化工进展 ›› 2022, Vol. 41 ›› Issue (8): 4544-4554.DOI: 10.16085/j.issn.1000-6613.2021-2129
黄霞(), 何莹莹, 张艺蝶, 杨殿海, 戴晓虎, 谢丽()
收稿日期:
2021-10-16
修回日期:
2021-12-26
出版日期:
2022-08-25
发布日期:
2022-08-22
通讯作者:
谢丽
作者简介:
黄霞(1998—),女,硕士研究生,研究方向为有机固体废弃物资源化。E-mail:基金资助:
HUANG Xia(), HE Yingying, ZHANG Yidie, YANG Dianhai, DAI Xiaohu, XIE Li()
Received:
2021-10-16
Revised:
2021-12-26
Online:
2022-08-25
Published:
2022-08-22
Contact:
XIE Li
摘要:
好氧堆肥是实现有机固体废物无害化、稳定化以及资源化的有效手段。近年来,生物炭作为一种堆肥调理剂在优化堆肥环境参数、加速堆肥进程与提升堆肥品质等方面显示出广阔的前景。生物炭具有丰富的多孔结构和巨大的比表面积以及高效的持水能力、阳离子交换能力和吸附能力,这些性质对促进堆肥进程有巨大优势,比如强化微生物群落活性、促进有机物降解与腐殖质形成、减少臭气和温室气体排放、降低重金属和抗生素以及其他污染物的生物有效性等。本文综述了生物炭在不同类型有机废弃物好氧堆肥过程中的作用,总结了基于生物炭的强化手段在堆肥中的应用,并提出了生物炭未来研究的发展方向,旨在从功能材料方面优化好氧堆肥工艺,并为生物炭在好氧堆肥中的应用提供理论依据和数据支撑。
中图分类号:
黄霞, 何莹莹, 张艺蝶, 杨殿海, 戴晓虎, 谢丽. 基于生物炭强化有机固废好氧堆肥资源化的研究进展[J]. 化工进展, 2022, 41(8): 4544-4554.
HUANG Xia, HE Yingying, ZHANG Yidie, YANG Dianhai, DAI Xiaohu, XIE Li. Research progress on enhancing resource utilization of organic solid waste aerobic composting based on biochar[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4544-4554.
堆肥底物 | 生物炭原料 | 投加量 | 气体排放减少量 | 参考 文献 | |||
---|---|---|---|---|---|---|---|
NH3 | N2O | CO2 | CH4 | ||||
鸡粪和锯末 | 坚果壳、刨花、鸡粪 | 5%、10%① | 90% | — | 56%~111%② | — | [ |
城市固废 | 橡树 | 10% | — | 14% | 53% | 95% | [ |
畜禽粪便 | 树枝、粪便 | 10% | — | 65%~75% | — | 78%~85% | [ |
污泥和麦秸 | 麦秸 | 2%~18% | 58%~65.2% | 95.1%~97.3% | — | 92.9%~95.3% | [ |
粪便和麦秸 | 竹子 | 2%~10%① | 17.2%~66.7% | 35.1%~73.4% | 4.9%~13.9%② | 13.1%~73.8% | [ |
猪粪和菌渣 | 花生壳 | 6% | 22.2% | 9.9% | 0.56% | 78.0% | [ |
羊粪和麦秸 | 苹果树枝 | 2.5%~12.5% | 40.6%~73.5% | 0.65%~2.4% | — | 0.53%~1.79% | [ |
表1 生物炭对好氧堆肥过程中气体排放的影响
堆肥底物 | 生物炭原料 | 投加量 | 气体排放减少量 | 参考 文献 | |||
---|---|---|---|---|---|---|---|
NH3 | N2O | CO2 | CH4 | ||||
鸡粪和锯末 | 坚果壳、刨花、鸡粪 | 5%、10%① | 90% | — | 56%~111%② | — | [ |
城市固废 | 橡树 | 10% | — | 14% | 53% | 95% | [ |
畜禽粪便 | 树枝、粪便 | 10% | — | 65%~75% | — | 78%~85% | [ |
污泥和麦秸 | 麦秸 | 2%~18% | 58%~65.2% | 95.1%~97.3% | — | 92.9%~95.3% | [ |
粪便和麦秸 | 竹子 | 2%~10%① | 17.2%~66.7% | 35.1%~73.4% | 4.9%~13.9%② | 13.1%~73.8% | [ |
猪粪和菌渣 | 花生壳 | 6% | 22.2% | 9.9% | 0.56% | 78.0% | [ |
羊粪和麦秸 | 苹果树枝 | 2.5%~12.5% | 40.6%~73.5% | 0.65%~2.4% | — | 0.53%~1.79% | [ |
1 | LOHRI C R, DIENER S, ZABALETA I, et al. Treatment technologies for urban solid biowaste to create value products: a review with focus on low- and middle-income settings[J]. Reviews in Environmental Science and Bio/Technology, 2017, 16(1): 81-130. |
2 | LIM S L, LEE L H, WU T Y. Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis[J]. Journal of Cleaner Production, 2016, 111: 262-278. |
3 | WANG S G, ZENG Y. Ammonia emission mitigation in food waste composting: a review[J]. Bioresource Technology, 2018, 248: 13-19. |
4 | 刘树根, 孔馨, 吕学斌, 等. 有机固体废物好氧处理抑制作用研究进展[J]. 化工进展, 2021, 40(12): 6818-6828. |
LIU Shugen, KONG Xin, Xuebin LYU, et al. Research progress on the inhibition of aerobic treatment of organic solid wastes[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6818-6828. | |
5 | ONWOSI C O, IGBOKWE V C, ODIMBA J N, et al. Composting technology in waste stabilization: on the methods, challenges and future prospects[J]. Journal of Environmental Management, 2017, 190: 140-157. |
6 | 庞新宇, 刘文士, 李猛, 等. 生物炭环境修复应用研究的文献计量学分析[J]. 环境工程技术学报, 2021, 11(4): 740-749. |
PANG Xinyu, LIU Wenshi, LI Meng, et al. Research progress of biochar’s application in environmental remediation based on bibliometrics[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 740-749. | |
7 | LEHMANN J, JOSEPH S. Biochar for environmental management[M]. Routledge: Taylor and Francis, 2015. |
8 | PARK J H, OK Y S, KIM S H, et al. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions[J]. Chemosphere, 2016, 142: 77-83. |
9 | KOŁTOWSKI M, HILBER I, BUCHELI T D, et al. Effect of activated carbon and biochars on the bioavailability of polycyclic aromatic hydrocarbons in different industrially contaminated soils[J]. Environmental Science and Pollution Research, 2016, 23(11): 11058-11068. |
10 | 王申宛, 郑晓燕, 校导, 等. 生物炭的制备、改性及其在环境修复中应用的研究进展[J]. 化工进展, 2020, 39(S2): 352-361. |
WANG Shenwan, ZHENG Xiaoyan, XIAO Dao, et al. Research progress of production, modification and application in environment remediation of biochar[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 352-361. | |
11 | MOHAN D, PITTMAN C U, STEELE P H. Pyrolysis of wood/biomass for bio-oil: a critical review[J]. Energy & Fuels, 2006, 20(3): 848-889. |
12 | BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass and Bioenergy, 2012, 38: 68-94. |
13 | YUAN T, HE W J, YIN G J, et al. Comparison of bio-chars formation derived from fast and slow pyrolysis of walnut shell[J]. Fuel, 2020, 261: 116450. |
14 | ABDUL G, ZHU X Y, CHEN B L. Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters[J]. Chemical Engineering Journal, 2017, 319: 9-20. |
15 | LIU Y Q, LIU S L, YANG Z C, et al. Synergetic effects of biochars and denitrifier on nitrate removal[J]. Bioresource Technology, 2021, 335: 125245. |
16 | BROWN R A, KERCHER A K, NGUYEN T H, et al. Production and characterization of synthetic wood chars for use as surrogates for natural sorbents[J]. Organic Geochemistry, 2006, 37(3): 321-333. |
17 | SILBER A, LEVKOVITCH I, GRABER E R. pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications[J]. Environmental Science & Technology, 2010, 44(24): 9318-9323. |
18 | CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107: 419-428. |
19 | 中华人民共和国生态环境部. 第二次全国污染源普查公报 [EB/OL]. [2020-6-9]. . |
Ministry of Ecology and Environment of the People’s Republic of China. Second national pollution source census bulletin[EB/OL]. [2020-6-9]. . | |
20 | ANDLAR M, REZIĆ T, MARĐETKO N, et al. Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation[J]. Engineering in Life Sciences, 2018, 18(11): 768-778. |
21 | WU D, WEI Z M, MOHAMED T A, et al. Lignocellulose biomass bioconversion during composting: mechanism of action of lignocellulase, pretreatment methods and future perspectives[J]. Chemosphere, 2022, 286: 131635. |
22 | YAN H L, NIU Q Q, ZHU Q H, et al. Biochar reinforced the populations of cbbL-containing autotrophic microbes and humic substance formation via sequestrating CO2 in composting process[J]. Journal of Biotechnology, 2021, 333: 39-48. |
23 | ZHANG L, SUN X Y. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar[J]. Bioresource Technology, 2014, 171: 274-284. |
24 | LI M, ZHANG A, WU H M, et al. Predicting potential release of dissolved organic matter from biochars derived from agricultural residues using fluorescence and ultraviolet absorbance[J]. Journal of Hazardous Materials, 2017, 334: 86-92. |
25 | JINDO K, SONOKI T, MATSUMOTO K, et al. Influence of biochar addition on the humic substances of composting manures[J]. Waste Management, 2016, 49: 545-552. |
26 | NI J, PIGNATELLO J J, XING B. Adsorption of aromatic carboxylate ions to black carbon (biochar) is accompanied by proton exchange with water[J]. Environmental Science & Technology, 2011, 45(21): 9240-9248. |
27 | 中华人民共和国住房与城乡建设部. 2020年城乡建设统计年鉴 [EB/OL]. [2021-10-12]. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Urban and rural construction statistical yearbook in 2020[EB/OL]. [2021-10-12]. | |
28 | AWASTHI M K, WANG M J, CHEN H Y, et al. Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting[J]. Bioresource Technology, 2017, 224: 428-438. |
29 | MALIŃSKA K, ZABOCHNICKA-ŚWIĄTEK M, DACH J. Effects of biochar amendment on ammonia emission during composting of sewage sludge[J]. Ecological Engineering, 2014, 71: 474-478. |
30 | AGYARKO-MINTAH E, COWIE A, VAN ZWIETEN L, et al. Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting[J]. Waste Management, 2017, 61: 129-137. |
31 | SÁNCHEZ-GARCÍA M, ALBURQUERQUE J A, SÁNCHEZ-MONEDERO M A, et al. Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions[J]. Bioresource Technology, 2015, 192: 272-279. |
32 | AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere, 2014, 99: 19-33. |
33 | OLESZCZUK P, HALE S E, LEHMANN J, et al. Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge[J]. Bioresource Technology, 2012, 111: 84-91. |
34 | STEFANIUK M, OLESZCZUK P, RÓŻYŁO K. Co-application of sewage sludge with biochar increases disappearance of polycyclic aromatic hydrocarbons from fertilized soil in long term field experiment[J]. Science of the Total Environment, 2017, 599/600: 854-862. |
35 | LIU W, HUO R, XU J X, et al. Effects of biochar on nitrogen transformation and heavy metals in sludge composting[J]. Bioresource Technology, 2017, 235: 43-49. |
36 | LIU L, YE Q Y, WU Q, et al. Effect of biochar addition on sludge aerobic composting and greenbelt utilization[J]. Environmental Technology & Innovation, 2021, 21: 101279. |
37 | CHOWDHURY M A, DE NEERGAARD A, JENSEN L S. Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting[J]. Chemosphere, 2014, 97: 16-25. |
38 | CHEN W, LIAO X D, WU Y B, et al. Effects of different types of biochar on methane and ammonia mitigation during layer manure composting[J]. Waste Management, 2017, 61: 506-515. |
39 | ZHANG J N, CHEN G F, SUN H F, et al. Straw biochar hastens organic matter degradation and produces nutrient-rich compost[J]. Bioresource Technology, 2016, 200: 876-883. |
40 | ZHOU G X, QIU X W, WU X Y, et al. Horizontal gene transfer is a key determinant of antibiotic resistance genes profiles during chicken manure composting with the addition of biochar and zeolite[J]. Journal of Hazardous Materials, 2021, 408: 124883. |
41 | WANG X, SELVAM A, WONG J W C. Influence of lime on struvite formation and nitrogen conservation during food waste composting[J]. Bioresource Technology, 2016, 217: 227-232. |
42 | MIRMOHAMADSADEGHI S, KARIMI K, TABATABAEI M, et al. Biogas production from food wastes: a review on recent developments and future perspectives[J]. Bioresource Technology Reports, 2019, 7: 100202. |
43 | CHAN M T, SELVAM A, WONG J W C. Reducing nitrogen loss and salinity during ‘struvite’ food waste composting by zeolite amendment[J]. Bioresource Technology, 2016, 200: 838-844. |
44 | CHAHER N E H, CHAKCHOUK M, ENGLER N, et al. Optimization of food waste and biochar in-vessel co-composting[J]. Sustainability, 2020, 12(4): 1356. |
45 | WAQAS M, NIZAMI A S, ABURIAZAIZA A S, et al. Optimization of food waste compost with the use of biochar[J]. Journal of Environmental Management, 2018, 216: 70-81. |
46 | 廖黎明, 陈钰, 潘家琦, 等. 甘蔗渣生物炭不同添加比例对餐厨垃圾与污泥共堆肥的影响[C]//2020中国环境科学学会科学技术年会论文集(第二卷). 2020: 1267-1274.. |
LIAO L M, CHEN Y, PAN J Q, et al. Effect of different addition ratios of bagasse biochar on the co-composting of kitchen waste with sludge[C]//Proceedings of the 2020 Annual Scientific and Technical Conference of the Chinese Society of Environmental Science (Volume Ⅱ). 2020:1267-1274. | |
47 | HE X Q, CHEN L J, HAN L J, et al. Evaluation of biochar powder on oxygen supply efficiency and global warming potential during mainstream large-scale aerobic composting[J]. Bioresource Technology, 2017, 245: 309-317. |
48 | WU S H, SHEN Z Q, YANG C P, et al. Effects of C/N ratio and bulking agent on speciation of Zn and Cu and enzymatic activity during pig manure composting[J]. International Biodeterioration & Biodegradation, 2017, 119: 429-436. |
49 | ZHOU G X, XU X F, QIU X W, et al. Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure[J]. Bioresource Technology, 2019, 272: 10-18. |
50 | STEINER C, BAYODE A O, RALEBITSO-SENIOR T K. Feedstock and production parameters[M]//Biochar Application. Amsterdam: Elsevier, 2016: 41-54. |
51 | PIETIKÄINEN J, KIIKKILÄ O, FRITZE H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus[J]. Oikos, 2000, 89(2): 231-242. |
52 | PROST K, BORCHARD N, SIEMENS J, et al. Biochar affected by composting with farmyard manure[J]. Journal of Environmental Quality, 2013, 42(1): 164-172. |
53 | SUN D Q, LAN Y, XU E G, et al. Biochar as a novel niche for culturing microbial communities in composting[J]. Waste Management, 2016, 54: 93-100. |
54 | VANDECASTEELE B, SINICCO T, D'HOSE T, et al. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake[J]. Journal of Environmental Management, 2016, 168: 200-209. |
55 | LIU H T, WANG L X, LEI M. Positive impact of biochar amendment on thermal balance during swine manure composting at relatively low ambient temperature[J]. Bioresource Technology, 2019, 273: 25-33. |
56 | KHAN N, CLARK I, SÁNCHEZ-MONEDERO M A, et al. Maturity indices in co-composting of chicken manure and sawdust with biochar[J]. Bioresource Technology, 2014, 168: 245-251. |
57 | VANDECASTEELE B, SINICCO T, D'HOSE T, et al. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake[J]. Journal of Environmental Management, 2016, 168: 200-209. |
58 | AGYARKO-MINTAH E, COWIE A, SINGH B P, et al. Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter[J]. Waste Management, 2017, 61: 138-149. |
59 | AWASTHI M K, DUAN Y M, AWASTHI S K, et al. Influence of bamboo biochar on mitigating greenhouse gas emissions and nitrogen loss during poultry manure composting[J]. Bioresource Technology, 2020, 303: 122952. |
60 | 王义祥, 叶菁, 林怡, 等. 花生壳生物炭用量对猪粪堆肥温室气体和NH3排放的影响[J]. 中国农业大学学报, 2021, 26(6): 114-125. |
WANG Yixiang, YE Jing, LIN Yi, et al. Effects of peanut shell biochar on greenhouse gas and NH3 emissions during swine manure composting[J]. Journal of China Agricultural University, 2021, 26(6): 114-125. | |
61 | DUAN Y M, YANG J F, GUO Y R, et al. Pollution control in biochar-driven clean composting: emphasize on heavy metal passivation and gaseous emissions mitigation[J]. Journal of Hazardous Materials, 2021, 420: 126635. |
62 | SONOKI T, FURUKAWA T, JINDO K, et al. Influence of biochar addition on methane metabolism during thermophilic phase of composting[J]. Journal of Basic Microbiology, 2013, 53(7): 617-621. |
63 | CHOWDHURY M A, DE NEERGAARD A, JENSEN L S. Composting of solids separated from anaerobically digested animal manure: effect of different bulking agents and mixing ratios on emissions of greenhouse gases and ammonia[J]. Biosystems Engineering, 2014, 124: 63-77. |
64 | CZEKAŁA W, MALIŃSKA K, CÁCERES R, et al. Co-composting of poultry manure mixtures amended with biochar—The effect of biochar on temperature and C-CO2 emission[J]. Bioresource Technology, 2016, 200: 921-927. |
65 | SANCHEZ-MONEDERO M A, CAYUELA M L, ROIG A, et al. Role of biochar as an additive in organic waste composting[J]. Bioresource Technology, 2018, 247: 1155-1164. |
66 | CAI Y, QI H, LIU Y, et al. Sorption/desorption behavior and mechanism of NH4 + by biochar as a nitrogen fertilizer sustained-release material[J]. Journal of Agricultural and Food Chemistry, 2016, 64(24): 4958-4964. |
67 | LI S, SONG L, JIN Y, et al. Linking N2O emission from biochar-amended composting process to the abundance of denitrify (nirK and nosZ) bacteria community[J]. AMB Express, 2016, 6(1): 37. |
68 | WANG C, LU H, DONG D, et al. Insight into the effects of biochar on manure composting: evidence supporting the relationship between N2O emission and denitrifying community[J]. Environmental Science & Technology, 2013, 47(13): 7341-7349. |
69 | CAYUELA M L, SÁNCHEZ-MONEDERO M A, ROIG A, et al. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? [J]. Scientific Reports, 2013, 3: 1732. |
70 | YANG Y J, KUMAR AWASTHI M, WU L L, et al. Microbial driving mechanism of biochar and bean dregs on NH3 and N2O emissions during composting[J]. Bioresource Technology, 2020, 315: 123829. |
71 | WANG X Q, ZHAO Y, WANG H, et al. Reducing nitrogen loss and phytotoxicity during beer vinasse composting with biochar addition[J]. Waste Management, 2017, 61: 150-156. |
72 | SANCHEZ-MONEDERO M A, CAYUELA M L, ROIG A, et al. Role of biochar as an additive in organic waste composting[J]. Bioresource Technology, 2018, 247: 1155-1164. |
73 | OLESZCZUK P, ZIELIŃSKA A, CORNELISSEN G. Stabilization of sewage sludge by different biochars towards reducing freely dissolved polycyclic aromatic hydrocarbons (PAHs) content[J]. Bioresource Technology, 2014, 156: 139-145. |
74 | STEINER C, DAS K C, MELEAR N, et al. Reducing nitrogen loss during poultry litter composting using biochar[J]. Journal of Environmental Quality, 2010, 39(4): 1236-1242. |
75 | HAO J K, WEI Z M, WEI D, et al. Roles of adding biochar and montmorillonite alone on reducing the bioavailability of heavy metals during chicken manure composting[J]. Bioresource Technology, 2019, 294: 122199. |
76 | XU X Y, HUANG H, ZHANG Y, et al. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(Ⅵ) during its sorption[J]. Environmental Pollution, 2019, 244: 423-430. |
77 | CHEN Y X, HUANG X D, HAN Z Y, et al. Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting[J]. Chemosphere, 2010, 78(9): 1177-1181. |
78 | WANG Q, AWASTHI M K, REN X N, et al. Comparison of biochar, zeolite and their mixture amendment for aiding organic matter transformation and nitrogen conservation during pig manure composting[J]. Bioresource Technology, 2017, 245: 300-308. |
79 | ZHANG P, SUN H W, YU L, et al. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: impact of structural properties of biochars[J]. Journal of Hazardous Materials, 2013, 244/245: 217-224. |
80 | CHEN Z M, XIAO X, CHEN B L, et al. Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures[J]. Environmental Science & Technology, 2015, 49(1): 309-317. |
81 | KOPEĆ M, SMRECZAK B, UKALSKA-JARUGA A, et al. Changes of PAHs and C humic fractions in composts with sewage sludge and biochar amendment[J]. Desalination and Water Treatment, 2017, 97: 234-243. |
82 | 王冲, 罗义, 毛大庆. 土壤环境中抗生素的来源、转归、生态风险以及消减对策[J]. 环境化学, 2014, 33(1): 19-29. |
WANG Chong, LUO Yi, MAO Daqing. Sources, fate, ecological risks and mitigation strategies of antibiotics in the soil environment[J]. Environmental Chemistry, 2014, 33(1): 19-29. | |
83 | PENG B Q, CHEN L, QUE C J, et al. Adsorption of antibiotics on graphene and biochar in aqueous solutions induced by π-π interactions[J]. Scientific Reports, 2016, 6: 31920. |
84 | NGIGI A N, OK Y S, THIELE-BRUHN S. Biochar affects the dissipation of antibiotics and abundance of antibiotic resistance genes in pig manure[J]. Bioresource Technology, 2020, 315: 123782. |
85 | MAO H, LV Z, SUN H D, et al. Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost[J]. Bioresource Technology, 2018, 258: 195-202. |
86 | DUAN Y M, AWASTHI S K, LIU T, et al. Evaluation of integrated biochar with bacterial consortium on gaseous emissions mitigation and nutrients sequestration during pig manure composting[J]. Bioresource Technology, 2019, 291: 121880. |
87 | 黄向东, 韩志英, 石德智, 等. 畜禽粪便堆肥过程中氮素的损失与控制[J]. 应用生态学报, 2010, 21(1): 247-254. |
HUANG Xiangdong, HAN Zhiying, SHI Dezhi, et al. Nitrogen loss and its control during livestock manure composting[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 247-254. | |
88 | YANG F, LI G X, SHI H, et al. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting[J]. Waste Management, 2015, 36: 70-76. |
89 | 杜龙龙, 李国学, 袁京, 等. 不同添加剂对厨余垃圾堆肥NH3和H2S排放的影响[J]. 农业工程学报, 2015, 31(23): 195-200. |
DU Longlong, LI Guoxue, YUAN Jing, et al. Effect of additives on NH3 and H2S emissions during kitchen waste composting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(23): 195-200. | |
90 | WANG Q, WANG Z, AWASTHI M K, et al. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting[J]. Bioresource Technology, 2016, 220: 297-304. |
91 | AWASTHI M K, WANG Q, HUANG H, et al. Effect of biochar amendment on greenhouse gas emission and bio-availability of heavy metals during sewage sludge co-composting[J]. Journal of Cleaner Production, 2016, 135: 829-835. |
92 | JIN H M, CAPAREDA S, CHANG Z Z, et al. Biochar pyrolytically produced from municipal solid wastes for aqueous As(Ⅴ) removal: adsorption property and its improvement with KOH activation[J]. Bioresource Technology, 2014, 169: 622-629. |
93 | LI Y C, SHAO J G, WANG X H, et al. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption[J]. Energy & Fuels, 2014, 28(8): 5119-5127. |
94 | PENG P, LANG Y H, WANG X M. Adsorption behavior and mechanism of pentachlorophenol on reed biochars: pH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms[J]. Ecological Engineering, 2016, 90: 225-233. |
95 | WANG H Y, GAO B, WANG S S, et al. Removal of Pb(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) from aqueous solutions by biochar derived from KMnO4 treated hickory wood[J]. Bioresource Technology, 2015, 197: 356-362. |
96 | ZHOU S Z, WEN X, CAO Z, et al. Modified cornstalk biochar can reduce ammonia emissions from compost by increasing the number of ammonia-oxidizing bacteria and decreasing urease activity[J]. Bioresource Technology, 2021, 319: 124120. |
97 | JUNG K W, CHOI B H, JEONG T U, et al. Facile synthesis of magnetic biochar/Fe3O4 nanocomposites using electro-magnetization technique and its application on the removal of acid orange 7 from aqueous media[J]. Bioresource Technology, 2016, 220: 672-676. |
98 | LIANG J, LI X M, YU Z G, et al. Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb(Ⅱ) and Cd(II)[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5049-5058. |
99 | 李冉, 孟海波, 沈玉君, 等. 改性生物炭对猪粪堆肥过程重金属钝化效果研究[J]. 农业环境科学学报, 2018, 37(10): 2304-2311. |
LI Ran, MENG Haibo, SHEN Yujun, et al. Immobilization of heavy metals by modified biochar during composting of pig manure[J]. Journal of Agro-Environment Science, 2018, 37(10): 2304-2311. | |
100 | QIN Y X, LI G Y, GAO Y P, et al. Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review[J]. Water Research, 2018, 137: 130-143. |
[1] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[2] | 王浩然, 殷全玉, 方明, 侯建林, 李军, 何斌, 张明月. 近临界水处理废弃烟梗工艺优化[J]. 化工进展, 2023, 42(9): 5019-5027. |
[3] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[4] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[5] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[6] | 马敬文, 牛佳钰, 李秀芬. 好氧堆肥腐熟的促进技术[J]. 化工进展, 2023, 42(5): 2744-2750. |
[7] | 王昊, 霍进达, 曲国瑞, 杨家琪, 周世伟, 李博, 魏永刚. 退役锂电池正极材料资源化回收技术研究进展[J]. 化工进展, 2023, 42(5): 2702-2716. |
[8] | 王玉, 余广炜, 江汝清, 黎长江, 林佳佳, 邢贞娇. 餐厨厌氧沼渣生物炭吸附盐酸环丙沙星[J]. 化工进展, 2023, 42(4): 2160-2170. |
[9] | 李文秀, 杨宇航, 黄艳, 王涛, 王镭, 方梦祥. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057. |
[10] | 宋叶, 陈玉卓, 宋云彩, 冯杰. 有机固废合成气原位净化催化剂设计及反应器分析[J]. 化工进展, 2023, 42(3): 1383-1396. |
[11] | 王玉, 余广炜, 林佳佳, 黎长江, 江汝清, 邢贞娇, 余铖. 沼渣、飞灰和污泥生物炭制备建筑陶粒[J]. 化工进展, 2023, 42(2): 1039-1050. |
[12] | 胡兆岩, 张景新, 何义亮. Fe负载污泥生物炭催化热解聚丙烯及产物特性[J]. 化工进展, 2023, 42(2): 631-640. |
[13] | 杨娟娟, 何林, 贺常晴, 李鑫钢, 隋红. 含油污泥多相复合调质降黏破乳分离过程[J]. 化工进展, 2023, 42(2): 614-623. |
[14] | 杜金泽, 李源森, 蔡思超, 何林, 王成扬, 李鑫钢. 有机精馏釜残无害化处理与资源化转化研究进展与思考[J]. 化工进展, 2023, 42(2): 559-574. |
[15] | 王书燕, 张新波, 彭安萍, 刘阳, NGO HUU HAO, 郭文珊, 温海涛. 生物炭回收水中氮磷营养物质的研究进展与挑战[J]. 化工进展, 2023, 42(10): 5459-5469. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |