1 |
HUANG Caoxing, LIN Wenqian, LAI Chenhuan, et al. Coupling the post-extraction process to remove residual lignin and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues[J]. Bioresource Technology, 2019, 285: 121355.
|
2 |
曹运齐, 解先利, 郭振强, 等. 木质纤维素预处理技术研究进展[J]. 化工进展, 2020, 39(2): 489-495.
|
|
CAO Yunqi, XIE Xianli, GUO Zhenqiang, et al. Research progress on lignocellulose pretreatment technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 489-495.
|
3 |
VERMAAS J V, PETRIDIS L, QI X H et al. Mechanism of lignin inhibition of enzymatic biomass deconstruction[J]. Biotechnology for Biofuels, 2015, 8: 217.
|
4 |
RAHIKAINEN J, MIKANDER S, MARJAMAA K, et al. Inhibition of enzymatic hydrolysis by residual lignins from softwood—study of enzyme binding and inactivation on lignin-rich surface[J]. Biotechnology and Bioengineering, 2011, 108(12): 2823-2834.
|
5 |
金永灿, 陈慧, 吴文娟, 等. 水溶性木质素对纤维原料酶水解的影响研究进展[J]. 林业工程学报, 2020, 5(4): 12-19.
|
|
JIN Yongcan, CHEN Hui, WU Wenjuan, et al. Investigations of the effect of water-soluble lignin on enzymatic hydrolysis of lignocellulose[J]. Journal of Forestry Engineering, 2020, 5(4): 12-19.
|
6 |
NAKAGAME S, CHANDRA R P, KADLA J F, et al. The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose[J]. Bioresource Technology, 2011, 102(6): 4507-4517.
|
7 |
YOO C G, LI M, MENG X Z, et al. Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis[J]. Green Chemistry, 2017, 19(8): 2006-2016.
|
8 |
PAN Xuejun. Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose[J]. Journal of Biobased Materials and Bioenergy, 2008, 2(1): 25-32.
|
9 |
SEWALT V J H, GLASSER W G, BEAUCHEMIN K A. Lignin impact on fiber degradation. 3. Reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and by additives[J]. Journal of Agricultural and Food Chemistry, 1997, 45(5): 1823-1828.
|
10 |
GUO Fenfen, SHI Wenjing, SUN Wan, et al. Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism[J]. Biotechnology for Biofuels, 2014, 7(1): 38.
|
11 |
YU Z Y, GWAK K S, TREASURE T, et al. Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass[J]. ChemSusChem, 2014, 7(7): 1942-1950.
|
12 |
ALCANFOR A A C, DOS SANTOS L P M, DIAS D F, et al. Electrodeposition of indium on copper from deep eutectic solvents based on choline chloride and ethylene glycol[J]. Electrochimica Acta, 2017, 235: 553-560.
|
13 |
KRYSTOF M, PÉREZ-SÁNCHEZ M, DOMÍNGUEZ DE MARÍA P. Lipase-catalyzed (trans)esterification of 5-hydroxy- methylfurfural and separation from HMF esters using deep-eutectic solvents[J]. ChemSusChem, 2013, 6(4): 630-634.
|
14 |
LOOW Y L, NEW E K, YANG G H, et al. Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion[J]. Cellulose, 2017, 24(9): 3591-3618.
|
15 |
LYNAM J G, KUMAR N, WONG M J. Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density[J]. Bioresource Technology, 2017, 238: 684-689.
|
16 |
司马国宝, 王帅, 崔莹, 等. 低共熔溶剂对木质纤维素分离及木质素提取的研究进展[J]. 现代化工, 2019, 39(9): 26-30.
|
|
SIMA Guobao, WANG Shuai, CUI Ying, et al. Research progress in lignocellulose separation and lignin extraction by deep eutectic solvents[J]. Modern Chemical Industry, 2019, 39(9): 26-30.
|
17 |
李鹏辉, 任建鹏, 吴文娟. 木质素在低共熔溶剂中降解的研究进展[J]. 中国造纸, 2022, 41(1): 78-85.
|
|
LI Penghui, REN Jianpeng, WU Wenjuan. Research progress of lignin degradation in deep eutectic solvents[J]. China Pulp & Paper, 2022, 41(1): 78-85.
|
18 |
FRANCISCO M, VAN DEN BRUINHORST A, KROON M C. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing[J]. Green Chemistry, 2012, 14(8): 2153.
|
19 |
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254.
|
20 |
HUANG Caoxing, HE Juan, MIN Douyong, et al. Understanding the nonproductive enzyme adsorption and physicochemical properties of residual lignins in moso bamboo pretreated with sulfuric acid and kraft pulping[J]. Applied Biochemistry and Biotechnology, 2016, 180(8): 1508-1523.
|
21 |
MÜLLER R H, RÜHL D, LÜCK M, et al. Influence of fluorescent labelling of polystyrene particles on phagocytic uptake, surface hydrophobicity, and plasma protein adsorption[J]. Pharmaceutical Research, 1997, 14(1): 18-24.
|
22 |
ZAWADZKI M, RAGAUSKAS A. N-hydroxy compounds as new internal standards for the ~31P-NMR determination of lignin hydroxy functional groups[J]. Holzforschung, 2001, 55(3): 283-285.
|
23 |
WEN Jialong, SUN Shaolong, YUAN Tongqi, et al. Understanding the chemical and structural transformations of lignin macromolecule during torrefaction[J]. Applied Energy, 2014, 121: 1-9.
|
24 |
冯国坚. 胆碱类溶剂作用于生物质的结构与功能关系及分子机制[D]. 广州: 广东工业大学, 2021.
|
|
FENG Guojian. The structure-function relationships and molecular mechanism of choline-based solvents on biomass fractionation[D]. Guangzhou: Guangdong University of Technology, 2021.
|
25 |
ALVAREZ-VASCO C, MA R S, QUINTERO M, et al. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization[J]. Green Chemistry, 2016, 18(19): 5133-5141.
|
26 |
COSTA LOPES A M DA, GOMES J R B, COUTINHO J A P, et al. Novel insights into biomass delignification with acidic deep eutectic solvents: a mechanistic study of β-O-4 ether bond cleavage and the role of the halide counterion in the catalytic performance[J]. Green Chemistry, 2020, 22(8): 2474-2487.
|
27 |
ZHONG Lei, WANG Chao, YANG Guihua, et al. Rapid and efficient microwave-assisted guanidine hydrochloride deep eutectic solvent pretreatment for biological conversion of castor stalk[J]. Bioresource Technology, 2022, 343: 126022.
|
28 |
HOU Xuedan, LI Aolin, LIN Kaipeng, et al. Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment[J]. Bioresource Technology, 2018, 249: 261-267.
|
29 |
WANG Jinye, XU Yong, MENG Xianzhi, et al. Production of xylo-oligosaccharides from poplar by acetic acid pretreatment and its impact on inhibitory effect of poplar lignin[J]. Bioresource Technology, 2021, 323: 124593.
|
30 |
YAO L, YANG H T, YOO C G, et al. A mechanistic study of cellulase adsorption onto lignin[J]. Green Chemistry, 2021, 23(1): 333-339.
|
31 |
LAN T Q, WANG S R, LI H, et al. Effect of lignin isolated from p-toluenesulfonic acid pretreatment liquid of sugarcane bagasse on enzymatic hydrolysis of cellulose and cellulase adsorption[J]. Industrial Crops and Products, 2020, 155: 112768.
|
32 |
SAMMOND D W, YARBROUGH J M, MANSFIELD E, et al. Predicting enzyme adsorption to lignin films by calculating enzyme surface hydrophobicity[J]. Journal of Biological Chemistry, 2014, 289(30): 20960-20969.
|
33 |
SAKKOS J K, MUTLU B R, WACKETT L P, et al. Adsorption and biodegradation of aromatic chemicals by bacteria encapsulated in a hydrophobic silica gel[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 26848-26858.
|
34 |
GEORGELIS N, YENNAWAR N H, COSGROVE D J. Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(37): 14830-14835.
|
35 |
SONG Y L, CHANDRA R P, ZHANG X, et al. Non-productive celluase binding onto deep eutectic solvent (DES) extracted lignin from willow and corn stover with inhibitory effects on enzymatic hydrolysis of cellulose[J]. Carbohydrate Polymers, 2020, 250: 116956.
|
36 |
LOURENÇON T V, HANSEL F A, SILVA T A DA, et al. Hardwood and softwood kraft lignins fractionation by simple sequential acid precipitation[J]. Separation and Purification Technology, 2015, 154: 82-88.
|
37 |
SUN R C, SUN X F, WANG S Q, et al. Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood[J]. Industrial Crops and Products, 2002, 15(3): 179-188.
|
38 |
MOXLEY G, GASPAR A R, HIGGINS D, et al. Structural changes of corn stover lignin during acid pretreatment[J]. Journal of Industrial Microbiology and Biotechnology, 2012, 39(9): 1289-1299.
|