化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3493-3501.DOI: 10.16085/j.issn.1000-6613.2021-1808
收稿日期:
2021-08-23
修回日期:
2021-12-16
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
胡定华
作者简介:
李钰璨(1997—),女,硕士研究生,研究方向为微尺度相变散热。E-mail:基金资助:
LI Yucan(), HU Dinghua(
), LIU Jinhui
Received:
2021-08-23
Revised:
2021-12-16
Online:
2022-07-25
Published:
2022-07-23
Contact:
HU Dinghua
摘要:
以氧化铝纳米流体液滴为研究对象,本文建立了基于任意拉格朗日-欧拉(ALE)法的液滴蒸发瞬态模型,对液滴蒸发过程中蒸汽浓度、纳米颗粒浓度、温度等进行多物理场耦合,并考虑了Marangoni流对液滴蒸发的影响,同时研究还结合蒸发实验可视化结果,分析了氧化铝纳米流体液滴的瞬态蒸发速率随时间的演化规律,讨论了颗粒体积分数和基板温度对蒸发模式的影响。结果表明,在液滴蒸发过程开始时,纳米流体液滴保持定接触半径蒸发模式,气液界面面积逐渐减小,瞬态蒸发速率也呈逐渐减小的趋势;当颗粒体积分数增大至26%时,瞬态蒸发速率曲线达到驻点;蒸发接近完全时,由于Marangoni流影响了内部流场、强化了内部传热,且液滴在已沉积在基板上的颗粒表面形成液膜,瞬态蒸发速率迅速增大。
中图分类号:
李钰璨, 胡定华, 刘锦辉. 氧化铝纳米流体液滴瞬态蒸发速率的演化特性分析[J]. 化工进展, 2022, 41(7): 3493-3501.
LI Yucan, HU Dinghua, LIU Jinhui. Evolution characteristics of transient evaporation rate of Al2O3 nanofluid droplet[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3493-3501.
网格数 | 最大单元尺寸/μm | 蒸发速率最大相对偏差/% |
---|---|---|
18639 | 7.5 | — |
27779 | 5 | 1.03 |
34874 | 4 | 0.071 |
表1 网格无关性验证
网格数 | 最大单元尺寸/μm | 蒸发速率最大相对偏差/% |
---|---|---|
18639 | 7.5 | — |
27779 | 5 | 1.03 |
34874 | 4 | 0.071 |
1 | 李英琪. 纳米流体动态润湿行为主动调控的力学机理研究[D]. 合肥: 中国科学技术大学, 2017. |
LI Yingqi. Mechanical mechanisms of active control of the dynamic wetting of nanofluid[D]. Hefei: University of Science and Technology of China, 2017. | |
2 | CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[M]// SIGINER D A, WANG H P, Eds. Developments and applications of non-newtonian flows. New York: ASME, 1995, 66: 99-105. |
3 | 李强. 纳米流体强化传热机理研究[D]. 南京: 南京理工大学, 2004. |
LI Qiang. Investigation on enhanced heat transfer of nanofluids[D]. Nanjing: Nanjing University of Science and Technology, 2004. | |
4 | HU Z S, DONG J X. Study on antiwear and reducing friction additive of nanometer titanium borate[J]. Wear, 1998, 216(1): 87-91. |
5 | DIMITROV A S, NAGAYAMA K. Steady-state unidirectional convective assembling of fine particles into two-dimensional arrays[J]. Chemical Physics Letters, 1995, 243(5/6): 462-468. |
6 | RATHOD M K, BANERJEE J. Experimental investigations on latent heat storage unit using paraffin wax as phase change material[J]. Experimental Heat Transfer, 2014, 27(1): 40-55. |
7 | DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Contact line deposits in an evaporating drop[J]. Physical Review E, 2000, 62(1): 756-765. |
8 | TRUEMAN R E, LAGO DOMINGUES E, EMMETT S N, et al. Auto-stratification in drying colloidal dispersions: a diffusive model[J]. Journal of Colloid and Interface Science, 2012, 377(1): 207-212. |
9 | LI Yingqi, WANG Fengchao, LIU He, et al. Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate[J]. Microfluidics and Nanofluidics, 2015, 18(1): 111-120. |
10 | LEBEDEV-STEPANOV P, VLASOV K. Simulation of self-assembly in an evaporating droplet of colloidal solution by dissipative particle dynamics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 432: 132-138. |
11 | 黄豆豆. 基于液滴蒸发的颗粒自组装机理及控制研究[D]. 北京: 北京林业大学, 2016. |
HUANG Doudou. Research on the mechanism and control of the particles self-assembly based on the droplet evaporation[D]. Beijing: Beijing Forestry University, 2016. | |
12 | HU H, LARSON R G. Evaporation of a sessile droplet on a substrate[J]. The Journal of Physical Chemistry B, 2002, 106(6): 1334-1344. |
13 | 陈剑楠, 欧阳小龙, 张震, 等. 一种研究液滴流动蒸发换热的数值方法[J]. 工程热物理学报, 2016, 37(3): 637-642. |
CHEN Jiannan, OUYANG Xiaolong, ZHANG Zhen, et al. A numerical model for simulating the droplet flow and evaporation[J]. Journal of Engineering Thermophysics, 2016, 37(3): 637-642. | |
14 | TANGUY S, MÉNARD T, BERLEMONT A. A level set method for vaporizing two-phase flows[J]. Journal of Computational Physics, 2007, 221(2): 837-853. |
15 | 谢驰宇, 张建影, 王沫然. 液滴在固体平表面上均匀蒸发过程的格子Boltzmann模拟[J]. 应用数学和力学, 2014, 35(3): 247-253. |
XIE Chiyu, ZHANG Jianying, WANG Moran. Lattice boltzmann simulation of droplet evaporation on flat solid surface[J]. Applied Mathematics and Mechanics, 2014, 35(3): 247-253. | |
16 | HU H, LARSON R G. Analysis of the microfluid flow in an evaporating sessile droplet[J]. Langmuir, 2005, 21(9): 3963-3971. |
17 | 杨开. 液滴和弯液面蒸发动力学特性的ALE模拟[D]. 上海: 上海交通大学, 2014. |
YANG Kai. Numerical simulation on hydrodynamic characteristics of sessile droplet and meniscus evaporation using arbitrary Lagrangian-Eulerian formulation[D]. Shanghai: Shanghai Jiao Tong University, 2014. | |
18 | CAZABAT A M, GUÉNA G. Evaporation of macroscopic sessile droplets[J]. Soft Matter, 2010, 6(12): 2591. |
19 | SEMENOV S, STAROV V M, RUBIO R G, et al. Instantaneous distribution of fluxes in the course of evaporation of sessile liquid droplets: computer simulations[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 372(1/2/3): 127-134. |
20 | GERKEN W J, THOMAS A V, KORATKAR N, et al. Nanofluid pendant droplet evaporation: experiments and modeling[J]. International Journal of Heat and Mass Transfer, 2014, 74: 263-268. |
21 | SEFIANE K, BENNACER R. Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates[J]. Advances in Colloid and Interface Science, 2009, 147/148: 263-271. |
22 | TRYBALA A, OKOYE A, SEMENOV S, et al. Evaporation kinetics of sessile droplets of aqueous suspensions of inorganic nanoparticles[J]. Journal of Colloid and Interface Science, 2013, 403: 49-57. |
23 | SOBAC B, BRUTIN D. Thermal effects of the substrate on water droplet evaporation[J]. Physical Review E, 2012, 86(2): 021602. |
24 | 王宇, 潘振海. 水平及竖直基底上微小固着液滴的蒸发特性分析[J]. 化工进展, 2021, 40(7): 3632-3644. |
WANG Yu, PAN Zhenhai. Analysis of evaporation characteristics of small water droplets sessile on horizontal and vertical substrates[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3632-3644. | |
25 | MOGHIMAN M, ASLANI B. Influence of nanoparticles on reducing and enhancing evaporation mass transfer and its efficiency[J]. International Journal of Heat and Mass Transfer, 2013, 61: 114-118. |
26 | PAK B C, CHO Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer, 1998, 11(2): 151-170. |
27 | 金铭, 胡定华, 李强, 等. Al2O3纳米流体液滴蒸发特性的数值模拟研究[J]. 化工学报, 2019, 70(11): 4199-4206. |
JIN Ming, HU Dinghua, LI Qiang, et al. Simulation of Al2O3 nanofluid droplet evaporation characteristics[J]. CIESC Journal, 2019, 70(11): 4199-4206. | |
28 | ANYFANTAKIS M, GENG Z, MOREL M, et al. Modulation of the coffee-ring effect in particle/surfactant mixtures: the importance of particle-interface interactions[J]. Langmuir, 2015, 31(14): 4113-4120. |
29 | 胡定华, 刘诗雨. Al2O3纳米流体液滴撞击壁面的动力学行为数值研究[J]. 浙江大学学报(工学版), 2021, 55(5): 991-998. |
HU Dinghua, LIU Shiyu. Numerical study on dynamic behaviors of Al2O3 nanofluid droplet impacting on solid wall[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(5): 991-998. | |
30 | HAMILTON R L, CROSSER O K. Thermal conductivity of heterogeneous two-component systems[J]. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187-191. |
31 | TANVIR S, QIAO Li. Surface tension of Nanofluid-type fuels containing suspended nanomaterials[J]. Nanoscale Research Letters, 2012, 7(1): 226. |
32 | YANG Kai, HONG Fangjun, CHENG Ping. A fully coupled numerical simulation of sessile droplet evaporation using arbitrary Lagrangian-Eulerian formulation[J]. International Journal of Heat and Mass Transfer, 2014, 70: 409-420. |
33 | SEMENOV S, STAROV V M, RUBIO R G. Evaporation of pinned sessile microdroplets of water on a highly heat-conductive substrate: computer simulations[J]. The European Physical Journal Special Topics, 2013, 219(1): 143-154. |
34 | 董佰扬, 单彦广, 翁志浩. 基于动态接触角的固着液滴蒸发过程模拟[J]. 动力工程学报, 2020, 40(12): 1002-1007. |
DONG Baiyang, SHAN Yanguang, WENG Zhihao. Simulation of sessile droplet evaporation based on dynamic contact angle[J]. Journal of Chinese Society of Power Engineering, 2020, 40(12): 1002-1007. | |
35 | DUNN G J, WILSON S K, DUFFY B R, et al. A mathematical model for the evaporation of a thin sessile liquid droplet: comparison between experiment and theory[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 323(1/2/3): 50-55. |
36 | BHARDWAJ R, FANG Xiaohua, ATTINGER D. Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study[J]. New Journal of Physics, 2009, 11(7): 075020. |
37 | ROUTH A F, ZIMMERMAN W B. The diffusion coefficient of a swollen microgel particle[J]. Journal of Colloid and Interface Science, 2003, 261(2): 547-551. |
38 | SEMENOV S, STAROV V, RUBIO R G, et al. Computer simulations of quasi-steady evaporation of sessile liquid droplets[C]//Trends in Colloid and Interface Science ⅩⅩⅣ, 2011, 138: 115-120. |
39 | MAHBUBUL I M, SAIDUR R, AMALINA M A. Latest developments on the viscosity of nanofluids[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 874-885. |
[1] | 肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20. |
[2] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[3] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[4] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[7] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[8] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[9] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[10] | 张岱凌, 丁玉梅, 左夏华, 黎昊为, 杨卫民, 阎华, 安瑛. 废弃墨粉纳米流体的光热特性[J]. 化工进展, 2023, 42(9): 4791-4798. |
[11] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[12] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[13] | 王云刚, 焦健, 邓世丰, 赵钦新, 邵怀爽. 冷凝换热与协同脱硫性能实验分析[J]. 化工进展, 2023, 42(8): 4230-4237. |
[14] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[15] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 410
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 316
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |