8 |
ASSI G R S, BEARMAN P W, MENEGHINI J R. On the wake-induced vibration of tandem circular cylinders: the vortex interaction excitation mechanism[J]. Journal of Fluid Mechanics, 2010, 661: 365-401.
|
9 |
KIM S, ALAM M M, SAKAMOTO H, et al. Flow-induced vibrations of two circular cylinders in tandem arrangement. Part 1: Characteristics of vibration[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97(5/6): 304-311.
|
10 |
QIN B, ALAM M M, ZHOU Y. Free vibrations of two tandem elastically mounted cylinders in crossflow[J]. Journal of Fluid Mechanics, 2019, 861: 349-381.
|
11 |
张志猛, 及春宁, 许栋, 等. 上游圆柱固定条件下串列三圆柱涡激振动响应和尾流特性[J]. 水动力学研究与进展(A辑), 2019, 34(2): 174-183.
|
|
ZHANG Zhimeng, JI Chunning, XU Dong, et al. Response and wake characteristics of vortex-induced vibrations of three tandem circular cylinders with the upstream cylinder fixed[J]. Chinese Journal of Hydrodynamics, 2019, 34(2): 174-183.
|
12 |
陈威霖, 及春宁, 许栋. 小间距比下串列双圆柱涡激振动数值模拟研究: 振动响应和流体力[J]. 振动与冲击, 2018, 37(23): 261-269.
|
|
CHEN Weilin, JI Chunning, XU Dong. Numerical simulations for VIVs of two tandem cylinders with small spacing ratios: vibration responses and hydrodynamic forces[J]. Journal of Vibration and Shock, 2018, 37(23): 261-269.
|
13 |
陈威霖, 及春宁, 许栋. 小间距比下串列双圆柱涡激振动数值模拟研究: 尾流和耦合机制[J]. 振动与冲击, 2018, 37(23): 270-277, 298.
|
|
CHEN Weilin, JI Chunning, XU Dong. Numerical simulations for VIV of two tandem cylinders with small spacing ratios: wake flow and interaction mechanism[J]. Journal of Vibration and Shock, 2018, 37(23): 270-277, 298.
|
14 |
陈威霖, 及春宁, 许栋, 等. 小直径附加圆柱对圆柱涡激振动抑制的参数优化[J]. 振动与冲击, 2020, 39(3): 24-29, 87.
|
|
CHEN Weilin, JI Chunning, XU Dong, et al. Parametric optimization for vortex-induced vibration suppression of a single cylinder with two small cylinders symmetrically arranged in rear[J]. Journal of Vibration and Shock, 2020, 39(3): 24-29, 87.
|
15 |
FAN X T, WANG Z C, WANG Y, et al. The effect of vortices structures on the flow-induced vibration of three flexible tandem cylinders[J]. International Journal of Mechanical Sciences, 2021, 192: 106132.
|
16 |
FAN X T, GUO K, JIA Z B, et al. Vibration mode and velocity interference mechanism of tandem cylinders at subcritical Reynolds number[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 199: 104136.
|
1 |
路秀林, 王者相. 塔设备[M]. 北京: 化学工业出版社, 2004.
|
|
LU Xiulin, WANG Zhexiang. Tower Equipment[M]. Beijing: Chemical Industry Press, 2004.
|
17 |
HUERA-HUARTE F J. Dynamics and excitation in a low mass-damping cylinder in cross-flow with side-by-side interference[J]. Journal of Fluid Mechanics, 2018, 850: 370-400.
|
18 |
常跃峰, 姜楠, 夏振炎, 等. 沟槽壁湍流减阻机理的氢气泡流动显示及数字图像分析[J]. 天津大学学报, 2009, 42(9): 839-844.
|
|
CHANG Yuefeng, JIANG Nan, XIA Zhenyan, et al. Hydrogen bubble flow visualization and digital image analysis for drag reduction mechanism in wall turbulence with groove-riblet surface[J]. Journal of Tianjin University, 2009, 42(9): 839-844.
|
19 |
CHOI J, JEON W P, CHOI H. Mechanism of drag reduction by dimples on a sphere[J]. Physics of Fluids, 2006, 18(4): 041702.
|
20 |
彭恒, 张荣钢, 杜显赫, 等. 高耸塔器的风振模拟及其采用侧向支撑的减振分析[J]. 压力容器, 2016, 33(1): 25-31.
|
|
PENG Heng, ZHANG Ronggang, DU Xianhe, et al. Wind induced vibration simulation of high-rise tower and its vibration reduction analysis under lateral supporting[J]. Pressure Vessel Technology, 2016, 33(1): 25-31.
|
21 |
郭彦, 杨巧荣, 何文福, 等. 高效耗能阻尼器性能试验及理论研究[J]. 振动工程学报, 2019, 32(5): 757-766.
|
|
GUO Yan, YANG Qiaorong, HE Wenfu, et al. Experimental and theoretical study of a high damping viscous damper[J]. Journal of Vibration Engineering, 2019, 32(5): 757-766.
|
22 |
谭蔚, 陈晓宇, 樊显涛, 等. 摩擦阻尼器对塔器风致振动的减振试验研究[J]. 压力容器, 2020, 37(2): 11-16, 23.
|
|
TAN Wei, CHEN Xiaoyu, FAN Xiantao, et al. Experimental study on tower vibration reduction of wind-induced vibration with friction damper[J]. Pressure Vessel Technology, 2020, 37(2): 11-16, 23.
|
23 |
谭蔚, 杜怡安, 贾占斌, 等. 橡胶阻尼器在底部框架塔中的减振试验研究[J]. 压力容器, 2018, 35(5): 7-12.
|
|
TAN Wei, DU Yian, JIA Zhanbin, et al. Experimental research on vibration reduction of rubber damper in the bottom frame tower[J]. Pressure Vessel Technology, 2018, 35(5): 7-12.
|
24 |
赵昕, 马浩佳, 丁鲲. 超高结构黏滞阻尼系统风振减振优化设计方法[J]. 振动工程学报, 2018, 31(1): 12-19.
|
|
ZHAO Xin, MA Haojia, DING Kun. Optimal wind-induced vibration attenuation design of viscous damper systems for super tall structures[J]. Journal of Vibration Engineering, 2018, 31(1): 12-19.
|
25 |
国家能源局. 《塔式容器》标准释义与算例: NB/T 47041—2014 [S]. 北京: 新华出版社, 2014.
|
|
National Energy Bureau of the People’s Republic of China. Vertical vessels supported by skirt: NB/T 47041—2014 [S]. Beijing: Xinhua Publishing House, 2014.
|
26 |
FAN X T, WANG Z C, CHEN X Y, et al. Experimental investigation on flow-induced vibration of flexible multi cylinders in atmospheric boundary layer[J]. International Journal of Mechanical Sciences, 2020, 183: 105815.
|
27 |
中华人民共和国工业和信息化部. 化工装置设备布置设计规定: [S]. 北京: 中国计划出版社, 2010.
|
|
Ministry of Industry and Information of the People’s Republic of China. Design specification of equipment layout for chemical plant: [S]. Beijing: China Planning Press, 2010.
|
28 |
中华人民共和国工业和信息化部. 石油化工工艺装置布置设计规范: [S]. 北京: 中国石化出版社, 2011.
|
|
Ministry of Industry and Information of the People’s Republic of China. Specification for design of process plant layout in petrochemical engineering: [S]. Beijing: China Petrochemical Press, 2011.
|
2 |
谭博仁, 李龙祥, 王勇, 等. 萃取塔数学模型及过程强化的若干研究进展[J]. 化工进展, 2020, 39(6): 2284-2293.
|
|
TAN Boren, LI Longxiang, WANG Yong, et al. Progress of solvent extraction column model and process intensification[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2284-2293.
|
3 |
陈颢, 从海峰, 何林, 等. 进料组成对中部蒸汽压缩两段式精馏塔节能与经济效益的影响[J]. 化工进展, 2020, 39(12): 5042-5048.
|
|
CHEN Hao, CONG Haifeng, HE Lin, et al. Influence of feed compositions on energy-saving and economic benefit of the novel middle vapor recompression distillation column[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5042-5048.
|
4 |
刘雪刚, 何畅, 张民康, 等. 考虑热力学目标的进料分流预热精馏塔分析优化[J]. 化工进展, 2017, 36(5): 1612-1618.
|
|
LIU Xuegang, HE Chang, ZHANG Minkang, et al. Analysis and optimization of distillation columns with feed splitting and preheating by considering a thermodynamic target[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1612-1618.
|
5 |
IGARASHI T. Characteristics of the flow around two circular cylinders arranged in tandem: 1st report[J]. Bulletin of JSME, 1981, 24(188): 323-331.
|
6 |
IGARASHI T. Characteristics of the flow around two circular cylinders arranged in tandem: 2nd report, unique phenomenon at small spacing[J]. Bulletin of JSME, 1984, 27(233): 2380-2387.
|
7 |
ASSI G R S, BEARMAN P W, CARMO B S, et al. The role of wake stiffness on the wake-induced vibration of the downstream cylinder of a tandem pair[J]. Journal of Fluid Mechanics, 2013, 718: 210-245.
|