1 |
GRANQVIST C G, AZENS A, HJELM A, et al. Recent advances in electrochromics for smart windows applications[J]. Solar Energy, 1998, 63(4): 199-216.
|
2 |
GUPTA S M, TRIPATHI M. A review of TiO2 nanoparticles[J]. Chinese Science Bulletin, 2011, 56(16):1639-1657.
|
3 |
WU W, WANG M, MA J M, et al. Electrochromic metal oxides: recent progress and prospect[J]. Advanced Electronic Materials, 2018, 4(8) : 1800185.
|
4 |
JIA H X, CAO X, JIN P S. Advances in inorganic all-solid-state electrochromic materials and devices[J]. Journal of Inorganic Materials, 2020, 35(5): 511.
|
5 |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
|
6 |
CHEN Y B, BI Z J, LI X M, et al. High-coloration efficiency electrochromic device based on novel porous TiO2@Prussian blue core-shell nanostructures[J]. Electrochimica Acta, 2017, 224: 534-540.
|
7 |
TAO Y J, ZHANG K, ZHANG Z Y, et al. Enhanced electrochromic properties of donor-acceptor polymers via TiO2 composite[J]. Polymer, 2016, 91: 98-105.
|
8 |
YU J H, YANG H, JUNG R H, et al. Hierarchical NiO/TiO2 composite structures for enhanced electrochromic durability[J]. Thin Solid Films, 2018, 664: 1-5.
|
9 |
LANG F P, LIU J B, WANG H, et al. NiO nanocrystalline/reduced graphene oxide composite film with enhanced electrochromic properties[J]. Nano, 2017, 12(5): 1750058.
|
10 |
ZHI M Y, HUANG W X, SHI Q W, et al. Enhanced electrochromic performance of mesoporous titanium dioxide/reduced graphene oxide nanocomposite film prepared by electrophoresis deposition[J]. Journal of the Electrochemical Society, 2018, 165(13): H804-H812.
|
11 |
NAGAKAWA H, OCHIAI T, MA H, et al. Elucidation of the electron energy structure of TiO2(B) and anatase photocatalysts through analysis of electron trap density[J]. RSC Advances, 2020, 10(31): 18496-18501.
|
12 |
WANG C H, ZHANG X T, WEI Y, et al. Correlation between band alignment and enhanced photocatalysis: a case study with anatase/TiO2(B) nanotube heterojunction[J]. Dalton Transactions, 2015, 44(29): 13331-13339.
|
13 |
MALARD L M, PIMENTA M A, DRESSELHAUS G, et al. Raman spectroscopy in graphene[J]. Physics Reports, 2009, 473(5/6): 51-87.
|
14 |
陈建丽. 氧化石墨烯的功能化及其衍生物、复合物的制备与性能研究[D]. 长春: 吉林大学, 2013.
|
|
CHEN Jianli. Chemical functionalization of graphene oxide and graphene-based derivatives/nanocomposites: preparations and properties[D]. Changchun: Jilin University, 2013.
|
15 |
CROWTHER A C, GHASSAEI A, JUNG N, et al. Strong charge-transfer doping of 1 to 10 layer graphene by NO2 [J]. ACS Nano, 2012, 6(2): 1865-1875.
|
16 |
PATIL R A, DEVAN R S, LIN J H, et al. Efficient electrochromic properties of high-density and large-area arrays of one-dimensional NiO nanorods[J]. Solar Energy Materials and Solar Cells, 2013, 112: 91-96.
|
17 |
DEVAN R S, GAO S Y, HO W D, et al. Electrochromic properties of large-area and high-density arrays of transparent one-dimensional β-Ta2O5 nanorods on indium-tin-oxide thin-films[J]. Applied Physics Letters, 2011, 98(13): 133117.
|
18 |
FU C P, FOO C, LEE P S. One-step facile electrochemical preparation of WO3/graphene nanocomposites with improved electrochromic properties[J]. Electrochimica Acta, 2014, 117: 139-144.
|
19 |
KHAN A, BHOSALE N Y, MALI S S, et al. Reduced graphene oxide layered WO3 thin film with enhanced electrochromic properties[J]. Journal of Colloid and Interface Science, 2020, 571: 185-193.
|