1 |
蒋波, 张晓东, 孙立, 等. 微波促进生物柴油制备的研究进展[J]. 化工进展, 2010, 29(11): 2057-2065.
|
|
JIANG Bo, ZHANG Xiaodong, SUN Li, et al. Advances in micowave promoted biodiesel synthesis[J]. Chemical Industry and Engineering Progress, 2010, 29(11): 2057-2065.
|
2 |
PARANGI T, MISHRA M K. Solid acid catalysts for biodiesel production[J]. Comments on Inorganic Chemistry, 2020, 40(4): 176-216.
|
3 |
ADAM D. Microwave chemistry: out of the kitchen[J]. Nature, 2003, 421(6923): 571-572.
|
4 |
KHEDRI B, MOSTAFAEI M, ARDEBILI S M S. A review on microwave-assisted biodiesel production[J]. Energy Sources A: Recovery Util. Environ. Eff., 2019, 41(19): 2377-2395.
|
5 |
VASUDEV H, SINGH G, BANSAL A, et al. Microwave heating and its applications in surface engineering: a review[J]. Materials Research Express, 2019, 6(10): 102001.
|
6 |
KELEN A, RESS S, NAGY T, et al. “3D layered thermography” method to map the temperature distribution of a free flowing bulk in case of microwave drying[J]. International Journal of Heat and Mass Transfer, 2006, 49(5/6): 1015-1021.
|
7 |
LIU S X, FUKUOKA M, SAKAI N. A finite element model for simulating temperature distributions in rotating food during microwave heating[J]. Journal of Food Engineering, 2013, 115(1): 49-62.
|
8 |
ZHOU J, YANG X Q, CHU Y, et al. A novel algorithm approach for rapid simulated microwave heating of food moving on a conveyor belt[J]. Journal of Food Engineering, 2020, 282: 110029.
|
9 |
ZHU H C, HE J B, HONG T, et al. A rotary radiation structure for microwave heating uniformity improvement[J]. Applied Thermal Engineering, 2018, 141: 648-658.
|
10 |
PITCHAI K, CHEN J J, BIRLA S, et al. A microwave heat transfer model for a rotating multi-component meal in a domestic oven: development and validation[J]. Journal of Food Engineering, 2014, 128: 60-71.
|
11 |
YE J H, HONG T, WU Y Y, et al. Model stirrer based on a multi-material turntable for microwave processing materials[J]. Materials, 2017, 10(2): 95.
|
12 |
YE J H, LAN J Q, XIA Y, et al. An approach for simulating the microwave heating process with a slow- rotating sample and a fast-rotating mode stirrer[J]. International Journal of Heat and Mass Transfer, 2019, 140: 440-452.
|
13 |
MENG Q, LAN J Q, HONG T, et al. Effect of the rotating metal patch on microwave heating uniformity[J]. Journal of Microwave Power and Electromagnetic Energy, 2018, 52(2): 94-108.
|
14 |
ZHU H C, YE J H, GULATI T, et al. Dynamic analysis of continuous-flow microwave reactor with a screw propeller[J]. Applied Thermal Engineering, 2017, 123: 1456-1461.
|
15 |
聂国宇, 金光远, 吴雁泽, 等. 一种带夹层釜式微波反应器加热效果模拟分析[J]. 化学工业与工程, 2020, 37(4): 49-57.
|
|
NIE G Y, JIN G Y, WU Y Z, et al. Simulation analysis of heating effect of a microwave reactor with interlayer tank[J]. Chemical Industry and Engineering, 2020, 37(4): 49-57.
|
16 |
ZHOU J, YANG X Q, YE J H, et al. Arbitrary Lagrangian-Eulerian method for computation of rotating target during microwave heating[J]. International Journal of Heat and Mass Transfer, 2019, 134: 271-285.
|
17 |
HONG Y D, LIN B Q, LI H, et al. Three-dimensional simulation of microwave heating coal sample with varying parameters[J]. Applied Thermal Engineering, 2016, 93: 1145-1154.
|
18 |
GOLDBLITH S A, WANG D I. Effect of microwaves on Escherichia coli and Bacillus subtilis [J]. Applied Microbiology, 1967, 15(6): 1371-1375.
|
19 |
HUANG K M, LIAO Y H. Transient power loss density of electromagnetic pulse in debye media[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(1): 135-140.
|
20 |
PANDIT R B, PRASAD S. Finite element analysis of microwave heating of potato-transient temperature profiles[J]. Journal of Food Engineering, 2003, 60(2): 193-202.
|
21 |
PITCHAI K, BIRLA S L, SUBBIAH J, et al. Coupled electromagnetic and heat transfer model for microwave heating in domestic ovens[J]. Journal of Food Engineering, 2012, 112(1/2): 100-111.
|
22 |
朱铧丞, 兰俊卿, 吴丽, 等. 微波辅助生物柴油生产的一体化计算[J]. 四川大学学报(自然科学版), 2015, 52(6): 1285-1292.
|
|
ZHU H C, LAN J Q, WU L, et al. Integrative calculation for microwave process of biodiesel production[J]. Journal of Sichuan University (Natural Science Edition), 2015, 52(6): 1285-1292.
|
23 |
HAROUCHE I P F, SHAFAI C. Simulation of shaped comb drive as a stepped actuator for microtweezers application[J]. Sensors and Actuators A: Physical, 2005, 123/124: 540-546.
|
24 |
宋睿, 金光远, 崔政伟, 等. 酯交换反应体系混合物料的介电特性[J]. 化工学报, 2018, 69(8): 3670-3677.
|
|
SONG R, JIN G Y, CUI Z W, et al. Dielectric properties of mixed materials in transesterification reaction system[J]. CIESC Journal, 2018, 69(8): 3670-3677.
|
25 |
ZHANG M, JIA X, TANG Z, et al. A fast and accurate method for computing the microwave heating of moving objects[J]. Applied Sciences, 2020, 10(8): 2985.
|
26 |
YE J H, XIA Y, YI Q Y, et al. Multiphysics modeling of microwave heating of solid samples in rotary lifting motion in a rectangular multi-mode cavity[J]. Innovative Food Science & Emerging Technologies, 2021, 73: 102767.
|
27 |
HE J L, YANG Y, ZHU H C, et al. Microwave heating based on two rotary waveguides to improve efficiency and uniformity by gradient descent method[J]. Applied Thermal Engineering, 2020, 178: 115594.
|
28 |
TANG Z M, HONG T, LIAO Y H, et al. Frequency-selected method to improve microwave heating performance[J]. Applied Thermal Engineering, 2018, 131: 642-648.
|