1 |
全国化工设备设计技术中心站搅拌工程技术委员会. 搅拌设备[M]. 北京: 化学工业出版社, 2019: 53-82.
|
|
National Chemical Equipment Design and Technology Central Station Mixing Engineering Technical Committee. Mixing equipment[M]. Beijing: Chemical Industry Press, 2019: 53-82.
|
2 |
SAITO F, NIENOW A W, CHATWIN S, et al. Power, gas dispersion and homogenisation characteristics of SCABA SRGT and Rushton turbine impellers[J]. Journal of Chemical Engineering of Japan, 1992, 25(3): 281-287.
|
3 |
MYERS K J, THOMAS A J, BARKER A, et al. Performance of a gas dispersion impeller with vertically asymmetric blades[J]. Chemical Engineering Research and Design, 1999, 77(8): 728-730.
|
4 |
VASCONCELOS J M T, ORVALHO S C P, RODRIGUES A M A F, et al. Effect of blade shape on the performance of six-bladed disk turbine impellers[J]. Industrial & Engineering Chemistry Research, 2000, 39(1): 203-213.
|
5 |
FOUKRACH M, AMEUR H. Effect of impeller blade curvature on the hydrodynamics and power consumption in a stirred tank[J]. Chemical Industry and Chemical Engineering Quarterly, 2020, 26(3): 259-266.
|
6 |
YASUDA T, FUKUI K, MATSUO K, et al. Effect of the Reynolds number on the performance of a NACA0012 wing with leading edge protuberance at low Reynolds numbers[J]. Flow, Turbulence and Combustion, 2019, 102(2): 435-455.
|
7 |
WORADEJ M, JIRAYU T, PARINYA R. Mixing efficiency comparison of symmetric and asymmetric airfoil blades in a continuous stirred tank reactor[J]. Journal of Fluids Engineering, 2020, 142(5): 051203.
|
8 |
杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625.
|
|
YANG Fengling, ZHANG Cuixun, SU Tenglong. Power and flow characteristics of flexible-blade Rushton impeller[J]. CIESC Journal, 2020, 71(2): 614-625.
|
9 |
QUÉRÉ D, REYSSAT M. Non-adhesive lotus and other hydrophobic materials[J]. Philosophical Transactions Series A: Mathematical, Physical, and Engineering Sciences, 2008, 366(1870): 1539-1556.
|
10 |
MARTELL M B, ROTHSTEIN J P, PEROT J B. An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation[J]. Physics of Fluids, 2010, 22(6): 065102.
|
11 |
DANIELLO R J, WATERHOUSE N E, ROTHSTEIN J P. Drag reduction in turbulent flows over superhydrophobic surfaces[J]. Physics of Fluids, 2009, 21(8): 085103.
|
12 |
BARTHLOTT W, MAIL M, NEINHUIS C. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications[J]. Philosophical Transactions Series A: Mathematical, Physical, and Engineering Sciences, 2016, 374(2073): 20160191.
|
13 |
LEE C, CHOI C H, KIM C J. Superhydrophobic drag reduction in laminar flows: a critical review[J]. Experiments in Fluids, 2016, 57(12): 1-20.
|
14 |
GOLOVIN K B, GOSE J W, PERLIN M, et al. Bioinspired surfaces for turbulent drag reduction[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2073): 20160189.
|
15 |
LEE C, KIM C J. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction[J]. Physical Review Letters, 2011, 106(1): 014502.
|
16 |
闫德峰, 刘子艾, 潘维浩, 等. 多功能超疏水表面的制造和应用研究现状[J]. 表面技术, 2021, 50(5): 1-19.
|
|
YAN Defeng, LIU Ziai, PAN Weihao, et al. Research status on the fabrication and application of multifunctional superhydrophobic surfaces[J]. Surface Technology, 2021, 50(5): 1-19.
|
17 |
何金梅, 何姣, 袁明娟, 等. 高稳定性超疏水材料研究进展[J]. 化工进展, 2019, 38(7): 3013-3027.
|
|
HE Jinmei, HE Jiao, YUAN Mingjuan, et al. Research progress of superhydrophobic materials with high-stability property[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3013-3027.
|
18 |
周莹, 肖利吉, 姚丽, 等. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 33(4): 1234-1242.
|
|
ZHOU Ying, XIAO Liji, YAO Li, et al. Research progress in self-healing superhydrophobic surfaces[J]. Materials Reports, 2019, 33(4): 1234-1242.
|
19 |
雷瑜, 田蒙蒙, 张心亚, 等. 超疏水表面自修复及应用的研究进展[J]. 化工进展, 2021, 40(5): 2624-2633.
|
|
LEI Yu, TIAN Mengmeng, ZHANG Xinya, et al. Research progress on the self-healing property and applications of superhydrophobic surfaces[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2624-2633.
|
20 |
郑龙珠, 苏晓竞, 李红强, 等. 功能性超疏水表面的构建及其应用进展[J]. 化工进展, 2021, 40(5): 2634-2645.
|
|
ZHENG Longzhu, SU Xiaojing, LI Hongqiang, et al. Progress in construction and application of functional superhydrophobic surfaces[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2634-2645.
|
21 |
VOLKOV A V, PARYGIN A G, LUKIN M V, et al. Analysis of the effect of hydrophobic properties of surfaces in the flow part of centrifugal pumps on their operational performance[J]. Thermal Engineering, 2015, 62(11): 817-824.
|
22 |
VOLKOV A V, PARYGIN A G, NAUMOV A V, et al. Influence of hydrophibization of impellers of centrifugal pumps on their operating characteristics[J]. Thermal Engineering, 2016, 63(12): 841-847.
|
23 |
ÖZBEY M, GÜRBÜZ M, KARAKURT U. Experimental investigation of the effects of hydrophobic impeller surfaces on the centrifugal pump performance[J]. Journal of the Faculty of Engineering and Architecture of Gazi University, 2021, 36(1): 267-274.
|
24 |
BRENNAN J C, GERALDI N R, MORRIS R H, et al. Flexible conformable hydrophobized surfaces for turbulent flow drag reduction[J]. Scientific Reports, 2015, 5(1): 10267.
|
25 |
LEE J, KIM H, PARK H. Effects of superhydrophobic surfaces on the flow around an NACA0012 hydrofoil at low Reynolds numbers[J]. Experiments in Fluids, 2018, 59(7): 1-18.
|
26 |
BALASUBRAMANIAN A K, MILLER A C, REDINIOTIS O K. Microstructured hydrophobic skin for hydrodynamic drag reduction[J]. AIAA Journal, 2004, 42(2): 411-414.
|
27 |
GOGTE S, VOROBIEFF P, TRUESDELL R, et al. Effective slip on textured superhydrophobic surfaces[J]. Physics of Fluids, 2005, 17(5): 051701.
|
28 |
SUN J J, HUANG D G. Numerical investigation on aerodynamic performance improvement of vertical-axis tidal turbine with super-hydrophobic surface[J]. Ocean Engineering, 2020, 217: 107995.
|
29 |
MELAS M, SIGG R, BÜHLMANN S, et al. Methodology for evaluating efficiency benefits of hydrophobic coatings in steam turbine applications[C]//Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Oslo, Norway, 2018: 1-12.
|
30 |
ZHANG Q C, YANG Z, DENG X Y, et al. Fabrication of a gradient hydrophobic surface with parallel ridges on pyrolytic carbon for artificial heart valves[J]. Colloids and Surfaces B: Biointerfaces, 2021, 205: 111894.
|
31 |
WU H, PATTERSON G K. Laser-Doppler measurements of turbulent-flow parameters in a stirred mixer[J]. Chemical Engineering Science, 1989, 44(10): 2207-2221.
|
32 |
TIAN L M, REN L Q, LIU Q P, et al. The mechanism of drag reduction around bodies of revolution using bionic non-smooth surfaces[J]. Journal of Bionic Engineering, 2007, 4(2): 109-116.
|