1 |
李英琪. 纳米流体动态润湿行为主动调控的力学机理研究[D]. 合肥: 中国科学技术大学, 2017.
|
|
LI Yingqi. Mechanical mechanisms of active control of the dynamic wetting of nanofluid[D]. Hefei: University of Science and Technology of China, 2017.
|
2 |
CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[M]// SIGINER D A, WANG H P, Eds. Developments and applications of non-newtonian flows. New York: ASME, 1995, 66: 99-105.
|
3 |
李强. 纳米流体强化传热机理研究[D]. 南京: 南京理工大学, 2004.
|
|
LI Qiang. Investigation on enhanced heat transfer of nanofluids[D]. Nanjing: Nanjing University of Science and Technology, 2004.
|
4 |
HU Z S, DONG J X. Study on antiwear and reducing friction additive of nanometer titanium borate[J]. Wear, 1998, 216(1): 87-91.
|
5 |
DIMITROV A S, NAGAYAMA K. Steady-state unidirectional convective assembling of fine particles into two-dimensional arrays[J]. Chemical Physics Letters, 1995, 243(5/6): 462-468.
|
6 |
RATHOD M K, BANERJEE J. Experimental investigations on latent heat storage unit using paraffin wax as phase change material[J]. Experimental Heat Transfer, 2014, 27(1): 40-55.
|
7 |
DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Contact line deposits in an evaporating drop[J]. Physical Review E, 2000, 62(1): 756-765.
|
8 |
TRUEMAN R E, LAGO DOMINGUES E, EMMETT S N, et al. Auto-stratification in drying colloidal dispersions: a diffusive model[J]. Journal of Colloid and Interface Science, 2012, 377(1): 207-212.
|
9 |
LI Yingqi, WANG Fengchao, LIU He, et al. Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate[J]. Microfluidics and Nanofluidics, 2015, 18(1): 111-120.
|
10 |
LEBEDEV-STEPANOV P, VLASOV K. Simulation of self-assembly in an evaporating droplet of colloidal solution by dissipative particle dynamics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 432: 132-138.
|
11 |
黄豆豆. 基于液滴蒸发的颗粒自组装机理及控制研究[D]. 北京: 北京林业大学, 2016.
|
|
HUANG Doudou. Research on the mechanism and control of the particles self-assembly based on the droplet evaporation[D]. Beijing: Beijing Forestry University, 2016.
|
12 |
HU H, LARSON R G. Evaporation of a sessile droplet on a substrate[J]. The Journal of Physical Chemistry B, 2002, 106(6): 1334-1344.
|
13 |
陈剑楠, 欧阳小龙, 张震, 等. 一种研究液滴流动蒸发换热的数值方法[J]. 工程热物理学报, 2016, 37(3): 637-642.
|
|
CHEN Jiannan, OUYANG Xiaolong, ZHANG Zhen, et al. A numerical model for simulating the droplet flow and evaporation[J]. Journal of Engineering Thermophysics, 2016, 37(3): 637-642.
|
14 |
TANGUY S, MÉNARD T, BERLEMONT A. A level set method for vaporizing two-phase flows[J]. Journal of Computational Physics, 2007, 221(2): 837-853.
|
15 |
谢驰宇, 张建影, 王沫然. 液滴在固体平表面上均匀蒸发过程的格子Boltzmann模拟[J]. 应用数学和力学, 2014, 35(3): 247-253.
|
|
XIE Chiyu, ZHANG Jianying, WANG Moran. Lattice boltzmann simulation of droplet evaporation on flat solid surface[J]. Applied Mathematics and Mechanics, 2014, 35(3): 247-253.
|
16 |
HU H, LARSON R G. Analysis of the microfluid flow in an evaporating sessile droplet[J]. Langmuir, 2005, 21(9): 3963-3971.
|
17 |
杨开. 液滴和弯液面蒸发动力学特性的ALE模拟[D]. 上海: 上海交通大学, 2014.
|
|
YANG Kai. Numerical simulation on hydrodynamic characteristics of sessile droplet and meniscus evaporation using arbitrary Lagrangian-Eulerian formulation[D]. Shanghai: Shanghai Jiao Tong University, 2014.
|
18 |
CAZABAT A M, GUÉNA G. Evaporation of macroscopic sessile droplets[J]. Soft Matter, 2010, 6(12): 2591.
|
19 |
SEMENOV S, STAROV V M, RUBIO R G, et al. Instantaneous distribution of fluxes in the course of evaporation of sessile liquid droplets: computer simulations[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 372(1/2/3): 127-134.
|
20 |
GERKEN W J, THOMAS A V, KORATKAR N, et al. Nanofluid pendant droplet evaporation: experiments and modeling[J]. International Journal of Heat and Mass Transfer, 2014, 74: 263-268.
|
21 |
SEFIANE K, BENNACER R. Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates[J]. Advances in Colloid and Interface Science, 2009, 147/148: 263-271.
|
22 |
TRYBALA A, OKOYE A, SEMENOV S, et al. Evaporation kinetics of sessile droplets of aqueous suspensions of inorganic nanoparticles[J]. Journal of Colloid and Interface Science, 2013, 403: 49-57.
|
23 |
SOBAC B, BRUTIN D. Thermal effects of the substrate on water droplet evaporation[J]. Physical Review E, 2012, 86(2): 021602.
|
24 |
王宇, 潘振海. 水平及竖直基底上微小固着液滴的蒸发特性分析[J]. 化工进展, 2021, 40(7): 3632-3644.
|
|
WANG Yu, PAN Zhenhai. Analysis of evaporation characteristics of small water droplets sessile on horizontal and vertical substrates[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3632-3644.
|
25 |
MOGHIMAN M, ASLANI B. Influence of nanoparticles on reducing and enhancing evaporation mass transfer and its efficiency[J]. International Journal of Heat and Mass Transfer, 2013, 61: 114-118.
|
26 |
PAK B C, CHO Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer, 1998, 11(2): 151-170.
|
27 |
金铭, 胡定华, 李强, 等. Al2O3纳米流体液滴蒸发特性的数值模拟研究[J]. 化工学报, 2019, 70(11): 4199-4206.
|
|
JIN Ming, HU Dinghua, LI Qiang, et al. Simulation of Al2O3 nanofluid droplet evaporation characteristics[J]. CIESC Journal, 2019, 70(11): 4199-4206.
|
28 |
ANYFANTAKIS M, GENG Z, MOREL M, et al. Modulation of the coffee-ring effect in particle/surfactant mixtures: the importance of particle-interface interactions[J]. Langmuir, 2015, 31(14): 4113-4120.
|
29 |
胡定华, 刘诗雨. Al2O3纳米流体液滴撞击壁面的动力学行为数值研究[J]. 浙江大学学报(工学版), 2021, 55(5): 991-998.
|
|
HU Dinghua, LIU Shiyu. Numerical study on dynamic behaviors of Al2O3 nanofluid droplet impacting on solid wall[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(5): 991-998.
|
30 |
HAMILTON R L, CROSSER O K. Thermal conductivity of heterogeneous two-component systems[J]. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187-191.
|
31 |
TANVIR S, QIAO Li. Surface tension of Nanofluid-type fuels containing suspended nanomaterials[J]. Nanoscale Research Letters, 2012, 7(1): 226.
|
32 |
YANG Kai, HONG Fangjun, CHENG Ping. A fully coupled numerical simulation of sessile droplet evaporation using arbitrary Lagrangian-Eulerian formulation[J]. International Journal of Heat and Mass Transfer, 2014, 70: 409-420.
|
33 |
SEMENOV S, STAROV V M, RUBIO R G. Evaporation of pinned sessile microdroplets of water on a highly heat-conductive substrate: computer simulations[J]. The European Physical Journal Special Topics, 2013, 219(1): 143-154.
|
34 |
董佰扬, 单彦广, 翁志浩. 基于动态接触角的固着液滴蒸发过程模拟[J]. 动力工程学报, 2020, 40(12): 1002-1007.
|
|
DONG Baiyang, SHAN Yanguang, WENG Zhihao. Simulation of sessile droplet evaporation based on dynamic contact angle[J]. Journal of Chinese Society of Power Engineering, 2020, 40(12): 1002-1007.
|
35 |
DUNN G J, WILSON S K, DUFFY B R, et al. A mathematical model for the evaporation of a thin sessile liquid droplet: comparison between experiment and theory[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 323(1/2/3): 50-55.
|
36 |
BHARDWAJ R, FANG Xiaohua, ATTINGER D. Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study[J]. New Journal of Physics, 2009, 11(7): 075020.
|
37 |
ROUTH A F, ZIMMERMAN W B. The diffusion coefficient of a swollen microgel particle[J]. Journal of Colloid and Interface Science, 2003, 261(2): 547-551.
|
38 |
SEMENOV S, STAROV V, RUBIO R G, et al. Computer simulations of quasi-steady evaporation of sessile liquid droplets[C]//Trends in Colloid and Interface Science ⅩⅩⅣ, 2011, 138: 115-120.
|
39 |
MAHBUBUL I M, SAIDUR R, AMALINA M A. Latest developments on the viscosity of nanofluids[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 874-885.
|