Purification Technology, 2015, 154: 82-88. |
37 | SUN R C, SUN X F, WANG S Q, et al. Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood[J]. Industrial Crops and Products, 2002, 15(3): 179-188. |
38 | MOXLEY G, GASPAR A R, HIGGINS D, et al. Structural changes of corn stover lignin during acid pretreatment[J]. Journal of Industrial Microbiology and Biotechnology, 2012, 39(9): 1289-1299. |
[1] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[2] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[3] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[4] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[5] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
[6] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[7] | 陈娜, 张肖静, 张楠, 马冰冰, 张涵, 杨浩洁, 张宏忠. 淬灭酶对亚硝化-混合自养脱氮系统的影响[J]. 化工进展, 2023, 42(7): 3816-3823. |
[8] | 王帅旗, 王从新, 王学林, 田志坚. 无溶剂快速合成ZSM-12分子筛[J]. 化工进展, 2023, 42(7): 3561-3571. |
[9] | 任建鹏, 吴彩文, 刘慧君, 吴文娟. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087-3096. |
[10] | 杨许召, 李庆, 袁康康, 张盈盈, 韩敬莉, 吴诗德. 含Gemini离子液体低共熔溶剂热力学性质[J]. 化工进展, 2023, 42(6): 3123-3129. |
[11] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[12] | 张耀丹, 孙若溪, 陈鹏程. 以级联反应为基础的多酶共固定载体研究进展[J]. 化工进展, 2023, 42(6): 3167-3176. |
[13] | 秦凯, 杨仕林, 李俊, 储震宇, 薄翠梅. 基于卡尔曼滤波算法的葡萄糖酶生物传感器高精度检测方法[J]. 化工进展, 2023, 42(6): 3177-3186. |
[14] | 孙鲁芹, 卢会霞, 王建友. 电渗析/超滤内在耦合过程分离蛋清中溶菌酶[J]. 化工进展, 2023, 42(5): 2262-2271. |
[15] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 383
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 310
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |