化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3519-3533.DOI: 10.16085/j.issn.1000-6613.2021-1632
庄雨婷1,2(), 王建华1,2, 向智艳1,2, 赵娟1,2, 徐琼1,2(), 刘贤响1,2, 尹笃林1,2
收稿日期:
2021-08-02
修回日期:
2021-11-30
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
徐琼
作者简介:
庄雨婷(1996—),女,硕士研究生,研究方向为生物质转化。E-mail: 基金资助:
ZHUANG Yuting1,2(), WANG Jianhua1,2, XIANG Zhiyan1,2, ZHAO Juan1,2, XU Qiong1,2(), LIU Xianxiang1,2, YIN Dulin1,2
Received:
2021-08-02
Revised:
2021-11-30
Online:
2022-07-25
Published:
2022-07-23
Contact:
XU Qiong
摘要:
半纤维素是木质生物质资源的三大主要组分之一,经化学、生物的方法转化为糠醛(FAL)、糠醇(FOL)、乙酰丙酸(LA)和γ-戊内酯(GVL)等高附加值化合物可实现含碳可再生资源高值化利用,对发展可再生生物能源具有重要意义。本文从催化剂、氢源和溶剂的角度综述了国内外半纤维素、FAL和FOL直接转化为GVL的研究进展,归纳了串联反应中木糖合成FAL及FAL合成GVL的典型动力学模型。Br?nsted/Lewis酸位点可调的双功能酸催化剂如金属改性的分子筛,是催化半纤维素及其衍生物转移加氢合成GVL的高效催化剂,文中指出酸性位点调控的策略和机制是催化剂研究的关键问题;开发多金属协同、酸碱协同的多功能催化剂是创新催化体系的方向。
中图分类号:
庄雨婷, 王建华, 向智艳, 赵娟, 徐琼, 刘贤响, 尹笃林. 半纤维素及其衍生物转化为γ-戊内酯及其动力学研究进展[J]. 化工进展, 2022, 41(7): 3519-3533.
ZHUANG Yuting, WANG Jianhua, XIANG Zhiyan, ZHAO Juan, XU Qiong, LIU Xianxiang, YIN Dulin. Research progress in preparation and kinetics of γ-valerolactone synthesis from hemicellulose and its derivatives[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3519-3533.
57 | KUMAR Sandeep, JAIN Shikha, NEHRA Monika, et al. Green synthesis of metal-organic frameworks: a state-of-the-art review of potential environmental and medical applications[J]. Coordination Chemistry Reviews, 2020, 420: 213407. |
58 | Clara LÓPEZ-AGUADO, PANIAGUA Marta, IGLESIAS Jose, et al. Zr-USY zeolite: efficient catalyst for the transformation of xylose into bio-products[J]. Catalysis Today, 2018, 304: 80-88. |
59 | PUTRO Jindrayani N, KURNIAWAN Alfin, SOETAREDJO Felycia E, et al. Production of gamma-valerolactone from sugarcane bagasse over TiO2-supported platinum and acid-activated bentonite as a co-catalyst[J]. RSC Advances, 2015, 5(51): 41285-41299. |
60 | LUO Yiping, YI Jian, TONG Dongmei, et al. Production of γ-valerolactone via selective catalytic conversion of hemicellulose in pubescens without addition of external hydrogen[J]. Green Chemistry, 2016, 18(3): 848-857. |
61 | KAWASAKI Ikuo, TSUNODA Kazuya, TSUJI Tomoko, et al. A recyclable catalyst for asymmetric transfer hydrogenation with a formic acid—Triethylamine mixture in ionic liquid[J]. Chemical Communications, 2005, 36(37): 2134-2136. |
62 | LAI Jinhua, ZHOU Shuolin, LIU Xianxiang, et al. Catalytic transfer hydrogenation of biomass-derived ethyl levulinate into gamma-valerolactone over graphene oxide-supported zirconia catalysts[J]. Catalysis Letters, 2019, 149(10): 2749-2757. |
63 | VASANTHAKUMAR Punitharaj, SINDHUJA Dharmalingam, SENTHIL Raja Duraisamy, et al. Iron and chromium MOFs as sustainable catalysts for transfer hydrogenation of carbonyl compounds and biomass conversions[J]. New Journal of Chemistry, 2020, 44(20): 8223-8231. |
64 | CHEN Han, XU Qiong, ZHANG Du, et al. Highly efficient synthesis of γ-valerolactone by catalytic conversion of biomass-derived levulinate esters over support-free mesoporous Ni[J]. Renewable Energy, 2021, 163: 1023-1032. |
65 | CHEN Han, XU Qiong, LI Hui, et al. Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over Ni supported on equilibrium fluid-catalytic-cracking catalysts[J]. Catalysis Letters, 2021, 151(2): 538-547. |
66 | LI Fukun, FRAANCE Liam John, CAI Zhengping, et al. Catalytic transfer hydrogenation of butyl levulinate to γ-valerolactone over zirconium phosphates with adjustable Lewis and Brønsted acid sites[J]. Applied Catalysis B: Environmental, 2017, 214: 67-77. |
67 | KUWAHARA Yasutaka, KABURAGI Wako, OSADA Yohsuke, et al. Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over ZrO2 catalyst supported on SBA-15 silica[J]. Catalysis Today, 2017, 281: 418-428. |
68 | KADU Brijesh S, HENGNE Amol, BIRADAR Narayan Shamrao, et al. Reductive cyclization of levulinic acid to γ-valerolactone over non-noble bimetallic nanocomposite[J]. Industrial & Engineering Chemistry Research, 2016, 55(51): 13032-13039. |
69 | HENGNE Amol M, KADU Brijesh S, BIRADAR Narayan Shamrao, et al. Transfer hydrogenation of biomass-derived levulinic acid to γ-valerolactone over supported Ni catalysts[J]. RSC Advances, 2016, 6(64): 59753-59761. |
70 | HU Xun, WESTERHOF Role J M, DONG Dehua, et al. Acid-catalyzed conversion of xylose in 20 solvents: insight into interactions of the solvents with xylose, furfural, and the acid catalyst[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(11): 2562-2575. |
71 | HAO Rui, HE Jianghua, ZHAO Lun, et al. HPAs and POM-based ILs catalyzed effective conversion of furfuryl alcohol to alkyl levulinate[J]. ChemistrySelect, 2017, 2(26): 7918-7924. |
72 | CHOUDHARY Vinit, SANDLER Stanley I, VLACHOS Dionisios G. Conversion of xylose to furfural using lewis and brønsted acid catalysts in aqueous media[J]. ACS Catalysis, 2012, 2(9): 2022-2028. |
73 | BHAUMIK Prasenjit, KANE T, DHEPE Paresh Laxmikant. Silica and zirconia supported tungsten, molybdenum and gallium oxide catalysts for the synthesis of furfural[J]. Catalysis Science & Technology, 2014, 4(9): 2904-2907. |
74 | BHAUMIK Prasenjit, DHEPE Paresh Laxmikant. Efficient, stable, and reusable silicoaluminophosphate for the one-pot production of furfural from hemicellulose[J]. ACS Catalysis, 2013, 3(10): 2299-2303. |
75 | LI Xiaoyun, YANG Jiaxin, XU Rui, et al. Kinetic study of furfural production from Eucalyptus sawdust using H-SAPO-34 as solid Brønsted acid and Lewis acid catalysts in biomass-derived solvents[J]. Industrial Crops and Products, 2019, 135: 196-205. |
76 | LIU Chao, WEI Linshan, YIN Xiaoyan, et al. Selective conversion of hemicellulose into furfural over low-cost metal salts in a γ-valerolactone/water solution[J]. Industrial Crops and Products, 2020, 147: 112248. |
77 | ZHU Yuanshuai, LI Wenzhi, LU Yijuan, et al. Production of furfural from xylose and corn stover catalyzed by a novel porous carbon solid acid in γ-valerolactone[J]. RSC Advances, 2017, 7(48): 29916-29924. |
1 | Aïchouche OUBRAHAM, ZACCOUR Georges. A survey of applications of viability theory to the sustainable exploitation of renewable resources[J]. Ecological Economics, 2018, 145: 346-367. |
2 | CHUAYBOON Srirat, ABANADES Stéphane, RODAT Sylvain. Syngas production via solar-driven chemical looping methane reforming from redox cycling of ceria porous foam in a volumetric solar reactor[J]. Chemical Engineering Journal, 2019, 356: 756-770. |
78 | YANG Tao, ZHOU Yihan, ZHU Shengzhen, et al. Insight into aluminum sulfate-catalyzed xylan conversion into furfural in a γ-valerolactone/water biphasic solvent under microwave conditions[J]. ChemSusChem, 2017, 10(20): 4066-4079. |
79 | ANTUNES Margarida M, LIMA Sérgio, NEVES Patrícia, et al. Integrated reduction and acid-catalysed conversion of furfural in alcohol medium using Zr,Al-containing ordered micro/mesoporous silicates[J]. Applied Catalysis B: Environmental, 2016, 182: 485-503. |
3 | SERRANO-RUIZ Juan Carlos, LUQUE Rafael, LUQUE Rafael, Antonio SEPULVEDA-ESCRIBANO. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing[J]. Chemical Society Reviews, 2011, 40(11): 5266-5281. |
4 | 谭天伟, 陈必强, 张会丽, 等. 加快推进绿色生物制造 助力实现“碳中和”[J]. 化工进展, 2021, 40(3): 1137-1141. |
80 | LUO Helen Y, CONSOLI Daniel F, GUNTHER William R, et al. Investigation of the reaction kinetics of isolated Lewis acid sites in Beta zeolites for the Meerwein-Ponndorf-Verley reduction of methyl levulinate to γ-valerolactone[J]. Journal of Catalysis, 2014, 320: 198-207. |
81 | CHATTERJEE Amrita, HU Xijun, LAM Frank Leung Yuk. Modified coal fly ash waste as an efficient heterogeneous catalyst for dehydration of xylose to furfural in biphasic medium[J]. Fuel, 2019, 239: 726-736. |
4 | TAN Tianwei, CHEN Biqiang, ZHANG Huili, et al. Accelerate promotion of green bio-manufacturing to help achieve “carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1137-1141 |
5 | LAMB Alexander C, LEE Adam F, WILSON Karen. Recent advances in heterogeneous catalyst design for biorefining[J]. Australian Journal of Chemistry, 2020, 73(10): 832-852. |
6 | VARMA Rajender S. Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6458-6470. |
82 | SENER Canan, MOTAGAMWAL Ali Hussain, ALONSO David Martin, et al. Enhanced furfural yields from xylose dehydration in the γ-valerolactone/water solvent system at elevated temperatures[J]. ChemSusChem, 2018, 11(14): 2321-2331. |
7 | KIM Seungdo, DALE Bruce E. Global potential bioethanol production from wasted crops and crop residues[J]. Biomass and Bioenergy, 2004, 26(4): 361-375. |
8 | ALONSO David Martin, WETTSTEIN Stephanie G, DUMESIC James A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass[J]. Green Chemistry, 2013, 15(3): 584. |
9 | HORVÁTH István T, MEHDI Hasan, FÁBOS Viktória et, al. γ-Valerolactone—A sustainable liquid for energy and carbon-based chemicals[J]. Green Chemistry, 2008, 10(2): 238-242. |
10 | FENG Jing, GU Xiaochao, XUE Yudan, et al. Production of γ-valerolactone from levulinic acid over a Ru/C catalyst using formic acid as the sole hydrogen source[J]. Science of the Total Environment, 2018, 633: 426-432. |
11 | DUTTA Shanta, YU Iris K M, TSANG Daniel C W, et al. Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: a critical review[J]. Chemical Engineering Journal, 2019, 372: 992-1006. |
12 | WETTSTEIN Stephanie G, ALONSO David Martin, CHONG Yuxuan, et al. Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems[J]. Energy & Environmental Science, 2012, 5(8): 8199-8203. |
13 | 魏珺楠, 唐兴, 孙勇, 等. 新型生物质基平台分子γ-戊内酯的应用[J]. 化学进展, 2016, 28(11): 1672-1681. |
WEI Junnan, TANG Xing, SUN Yong, et al. Applications of novel biomass-derived platform molecule γ-valerolactone[J]. Progress in Chemistry, 2016, 28(11): 1672-1681. | |
14 | LI Xiaoyun, LIU Qingling, LUO Chunhui, et al. Kinetics of furfural production from corn cob in γ-valerolactone using dilute sulfuric acid as catalyst[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8587-8593. |
15 | LUO Yiping, LI Zheng, ZUO Yini, et al. A simple two-step method for the selective conversion of hemicellulose in pubescens to furfural[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8137-8147. |
16 | ZHANG Zehui. Synthesis of γ-valerolactone from carbohydrates and its applications[J]. ChemSusChem, 2016, 9(2): 156-171. |
17 | YAN Kai, YANG Yiyi, CHAI Jiajue, et al. Catalytic reactions of gamma-valerolactone: a platform to fuels and value-added chemicals [J]. Applied Catalysis B: Environmental, 2015, 179: 292-304. |
18 | HENGNE Amol M, KAMBLE Sumit B, RODE Chandrashekhar V. Single pot conversion of furfuryl alcohol to levulinic esters and γ-valerolactone in the presence of sulfonic acid functionalized ILs and metal catalysts[J]. Green Chemistry, 2013, 15(9): 2540. |
19 | 邓理, 廖兵, 郭庆祥. 纤维素选择性催化转化为重要平台化合物的研究进展[J]. 化工进展, 2013, 32(2): 245-254. |
DENG Li, LIAO Bing, GUO Qingxiang. Racent progress in seletive catalytic conbrtdion of cellulose into key platform molecules[J]. Chemical Industry and Engineering Progress, 2013, 32(2): 245-254. | |
20 | 朱龙云, 杨文霞, 刘迎新. 生物质转化制备重要平台化合物γ-戊内酯的研究进展[J]. 浙江化工, 2016, 47(3): 20-26. |
ZHU Longyun, YANG Wenxia, LIU Yingxin, et al. Advances in conversion of biomass to renewable platform molecule γ-valerolactone[J]. Zhejiang Chemical Industry, 2016, 47(3): 20-26. | |
21 | YU Zhihao, LU Xuebin, LIU Chen, et al. Synthesis of γ-valerolactone from different biomass-derived feedstocks: recent advances on reaction mechanisms and catalytic systems[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 140-157. |
22 | OSATIASHTIANI Amin, LEE Adam F, WILSON Karen. Recent advances in the production of γ-valerolactone from biomass-derived feedstocks via heterogeneous catalytic transfer hydrogenation[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(6): 1125-1135. |
23 | ADELEYE Aderemi T, LOUIS Hitler, AKUKURU Ozioma U, et al. A Review on the conversion of levulinic acid and its esters to various useful chemicals[J]. AIMS Energy, 2019, 7(2): 165-185. |
24 | YU Zhihao, LU Xuebin, XIONG Xiong, et al. Heterogeneous catalytic hydrogenation of levulinic acid to γ-valerolactone with formic acid as internal hydrogen source[J]. ChemSusChem, 2020, 13(11): 2916-2930. |
25 | LIGUORI Francesca, Carmen MORENO-MARRODAN, BARBARO Pierluigi. Environmentally friendly synthesis of γ-valerolactone by direct catalytic conversion of renewable sources[J]. ACS Catalysis, 2015, 5(3): 1882-1894. |
26 | LI Xiangcheng, YUAN Xiaohong, XIA Guopeng, et al. Catalytic production of γ-valerolactone from xylose over delaminated Zr-Al-SCM-1 zeolite via a cascade process[J]. Journal of Catalysis, 2020, 392: 175-185. |
27 | LIMA Thiago M, LIMA Carolina G S, RATHI Anuj K, et al. Magnetic ZSM-5 zeolite: a selective catalyst for the valorization of furfuryl alcohol to γ-valerolactone, alkyl levulinates or levulinic acid[J]. Green Chemistry, 2016, 18(20): 5586-5593. |
28 | YE Lei, HAN Yiwen, FENG Jing, et al. A review about GVL production from lignocellulose: focusing on the full components utilization[J]. Industrial Crops and Products, 2020, 144: 112031. |
29 | AMARASEKARA Ananda S, MARONEY Lawrence Yen, FERNANDEZ Anthony D, et al. Conversion of levulinic acid and cellulose to γ-valerolactone over Raney-Ni catalyst using formic acid as a hydrogen donor[J]. Biofuels, 2021, 12(4): 423-427. |
30 | WANG Tianlong, HE Jianghua, ZHANG Yuetao. Production of γ-valerolactone from one-pot transformation of biomass-derived carbohydrates over chitosan-supported ruthenium catalyst combined with zeolite ZSM-5[J]. European Journal of Organic Chemistry, 2020, 2020(11): 1611-1619. |
31 | Linh BUI, LUO Helen, GUNTHER William R, et al. Domino reaction catalyzed by zeolites with Brϕnsted and Lewis acid sites for the production of γ-valerolactone from furfural[J]. Angewandte Chemie. International Edition, 2013, 52(31): 8022-8025. |
32 | SONG Song, DI Lu, WU Guangjun, et al. Meso-Zr-Al-beta zeolite as a robust catalyst for cascade reactions in biomass valorization[J]. Applied Catalysis B: Environmental, 2017, 205: 393-403. |
33 | KIM Kyung Duk, KIM Jaeheon, TEOH Wey Yang, et al. Cascade reaction engineering on zirconia-supported mesoporous MFI zeolites with tunable Lewis-Brønsted acid sites: a case of the one-pot conversion of furfural to γ-valerolactone[J]. RSC Advances, 2020, 10(58): 35318-35328. |
34 | Blanca HERNÁNDEZ, IGLESIAS Jose, MORALES Gabriel, et al. One-pot cascade transformation of xylose into γ-valerolactone (GVL) over bifunctional Brønsted-Lewis Zr-Al-beta zeolite[J]. Green Chemistry, 2016, 18(21): 5777-5781. |
35 | MELERO Juan A, MORALES Gabriel, IGLESIAS Jose, et al. Efficient one-pot production of γ-valerolactone from xylose over Zr-Al-beta zeolite: rational optimization of catalyst synthesis and reaction conditions[J]. Green Chemistry, 2017, 19(21): 5114-5121. |
36 | ZHU Shanhui, XUE Yanfeng, GUO Jing, et al. Integrated conversion of hemicellulose and furfural into γ-valerolactone over Au/ZrO2 catalyst combined with ZSM-5[J]. ACS Catalysis, 2016, 6(3): 2035-2042. |
37 | SHAO Yuewen, LI Qingyin, DONG Xinyi, et al. Cooperation between hydrogenation and acidic sites in Cu-based catalyst for selective conversion of furfural to γ-valerolactone[J]. Fuel, 2021, 293: 120457. |
38 | LU Yijuan, LI Wenzhi, ZHU Yuanshuai, et al. One-pot synthesis of high value-added chemicals from furfural over bimetal-doped beta zeolite and carbon solid acid catalysts[J]. BioResources, 2018, 13(3): 5925-5941. |
39 | ZHANG Hongwei, YANG Weijia, ROSLAN Irwan Iskandar, et al. A combo Zr-HY and Al-HY zeolite catalysts for the one-pot cascade transformation of biomass-derived furfural to γ-valerolactone[J]. Journal of Catalysis, 2019, 375: 56-67. |
40 | ANTUNES Margarida M, LIMA Sérgio, NEVES Patrícia, et al. One-pot conversion of furfural to useful bio-products in the presence of a Sn,Al-containing zeolite beta catalyst prepared via post-synthesis routes[J]. Journal of Catalysis, 2015, 329: 522-537. |
41 | WINOTO Haryo Pandu, Byoung Sung AHN, Jungho JAE. Production of γ-valerolactone from furfural by a single-step process using Sn-Al-beta zeolites: optimizing the catalyst acid properties and process conditions[J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 62-71. |
42 | TANG Bo, LI Shuang, SONG Weichao, et al. One-pot transformation of furfural into γ-valerolactone catalyzed by a hierarchical Hf-Al-USY zeolite with balanced Lewis and Brønsted acid sites[J]. Sustainable Energy & Fuels, 2021, 5(18): 4724-4735. |
43 | ZHANG Tingwei, LU Yijuan, LI Wenzhi, et al. One-pot production of γ-valerolactone from furfural using Zr-graphitic carbon nitride/H-β composite[J]. International Journal of Hydrogen Energy, 2019, 44(29): 14527-14535. |
44 | GAO Xueying, YU Xin, PENG Lincai, et al. Magnetic Fe3O4 nanoparticles and ZrO2-doped mesoporous MCM-41 as a monolithic multifunctional catalyst for γ-valerolactone production directly from furfural[J]. Fuel, 2021, 300: 120996. |
45 | WINOTO Haryo Pandu, FIKRI Zuhroni Ali, Jeong-Myeong HA, et al. Heteropolyacid supported on Zr-beta zeolite as an active catalyst for one-pot transformation of furfural to γ-valerolactone[J]. Applied Catalysis B: Environmental, 2019, 241: 588-597. |
46 | SRINIVASA RAO B, KRISHNA KUMARI P, KOLEY Paramita, et al. One pot selective conversion of furfural to γ-valerolactone over zirconia containing heteropoly tungstate supported on β-zeolite catalyst[J]. Molecular Catalysis, 2019, 466: 52-59. |
47 | YE Lei, HAN Yiwen, BAI Hui, et al. HZ-ZrP catalysts with adjustable ratio of Brønsted and Lewis acids for the one-pot value-added conversion of biomass-derived furfural[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(19): 7403-7413. |
48 | LI Weili, LI Mengzhu, LIU Huai, et al. Domino transformation of furfural to γ-valerolactone over SAPO-34 zeolite supported zirconium phosphate catalysts with tunable Lewis and Brønsted acid sites[J]. Molecular Catalysis, 2021, 506: 111538. |
49 | MELERO Juan A, MORALES Gabriel, IGLESIAS Jose, et al. Rational optimization of reaction conditions for the one-pot transformation of furfural to γ-valerolactone over Zr-Al-beta zeolite: toward the efficient utilization of biomass[J]. Industrial & Engineering Chemistry Research, 2018, 57(34): 11592-11599. |
50 | CHEN Han, ZHANG Sisi, ZHUANG Yuting, et al. Zirconia and phosphotungstic acid supported on TS-1 as an active catalyst for one-pot selective conversion of furfuryl alcohol to γ-valerolactone[J]. Science of Advanced Materials, 2021, 13(6): 1078-1087. |
51 | LI Wenke, CAI Zhe, LI Hang, et al. Hf-based metal organic frameworks as bifunctional catalysts for the one-pot conversion of furfural to γ-valerolactone[J]. Molecular Catalysis, 2019, 472: 17-26. |
52 | IGLESIAS J, MELERO J A, MORALES G, et al. ZrO2-SBA-15 catalysts for the one-pot cascade synthesis of GVL from furfural[J]. Catalysis Science & Technology, 2018, 8(17): 4485-4493. |
53 | PENG Qingrui, WANG Haijun, XIA Yongmei, et al. One-pot conversion of furfural to gamma-valerolactone in the presence of multifunctional zirconium alizarin red S hybrid[J]. Applied Catalysis A: General, 2021, 621: 118203. |
54 | WANG Guofeng, ZHANG Zhanquan, SONG Linhua. Efficient and selective alcoholysis of furfuryl alcohol to alkyl levulinates catalyzed by double SO3H-functionalized ionic liquids[J]. Green Chemistry, 2014, 16(3): 1436-1443. |
55 | ZHU Shanhui, CHEN Chengmeng, XUE Yanfeng, et al. Graphene oxide: an efficient acid catalyst for alcoholysis and esterification reactions[J]. ChemCatChem, 2014, 6(11): 3080-3083. |
56 | ZHANG Zehui, DONG Kun, ZHAO Zongbao. Efficient conversion of furfuryl alcohol into alkyl levulinates catalyzed by an organic-inorganic hybrid solid acid catalyst[J]. ChemSusChem, 2011, 4(1): 112-118. |
[1] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[4] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[5] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[6] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[7] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[8] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
[9] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[10] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[11] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[12] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[13] | 王俊杰, 潘艳秋, 牛亚宾, 俞路. 分子水平催化重整装置模型构建及应用[J]. 化工进展, 2023, 42(7): 3404-3412. |
[14] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[15] | 王帅旗, 王从新, 王学林, 田志坚. 无溶剂快速合成ZSM-12分子筛[J]. 化工进展, 2023, 42(7): 3561-3571. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |