化工进展 ›› 2022, Vol. 41 ›› Issue (6): 2967-2980.DOI: 10.16085/j.issn.1000-6613.2021-1406
王恩华1(), 靳丽丽2, 高善彬3, 迟克彬3, 段爱军1()
收稿日期:
2021-07-05
修回日期:
2021-10-10
出版日期:
2022-06-10
发布日期:
2022-06-21
通讯作者:
段爱军
作者简介:
王恩华(1996—),女,博士研究生,研究方向油品加氢精制催化剂研制。E-mail:基金资助:
WANG Enhua1(), JIN Lili2, GAO Shanbin3, CHI Kebin3, DUAN Aijun1()
Received:
2021-07-05
Revised:
2021-10-10
Online:
2022-06-10
Published:
2022-06-21
Contact:
DUAN Aijun
摘要:
随环保法规和燃料质量要求逐步严格,作为生产高辛烷值汽油、低凝点柴油和高黏度指数润滑油的重要工艺技术,正构烷烃临氢异构化反应至关重要。本文综述了临氢异构化反应中的双功能催化剂是由提供加氢/脱氢活性的金属中心和用于骨架异构化的酸性载体组成。介绍了双功能催化剂中不同金属中心和酸性载体的贡献,相对于负载贵金属双功能催化剂,双金属、过渡金属磷化物及稀土掺杂催化剂活性相当,抗硫性高,成本低。此外,介微孔分子筛不仅具有易于反应物和产物扩散的较大孔径,还具有适宜酸性,能够促进骨架异构化,用于临氢异构化催化剂的载体而受到广泛关注。最后探讨了影响双功能催化剂异构化性能主要因素取决于金属和酸性载体之间的平衡,即金属中心和酸中心比例及距离。当催化剂存在适宜金属中心/酸中心比例,且金属-酸中心距离处于纳米级范围时,催化活性和异构化产物选择性会更高。
中图分类号:
王恩华, 靳丽丽, 高善彬, 迟克彬, 段爱军. 正构烷烃临氢异构化催化剂研究进展[J]. 化工进展, 2022, 41(6): 2967-2980.
WANG Enhua, JIN Lili, GAO Shanbin, CHI Kebin, DUAN Aijun. Development of catalyst for n-paraffins hydroisomerization[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2967-2980.
双功能催化剂 | 制备方法 | 反应条件 | 反应性能 | 文献 |
---|---|---|---|---|
Pd@beta、Pd@MOR Pd/beta、Pd/MOR | 包埋法 浸渍法 | 反应温度200~250℃,压力4MPa,n(H2)/n(正庚烷)=6.64,WHSV=2h-1 | 包埋法制得Pd@beta和Pd@MOR催化剂表现出更高的异构化选择性,Pd@beta上i-C7产率达50%以上,而Pd/beta,i-C7产率为46%;Pd@MOR上i-C7产率40%左右,Pd/MOR上i-C7产率仅为28% | [ |
Pd-Pt/H-beta | 水溶液喷雾浸渍 | 反应温度185~230℃,大气压, p(H2)=1~50bar,LHSV=0~5h-1,n(H2)/n(hydrocarbons)=750∶1 | 温度升高转化率逐渐升高,高达90%;在200℃、1bar、LHSV=3h-1下,不同Pd/Pt比转化率不同;p(H2)从1bar增加到50bar,获得类似转化率反应温度需提高20℃;220℃、1bar下LHSV增加,i-C16产率先增加后降低,最高约70% | [ |
Pt/H-beta、Ni/H-betaNi-Pt/H-beta | 干法浸渍 分步浸渍 | 反应温度260~300℃,压力10~30bar,n(H2)/n(原料)=15,WHSV=4~10h-1 | 相同条件下,Ni-Pt催化剂中Pt的引入增强异构化选择性,对于Ni-Pt/H-beta,温度升高,转化率24.1%增至92.1%,选择性降低81.3%至33.9%;WHSV升高,转化率从53.7%降至24.1%;压力升高时转化率和选择性均略有升高 | [ |
Pd/SAPO-31 Ni2P/SAPO-31 Pd-Ni2P/SAPO-31 | 浸渍法 浸渍-程序升温还原法 | 反应温度280~400℃,压力2MPa,WHSV=3.7h-1,V(H2)/V(C16)=500 | 0.05Pd/S31催化剂表现出最低的n-C16转化率(60%)和i-C16产率(40%);而4Ni2P/SAPO-31的n-C16转化率和i-C16产率相对较高;对于0.05Pd-4Ni2P/SAPO-31具有最高的n-C16转化率(约85%)和i-C16产率(约70%) | [ |
Ni-Mo/SAPO-11 Ni/SAPO-11 Mo/SAPO-11 | 真空辅助浸渍法 | 反应温度270~340℃,压力2MPa,WHSV=3.1h-1,V(H2)/V(C16)=650 | 与Ni/SAPO-11相比,3.0Ni-0.5Mo/SAPO-11催化剂裂解产物产率低,在转化率93.0%时裂解产物产率为11.6%,且对异构体选择性可达81%。在315℃反应100h时,3.0Ni-0.5Mo/SAPO-11催化剂对正十六烷异构化转化率和选择性分别约为92%和86%,稳定性好 | [ |
MoP/Hbeta | 低温自燃法 浸渍法 | 反应温度280~360℃,常压,n(H2)/n(正庚烷)=4~16,WHSV=1.2h-1 | 浸渍法制备30%MoP/Hbeta-Im正庚烷转化率26.9%,异构化选择性85.3%;而自燃法制备MoP/Hbeta-c催化剂表现出较高活性51%和较低异构化选择性68.8%。H2/正庚烷增加,n-C7转化率降低,i-C7选择性增加;反应温度升高,催化活性迅速增强,反应温度超过320℃,i-C7选择性下降,裂解选择性上升 | [ |
Ni-Ce/SAPO-11 | 浸渍法 | 反应温度300℃,常压,n(H2)/n(n-C7H16)=12,WHSV=3.52h-1 | 2%Ce的催化剂活性最高,转化率为28.8%,选择性为82.7%;随反应时间延长,n-C7转化率略有下降,i-C7选择性略有上升,稳定性好 | [ |
表1 具有不同金属中心的双功能催化剂的临氢异构化性能
双功能催化剂 | 制备方法 | 反应条件 | 反应性能 | 文献 |
---|---|---|---|---|
Pd@beta、Pd@MOR Pd/beta、Pd/MOR | 包埋法 浸渍法 | 反应温度200~250℃,压力4MPa,n(H2)/n(正庚烷)=6.64,WHSV=2h-1 | 包埋法制得Pd@beta和Pd@MOR催化剂表现出更高的异构化选择性,Pd@beta上i-C7产率达50%以上,而Pd/beta,i-C7产率为46%;Pd@MOR上i-C7产率40%左右,Pd/MOR上i-C7产率仅为28% | [ |
Pd-Pt/H-beta | 水溶液喷雾浸渍 | 反应温度185~230℃,大气压, p(H2)=1~50bar,LHSV=0~5h-1,n(H2)/n(hydrocarbons)=750∶1 | 温度升高转化率逐渐升高,高达90%;在200℃、1bar、LHSV=3h-1下,不同Pd/Pt比转化率不同;p(H2)从1bar增加到50bar,获得类似转化率反应温度需提高20℃;220℃、1bar下LHSV增加,i-C16产率先增加后降低,最高约70% | [ |
Pt/H-beta、Ni/H-betaNi-Pt/H-beta | 干法浸渍 分步浸渍 | 反应温度260~300℃,压力10~30bar,n(H2)/n(原料)=15,WHSV=4~10h-1 | 相同条件下,Ni-Pt催化剂中Pt的引入增强异构化选择性,对于Ni-Pt/H-beta,温度升高,转化率24.1%增至92.1%,选择性降低81.3%至33.9%;WHSV升高,转化率从53.7%降至24.1%;压力升高时转化率和选择性均略有升高 | [ |
Pd/SAPO-31 Ni2P/SAPO-31 Pd-Ni2P/SAPO-31 | 浸渍法 浸渍-程序升温还原法 | 反应温度280~400℃,压力2MPa,WHSV=3.7h-1,V(H2)/V(C16)=500 | 0.05Pd/S31催化剂表现出最低的n-C16转化率(60%)和i-C16产率(40%);而4Ni2P/SAPO-31的n-C16转化率和i-C16产率相对较高;对于0.05Pd-4Ni2P/SAPO-31具有最高的n-C16转化率(约85%)和i-C16产率(约70%) | [ |
Ni-Mo/SAPO-11 Ni/SAPO-11 Mo/SAPO-11 | 真空辅助浸渍法 | 反应温度270~340℃,压力2MPa,WHSV=3.1h-1,V(H2)/V(C16)=650 | 与Ni/SAPO-11相比,3.0Ni-0.5Mo/SAPO-11催化剂裂解产物产率低,在转化率93.0%时裂解产物产率为11.6%,且对异构体选择性可达81%。在315℃反应100h时,3.0Ni-0.5Mo/SAPO-11催化剂对正十六烷异构化转化率和选择性分别约为92%和86%,稳定性好 | [ |
MoP/Hbeta | 低温自燃法 浸渍法 | 反应温度280~360℃,常压,n(H2)/n(正庚烷)=4~16,WHSV=1.2h-1 | 浸渍法制备30%MoP/Hbeta-Im正庚烷转化率26.9%,异构化选择性85.3%;而自燃法制备MoP/Hbeta-c催化剂表现出较高活性51%和较低异构化选择性68.8%。H2/正庚烷增加,n-C7转化率降低,i-C7选择性增加;反应温度升高,催化活性迅速增强,反应温度超过320℃,i-C7选择性下降,裂解选择性上升 | [ |
Ni-Ce/SAPO-11 | 浸渍法 | 反应温度300℃,常压,n(H2)/n(n-C7H16)=12,WHSV=3.52h-1 | 2%Ce的催化剂活性最高,转化率为28.8%,选择性为82.7%;随反应时间延长,n-C7转化率略有下降,i-C7选择性略有上升,稳定性好 | [ |
催化剂 | 开发公司 | 型号 | 反应条件 | 辛烷值(单程 转化产品) |
---|---|---|---|---|
低温型异构化催化剂[ | UOP | I-8 | 130~170℃、1.7~1.8MPa、0.8~1.0h-1、氢油摩尔比1~2 | 84.5 |
I-82、I-84、I-122 | 120~180℃、3.0~4.0MPa、1.5h-1、氢油摩尔比0.3~0.5 | 83~86 | ||
Axens | IS614A | 120~180℃、2.0MPa、2.0h-1、氢油摩尔比<1 | 83 | |
ATIS-2L | 110~170℃、2.0MPa、2.0h-1、氢油摩尔比<1 | 84~85 | ||
华东理工大学与金陵石化分公司 | Pt-Cl/Al2O3 | 140℃、2.0MPa、1.0h-1、氢油摩尔比1~2 | 80.2 | |
中温型异构化催化剂[ | UOP | I-7 0.3Pt/HM | 260~280℃、1.5~3MPa、2h-1、氢油摩尔比4 | 78~80 |
Axens | IP-632 | 250~270℃、1.5~3MPa、1~2h-1、氢油摩尔比3~4 | 80 | |
RIPP | FI-15 Pt/HM | 250~270℃、1.6MPa、1.7h-1、氢油摩尔比2.6 | 81 | |
华东理工大学与金陵石化分公司 | CI-50 Pd/HM | 260℃、2MPa、2h-1、氢油摩尔比2.7 | 80.9 |
表2 工业应用低温、中温型轻烃异构化催化剂
催化剂 | 开发公司 | 型号 | 反应条件 | 辛烷值(单程 转化产品) |
---|---|---|---|---|
低温型异构化催化剂[ | UOP | I-8 | 130~170℃、1.7~1.8MPa、0.8~1.0h-1、氢油摩尔比1~2 | 84.5 |
I-82、I-84、I-122 | 120~180℃、3.0~4.0MPa、1.5h-1、氢油摩尔比0.3~0.5 | 83~86 | ||
Axens | IS614A | 120~180℃、2.0MPa、2.0h-1、氢油摩尔比<1 | 83 | |
ATIS-2L | 110~170℃、2.0MPa、2.0h-1、氢油摩尔比<1 | 84~85 | ||
华东理工大学与金陵石化分公司 | Pt-Cl/Al2O3 | 140℃、2.0MPa、1.0h-1、氢油摩尔比1~2 | 80.2 | |
中温型异构化催化剂[ | UOP | I-7 0.3Pt/HM | 260~280℃、1.5~3MPa、2h-1、氢油摩尔比4 | 78~80 |
Axens | IP-632 | 250~270℃、1.5~3MPa、1~2h-1、氢油摩尔比3~4 | 80 | |
RIPP | FI-15 Pt/HM | 250~270℃、1.6MPa、1.7h-1、氢油摩尔比2.6 | 81 | |
华东理工大学与金陵石化分公司 | CI-50 Pd/HM | 260℃、2MPa、2h-1、氢油摩尔比2.7 | 80.9 |
沸石 | 孔道尺寸/? | 拓扑结构 | 酸性质 | 文献 |
---|---|---|---|---|
丝光沸石 | 6.5×7.0 | MOR(十二元环) | 丰富的酸中心、比较温和的酸强度 | [ |
beta | 6.6×6.7 | BEA(十二元环) | 较强的酸性 | [ |
ZSM-5 | 5.5×5.1 | MFI(十元环) | 强酸量大,L酸与B酸比值高 | [ |
ZSM-22 | 5.7×4.6 | TON(十元环) | 中等强度的表面酸性 | [ |
ZSM-23 | 5.2×4.5 | MTT(十元环) | 表面酸性较强 | [ |
SAPO-11 | 3.9×6.3 | AEL(十元环) | 适中的中强酸 | [12,27,19,29] |
SAPO-31 | 5.4×5.4 | ATO(十二元环) | 温和的酸强度和酸量 | [ |
表3 具有形状选择性的沸石结构和酸性
沸石 | 孔道尺寸/? | 拓扑结构 | 酸性质 | 文献 |
---|---|---|---|---|
丝光沸石 | 6.5×7.0 | MOR(十二元环) | 丰富的酸中心、比较温和的酸强度 | [ |
beta | 6.6×6.7 | BEA(十二元环) | 较强的酸性 | [ |
ZSM-5 | 5.5×5.1 | MFI(十元环) | 强酸量大,L酸与B酸比值高 | [ |
ZSM-22 | 5.7×4.6 | TON(十元环) | 中等强度的表面酸性 | [ |
ZSM-23 | 5.2×4.5 | MTT(十元环) | 表面酸性较强 | [ |
SAPO-11 | 3.9×6.3 | AEL(十元环) | 适中的中强酸 | [12,27,19,29] |
SAPO-31 | 5.4×5.4 | ATO(十二元环) | 温和的酸强度和酸量 | [ |
nPt/nA | >0.17 | 0.03<nPt/nA<0.17 | <0.03 |
---|---|---|---|
活性 | 高 | 高 | 低 |
稳定性 | 高 | 一般 | 低 |
反应路径 | n-C10 | n-C10 |
表4 具有不同nPt/nA比的PtHY对正癸烷临氢异构化和裂化的影响
nPt/nA | >0.17 | 0.03<nPt/nA<0.17 | <0.03 |
---|---|---|---|
活性 | 高 | 高 | 低 |
稳定性 | 高 | 一般 | 低 |
反应路径 | n-C10 | n-C10 |
67 | ALVAREZ F, RIBEIRO F R, PEROT G, et al. Hydroisomerization and hydrocracking of alkanes (Ⅶ): influence of the balance between acid and hydrogenating functions on the transformation of n-decane on PtHY catalysts[J]. Journal of Catalysis, 1996, 162(2): 179-189. |
68 | GUISNET M. “Ideal” bifunctional catalysis over Pt-acid zeolites[J]. Catalysis Today, 2013, 218/219: 123-134. |
69 | HENGSAWAD T, SRIMINGKWANCHAI C, BUTNARK S, et al. Effect of metal-acid balance on hydroprocessed renewable jet fuel synthesis from hydrocracking and hydroisomerization of biohydrogenated diesel over Pt-supported catalysts[J]. Industrial & Engineering Chemistry Research, 2018, 57(5): 1429-1440. |
70 | WEI X M, KIKHTYANIN O V, PARMON V N, et al. Synergetic effect between the metal and acid sites of Pd/SAPO-41 bifunctional catalysts in n-hexadecane hydroisomerization[J]. Journal of Porous Materials, 2018, 25(1): 235-247. |
71 | CHENG K, VAN DER WAL L I, YOSHIDA H, et al. Impact of the spatial organization of bifunctional metal-zeolite catalysts on the hydroisomerization of light alkanes[J]. Angewandte Chemie International Edition, 2020, 132(9): 3620-3628. |
72 | WEISZ P B. Polyfunctional heterogeneous catalysis[J]. Advances in Catalysis, 1962, 13: 137-190. |
73 | ZEČEVIĆ J, VANBUTSELE G, DE JONG K P, et al. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons[J]. Nature, 2015, 528(7581): 245-248. |
74 | SAMAD J E, BLANCHARD J, SAYAG C, et al. The controlled synthesis of metal-acid bifunctional catalysts: the effect of metal: acid ratio and metal-acid proximity in Pt silica-alumina catalysts for n-heptane isomerization[J]. Journal of Catalysis, 2016, 342: 203-212. |
75 | MOUSSA O B, TINAT L, JIN X J, et al. Heteroaggregation and selective deposition for the fine design of nanoarchitectured bifunctional catalysts: application to hydroisomerization[J]. ACS Catalysis, 2018, 8(7): 6071-6078. |
1 | 李大东, 聂红, 孙丽丽. 加氢处理工艺与工程[M]. 2版. 北京: 中国石化出版社, 2016: 478-494. |
LI Dadong, NIE Hong, SUN Lili. Hydroprocessing technology and engineering[M]. 2nd ed. Beijing: China Petrochemical Press, 2016: 478-494. | |
2 | ZHANG M, CHEN Y J, WANG L, et al. Shape selectivity in hydroisomerization of hexadecane over Pt supported on 10-ring zeolites: ZSM-22, ZSM-23, ZSM-35, and ZSM-48[J]. Industrial & Engineering Chemistry Research, 2016, 55(21): 6069-6078. |
3 | 王孟艳, 韩磊, 黄传峰, 等. 轻质烷烃异构化催化剂研究进展[J]. 工业催化, 2016, 24(5): 19-24. |
76 | WEISZ P B, SWEGLER E W. Stepwise reaction on separate catalytic centers: isomerization of saturated hydrocarbons[J]. Science, 1957, 126(3262): 31-32. |
77 | BATALHA N, ASTAFAN A, REIS J C DOS, et al. Hydroisomerization of n-hexadecane over bifunctional Pt-HBEA catalysts. Influence of Si/Al ratio on activity selectivity[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114(2): 661-673. |
3 | WANG Mengyan, HAN Lei, HUANG Chuanfeng, et al. Development in the catalysts for light paraffin isomerization[J]. Industrial Catalysis, 2016, 24(5): 19-24. |
4 | 宋烨, 林伟, 龙军, 等. 不同改性ZSM-5分子筛负载Ni催化剂的正辛烷芳构化和异构化催化性能[J]. 石油学报(石油加工), 2016, 32(4): 659-665. |
SONG Ye, LIN Wei, LONG Jun, et al. Catalytic aromatization and isomerization performance of differently modified ZSM-5 zeolite-supported Ni catalysts for n-octane[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(4): 659-665. | |
5 | ZHAO X L, LIU W, WANG J Q, et al. Interface mediated crystallization of plate-like SAPO-41 crystals to promote catalytic hydroisomerization[J]. Applied Catalysis A: General, 2020, 602: 117738-117751. |
6 | CHEN H M, YI F J, MA C P, et al. Hydroisomerization of n-heptane on a new kind of bifunctional catalysts with palladium nanoparticles encapsulating inside zeolites[J]. Fuel, 2020, 268: 117241-117253. |
7 | BAUER F, FICHT K, BERTMER M, et al. Hydroisomerization of long-chain paraffins over nano-sized bimetallic Pt-Pd/H-beta catalysts[J]. Catalysis Science & Technology, 2014, 4(11): 4045-4054. |
8 | KARAKOULIA S A, HERACLEOUS E, LAPPAS A A. Mild hydroisomerization of heavy naphtha on mono- and bi-metallic Pt and Ni catalysts supported on beta zeolite[J]. Catalysis Today, 2020, 355: 746-756. |
9 | WANG W, LIU C J, WU W. Bifunctional catalysts for the hydroisomerization of n-alkanes: the effects of metal-acid balance and textural structure[J]. Catalysis Science & Technology, 2019, 9(16): 4162-4187. |
10 | WANG D X, KANG X, GU Y, et al. Electronic tuning of Ni by Mo species for highly efficient hydroisomerization of n-alkanes comparable to Pt-based catalysts[J]. ACS Catalysis, 2020, 10(18): 10449-10458. |
11 | LIU P, CHANG W T, WANG J, et al. MoP/Hβ catalyst prepared by low-temperature auto-combustion for hydroisomerization of n-heptane[J]. Catalysis Communications, 2015, 66: 79-82. |
12 | 所艳华, 李秀敏, 陈刚, 等. Ce促进Ni/SAPO-11催化剂上正庚烷的临氢异构化[J]. 高等学校化学学报, 2014, 35(6): 1252-1257. |
SUO Yanhua, LI Xiumin, CHEN Gang, et al. Ni/SAPO-11 promoted by rare earth element Ce for hydroisomerization of n-heptane[J]. Chemical Journal of Chinese Universities, 2014, 35(6): 1252-1257. | |
13 | CLAUDE M C, MARTENS J A. Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst[J]. Journal of Catalysis, 2000, 190(1): 39-48. |
14 | 王新苗, 杨晓东, 孙发民, 等. Pt/SAPO-11和Pt/SAPO-31催化剂对长链烷烃的加氢异构性能[J]. 石油学报(石油加工), 2017, 33(4): 717-723. |
WANG Xinmiao, YANG Xiaodong, SUN Famin, et al. Hydroisomerization of long-chain alkanes over Pt/SAPO-11 and Pt/SAPO-31 catalysts[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(4): 717-723. | |
15 | 吴伟, 王瑜, 张瑞, 等. Pd/ZSM-22分子筛双功能催化剂的制备及其加氢异构化反应性能[J]. 黑龙江大学自然科学学报, 2011, 28(4): 532-537. |
WU Wei, WANG Yu, ZHANG Rui, et al. Preparation of Pd/ZSM-22 bifunctional catalysts and its performance in the hydroisomerization of n-decane[J]. Journal of Natural Science of Heilongjiang University, 2011, 28(4): 532-537. | |
16 | GENG L L, GONG J J, QIAO G L, et al. Effect of metal precursors on the performance of Pt/SAPO-11 catalysts for n-dodecane hydroisomerization[J]. ACS Omega, 2019, 4(7): 12598-12605. |
17 | GE L X, YU G, CHEN X Q, et al. Effects of particle size on bifunctional Pt/SAPO-11 catalysts in the hydroisomerization of n-dodecane[J]. New Journal of Chemistry, 2020, 44(7): 2996-3003. |
18 | CHEN H M, LIU S Y, YIN J Q, et al. The influence of size and shape of Pd nanoparticles on the performances of Pd/beta catalysts for n-heptane hydroisomerization[J]. ChemCatChem, 2019, 11(15): 3542-3551. |
19 | GENG C H, ZHANG F, GAO Z X, et al. Hydroisomerization of n-tetradecane over Pt/SAPO-11 catalyst[J]. Catalysis Today, 2004, 93/94/95: 485-491. |
20 | PARÍS R S, L’ABBATE M E, LIOTTA L F, et al. Hydroconversion of paraffinic wax over platinum and palladium catalysts supported on silica-alumina[J]. Catalysis Today, 2016, 275: 141-148. |
21 | 李金楼, 赵文博, 傅雯倩. 介孔ZSM-22沸石负载Pt对十二烷加氢异构化性能的影响[J]. 现代化工, 2019, 39(2): 74-78. |
LI Jinlou, ZHAO Wenbo, FU Wenqian. Influences of mesoporous ZSM-22 zeolite supported Pt catalyst on hydroisomerization of n-dodecane[J]. Modern Chemical Industry, 2019, 39(2): 74-78. | |
22 | WANG W, LIU C J, WU W. Bifunctional catalysts for the hydroisomerization of n-alkanes: the effects of metal-acid balance and textural structure[J]. Catalysis Science & Technology, 2019, 9(16): 4162-4187. |
23 | ROLDÁN R, BEALE A M, SÁNCHEZ-SÁNCHEZ M, et al. Effect of the impregnation order on the nature of metal particles of bi-functional Pt/Pd-supported zeolite beta materials and on their catalytic activity for the hydroisomerization of alkanes[J]. Journal of Catalysis, 2008, 254(1): 12-26. |
24 | JIA G Z, GUO C M, WANG W, et al. The synergic effects of highly selective bimetallic Pt-Pd/SAPO-41 catalysts for the n-hexadecane hydroisomerization[J]. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1111-1124. |
25 | KIM J, HAN S W, KIM J C, et al. Supporting nickel to replace platinum on zeolite nanosponges for catalytic hydroisomerization of n-dodecane[J]. ACS Catalysis, 2018, 8(11): 10545-10554. |
26 | LIU P, WU M Y, WANG J, et al. Hydroisomerization of n-heptane over MoP/Hβ catalyst doped with metal additive[J]. Fuel Processing Technology, 2015, 131: 311-316. |
27 | YANG Z C, LIU Y Q, LI Y P, et al. Effect of preparation method on the bimetallic NiCu/SAPO-11 catalysts for the hydroisomerization of n-octane[J]. Journal of Energy Chemistry, 2019, 28: 23-30. |
28 | TIAN S S, CHEN J X. Hydroisomerization of n-dodecane on a new kind of bifunctional catalyst: nickel phosphide supported on SAPO-11 molecular sieve[J]. Fuel Processing Technology, 2014, 122: 120-128. |
29 | LIU Y X, LIU X M, ZHAO L M, et al. Effect of lanthanum species on the physicochemical properties of La/SAPO-11 molecular sieve[J]. Journal of Catalysis, 2017, 347: 170-184. |
30 | DECOLATTI H P, GIORIA E G, IBARLÍN S N, et al. Exchanged lanthanum in InHMOR and its impact on the catalytic performance of InHMOR. Spectroscopic, volumetric and microscopic studies[J]. Microporous and Mesoporous Materials, 2016, 222: 9-22. |
31 | SONG H, WANG N, SONG H L, et al. La-Ni modified S2O8 2-/ZrO2-Al2O3 catalyst in n-pentane hydroisomerization[J]. Catalysis Communications, 2015, 59: 61-64. |
32 | TAN Y C, HU W J, DU Y Y, et al. Species and impacts of metal sites over bifunctional catalyst on long chain n-alkane hydroisomerization: a review[J]. Applied Catalysis A: General, 2021, 611: 117916-117935. |
33 | SHAO Y F, WANG L Z, ZHANG J L, et al. Synthesis of hydrothermally stable and long-range ordered Ce-MCM-48 and Fe-MCM-48 materials[J]. The Journal of Physical Chemistry B, 2005, 109(44): 20835-20841. |
34 | 张孔远, 崔程鑫, 赵兴涛, 等. 稀土Ce改性Pt/Hβ-HZSM-5异构化催化剂的性能[J]. 石油化工, 2017, 46(5): 524-529. |
ZHANG Kongyuan, CUI Chengxin, ZHAO Xingtao, et al. Properties of Ce modified Pt/Hβ-HZSM-5 catalysts for the isomerization of n-hexane[J]. Petrochemical Technology, 2017, 46(5): 524-529. | |
35 | TAYLOR R J, PETTY R H. Selective hydroisomerization of long chain normal paraffins[J]. Applied Catalysis A: General, 1994, 119(1): 121-138. |
36 | 徐铁钢, 吴显军, 王刚, 等. 轻质烷烃异构化催化剂研究进展[J]. 化工进展, 2015, 34(2): 397-401. |
XU Tiegang, WU Xianjun, WANG Gang, et al. Light paraffin isomerization catalyst and its development[J]. Chemical Industry and Engineering Progress, 2015, 34(2): 397-401. | |
37 | 张秋平, 濮仲英, 于春年, 等. RISO型C5/C6烷烃异构化催化剂的工业生产及应用[J]. 石油炼制与化工, 2005, 36(8): 1-4. |
ZHANG Qiuping, PU Zhongying, YU Chunnian, et al. Production and application of RISO C5/C6 alkanes isomerization catalyst[J]. Petroleum Processing and Petrochemicals, 2005, 36(8): 1-4. | |
38 | 王瑞英, 李斌, 黄国雄, 等. C5/C6烷烃异构化催化剂的千吨级装置使用试验[J]. 石油炼制与化工, 1991, 22(12): 15-18. |
WANG Ruiying, LI Bin, HUANG Guoxiong, et al. Test of C5/C6 isomerization catalyst on a 1000t/a isomerization unit[J]. Petroleum Processing and Petrochemicals, 1991, 22(12): 15-18. | |
39 | 马宇翔, 孙娜, 王钰佳, 等. 导向剂法制备纳米棒状丝光沸石分子筛及其加氢异构化性能[J]. 人工晶体学报, 2018, 47(7): 1382-1387. |
MA Yuxiang, SUN Na, WANG Yujia, et al. Synthesis of nano rod-shaped mordenite sieve by guide agent method and its hydrogen isomerization performance[J]. Journal of Synthetic Crystals, 2018, 47(7): 1382-1387. | |
40 | 郑仁垟. 金属-分子筛双功能催化剂的结构设计及其烷烃异构研究进展[J]. 化工进展, 2021, 40(7): 3785-3790. |
ZHENG Renyang. Advances in structure design and alkane isomerization performance of metal-zeolite bifunctional catalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3785-3790. | |
41 | BAI X F, WEI X M, LIU Y, et al. Hydroisomerization of n-hexadecane over Hβ molecular sieve loading palladium bifunctional catalyst: effect of SiO2/Al2O3 molar ratios[J]. IOP Conference Series: Materials Science and Engineering, 2019, 504: 012042-012050. |
42 | WANG X Y, ZHANG X W, WANG Q F. n-Dodecane hydroisomerization over Pt/ZSM-22: controllable microporous Brönsted acidity distribution and shape-selectivity[J]. Applied Catalysis A: General, 2020, 590: 117335-117345. |
43 | CHAI Z B, LÜ E J, ZHANG H K, et al. Effect of ethanol on the isomerization of n-heptane over Pt/SAPO-11 and Pt/ZSM-22 catalysts[J]. Journal of Fuel Chemistry and Technology, 2014, 42(2): 207-211. |
44 | GAO S B, ZHAO Z, LU X F, et al. Hydrocracking diversity in n-dodecane isomerization on Pt/ZSM-22 and Pt/ZSM-23 catalysts and their catalytic performance for hydrodewaxing of lube base oil[J]. Petroleum Science, 2020, 17(6): 1752-1763. |
45 | CHEN Y J, LI C, CHEN X, et al. Synthesis of ZSM-23 zeolite with dual structure directing agents for hydroisomerization of n-hexadecane[J]. Microporous and Mesoporous Materials, 2018, 268: 216-224. |
46 | CHEN Y J, LI C, CHEN X, et al. Synthesis and characterization of iron-substituted ZSM-23 zeolite catalysts with highly selective hydroisomerization of n-hexadecane[J]. Industrial & Engineering Chemistry Research, 2018, 57(41): 13721-13730. |
47 | 吴会敏, 肖林飞, 白雪峰, 等. 硅源和铝源种类对SAPO-31分子筛物化性质及其催化正癸烷加氢异构化反应性能的影响[J]. 石油学报(石油加工), 2014, 30(2): 328-335. |
WU Huimin, XIAO Linfei, BAI Xuefeng, et al. The influence of silicon and aluminum species on physicochemical properties and catalytic performance of SAPO-31 molecular sieve[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(2): 328-335. | |
48 | 朱淑英, 秦波, 王丁, 等. Y沸石对加氢异构催化剂性能的影响[J]. 应用化工, 2020, 49(1): 34-38. |
ZHU Shuying, QIN Bo, WANG Ding, et al. Effects of Y zeolites on catalysts for hydroisomerization[J]. Applied Chemical Industry, 2020, 49(1): 34-38. | |
49 | 王军, 林臻, 张玉辉, 等. Pt/脱铝Y沸石催化剂上正庚烷加氢异构化[J]. 石油化工, 2001, 30(7): 509-512. |
WANG Jun, LIN Zhen, ZHANG Yuhui, et al. Hydroisomerization of n-heptane over platinum catalysts supported on dealuminated Y zeolites[J]. Petrochemical Technology, 2001, 30(7): 509-512. | |
50 | ROLDÁN R, ROMERO F J, JIMÉNEZ-SANCHIDRIÁN C, et al. Influence of acidity and pore geometry on the product distribution in the hydroisomerization of light paraffins on zeolites[J]. Applied Catalysis A: General, 2005, 288(1/2): 104-115. |
51 | 靳丽丽, 马宝利, 董春明, 等. 镍负载AlMCM-41催化剂上正辛烷的加氢异构化研究[J]. 应用科技, 2014, 41(4): 69-72. |
JIN Lili, MA Baoli, DONG Chunming, et al. Reserch of Nickel loading on AlMCM-41 catalyst for hydroisomerization of octane[J]. Applied Science and Technology, 2014, 41(4): 69-72. | |
52 | 范吉元. 介微孔复合材料的合成及其加氢改质性能研究[D]. 北京: 中国石油大学(北京), 2019. |
FAN Jiyuan. Synthesis of micro/mesoporous materials and their catalytic performances for hydro-upgrading[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
53 | JAROSZEWSKA K, FEDYNA M, TRAWCZYŃSKI J. Hydroisomerization of long-chain n-alkanes over Pt/AlSBA-15+zeolite bimodal catalysts[J]. Applied Catalysis B: Environmental, 2019, 255: 117756-117767. |
54 | SAKMECHE M, BELHAKEM A, GHOMARI S A, et al. Hydroconversion of n-C10 alkanes using functionalized AlMCM-41 as catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis, 2020, 129(2): 975-990. |
55 | 徐铁钢, 吴显军, 王刚, 等. 轻质烷烃异构化催化剂研究进展[J]. 化工进展, 2015, 34(2): 397-401. |
XU Tiegang, WU Xianjun, WANG Gang, et al. Light paraffin isomerizadon catalyst and its development[J]. Chemical Industry and Engineering Progress, 2015, 34(2): 397-401. | |
56 | 高志国. Ni-S2O 8 2 - /ZrO2-Al2O3固体超强酸催化剂的制备及其异构化性能研究[D]. 大庆: 东北石油大学, 2015. |
GAO Zhiguo. Ni-S2O 8 2 - /ZrO2-Al2O3 solid superacid catalysts preparation and isomerization performance study[D]. Daqing: Northeast Petroleum University, 2015. | |
57 | BAILEY G C, HOLM V. Sulfate-treated zirconia-gel catalyst: US3032599A[P]. 1962-05-01. |
58 | HINO M, KOBAYASHI S, ARATA K. Solid catalyst treated with anion (Ⅱ): Reactions of butane and isobutane catalyzed by zirconium oxide treated with sulfate ion. Solid superacid catalyst[J]. Journal of the American Chemical Society, 1979, 101(21): 6439-6441. |
59 | 张孔远, 张朋伟, 杨光, 等. Pt-SO4 2-/ZrO2-Al2O3固体超强酸催化剂的研究[J]. 石油炼制与化工, 2020, 51(12): 33-40. |
ZHANG Kongyuan, ZHANG Pengwei, YANG Guang, et al. Study on Pt-SO4 2-/ZrO2-Al2O3 solid superacid catalyst[J]. Petroleum Processing and Petrochemicals, 2020, 51(12): 33-40. | |
60 | 杨万丽. 杂多酸无机-有机杂化材料[M]. 北京: 化学工业出版社, 2016. |
YANG Wanli. Heteropolyacid inorganic-organic hybrid materials[M]. Beijing: Chemical Industry Press, 2016. | |
61 | NA K, OKUHARA T, MISONO M. Skeletal isomerization of n-butane over caesium hydrogen salts of 12-tungstophosphoric acid[J]. Journal of the Chemical Society, Faraday Transactions, 1995, 91(2): 367-374. |
62 | ASTAFAN A, POUILLOUX Y, PATARIN J, et al. Impact of extreme downsizing of *BEA-type zeolite crystals on n-hexadecane hydroisomerization[J]. New Journal of Chemistry, 2016, 40(5): 4335-4343. |
63 | LUCAS A D, SÁNCHEZ P, DORADO F, et al. Effect of the metal loading in the hydroisomerization of n-octane over beta agglomerated zeolite based catalysts[J]. Applied Catalysis A: General, 2005, 294(2): 215-225. |
64 | LÜ Y C, YU Z M, YANG Y, et al. Metal-acid balance in the in situ solid synthesized Ni/SAPO-11 catalyst for n-hexane hydroisomerization[J]. Fuel, 2019, 243: 398-405. |
65 | GUISNET M, ALVAREZ F, GIANNETTO G, et al. Hydroisomerization and hydrocracking of n-heptane on Pth zeolites. Effect of the porosity and of the distribution of metallic and acid sites[J]. Catalysis Today, 1987, 1(4): 415-433. |
66 | GIANNETTO G E, PEROT G R, GULSNET M R. Hydroisomerization and hydrocracking of n-alkanes (I): ideal hydroisomerization PtHY catalysts[J]. Industrial & Engineering Chemistry Product Research and Development, 1986, 25(3): 481-490. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[6] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[7] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20. |
[11] | 戚志程, 马润梅, 李双喜, 刘丽静, 闫欣欣. 高压法兰内开孔金属O形环密封性能及变形失效分析[J]. 化工进展, 2023, 42(S1): 166-174. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[14] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[15] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |