化工进展 ›› 2022, Vol. 41 ›› Issue (4): 1725-1734.DOI: 10.16085/j.issn.1000-6613.2021-0769
杨洪海(), 张苗, 刘利伟, 周屹, 沈俊杰, 施伟刚, 尹勇
收稿日期:
2021-04-13
修回日期:
2021-08-06
出版日期:
2022-04-23
发布日期:
2022-04-25
通讯作者:
杨洪海
作者简介:
杨洪海(1968—),女,教授,硕士生导师,研究方向为传热及强化、热能利用与节能技术等。E-mail:基金资助:
YANG Honghai(), ZHANG Miao, LIU Liwei, ZHOU Yi, SHEN Junjie, SHI Weigang, YIN Yong
Received:
2021-04-13
Revised:
2021-08-06
Online:
2022-04-23
Published:
2022-04-25
Contact:
YANG Honghai
摘要:
实验研究了氧化石墨烯(GO)纳米流体对脉动热管(PHP)传热性能的影响。结果表明:充液率、浓度及加热功率显著影响脉动热管的传热性能。在小充液率(FR=30%)时,PHP更多是在重力辅助热虹吸管以及脉动热管的共同作用下工作,热阻较低,但容易烧干;添加GO纳米颗粒可改善流体传热性能,降低PHP热阻,延缓烧干;尤其在质量分数0.05%~0.08%、加热功率10~50W时热阻可比纯水降低38.1%~74.1%;在质量分数0.08%~0.1%时,烧干极限Qmax可比纯水提高33%。在大充液率(FR=80%)时,气相空间受限,流体运动阻力较大,PHP整体运行性能较差。添加GO纳米不能明显改善PHP传热性能,在高浓度(质量分数0.1%)时还会恶化传热性能。综合考虑热阻及烧干极限,PHP在中等充液率(FR=50%)时整体运行性能最佳;且存在一个合适的工作范围(质量分数0.03%~0.08%,加热功率20~105W),使PHP热阻比纯水下降18.9%~54.4%之间,强化作用明显。最后,在实验基础上,综合应用Ku、Pr、Ja、Bo、Mo等量纲为1数组合,拟合得到实验关联式预测GO/水PHP传热性能,适用于30%~80%充液率下,质量分数0~0.1%的GO/水纳米流体脉动热管。
中图分类号:
杨洪海, 张苗, 刘利伟, 周屹, 沈俊杰, 施伟刚, 尹勇. 氧化石墨烯/水脉动热管传热强化及性能预测[J]. 化工进展, 2022, 41(4): 1725-1734.
YANG Honghai, ZHANG Miao, LIU Liwei, ZHOU Yi, SHEN Junjie, SHI Weigang, YIN Yong. Heat transfer performance enhancement and prediction in GO/water pulsating heat pipe[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1725-1734.
作者 | 工质及GO质量分数/% | 充液率/% | 加热功率/W | 蒸发段长/mm | 绝热段长/mm | 冷凝段长/mm | 弯头 |
---|---|---|---|---|---|---|---|
Cui等[ | GNP/水:0.01,0.025,0.05,0.075,0.08,0.1 | 45~90 | 10~100① | 80 | 20 | 95 | 5 |
Su等[ | GO/水:0.05,0.1 GO/正丁醇水溶液:0.014 | 50 | 10~100② | 50 | 200 | 50 | 3 |
Nazari等[ | GO/水:0.025,0.05,0.1,0.15 | 50 | 10~70② | 75 | 95 | 208 | 2 |
本文作者 | GO/水:0.015,0.03,0.05,0.08,0.1 | 30~80 | 10~105① | 75 | 20 | 100 | 3 |
表1 GNP及GO纳米流体在PHP中的应用
作者 | 工质及GO质量分数/% | 充液率/% | 加热功率/W | 蒸发段长/mm | 绝热段长/mm | 冷凝段长/mm | 弯头 |
---|---|---|---|---|---|---|---|
Cui等[ | GNP/水:0.01,0.025,0.05,0.075,0.08,0.1 | 45~90 | 10~100① | 80 | 20 | 95 | 5 |
Su等[ | GO/水:0.05,0.1 GO/正丁醇水溶液:0.014 | 50 | 10~100② | 50 | 200 | 50 | 3 |
Nazari等[ | GO/水:0.025,0.05,0.1,0.15 | 50 | 10~70② | 75 | 95 | 208 | 2 |
本文作者 | GO/水:0.015,0.03,0.05,0.08,0.1 | 30~80 | 10~105① | 75 | 20 | 100 | 3 |
参数 | 不确定度/% |
---|---|
Te | ±0.28 |
Tc | ±0.57 |
Q | ±2.9 |
R | ±5.0 |
q | ±5.02 |
表2 主要实验参数的不确定度
参数 | 不确定度/% |
---|---|
Te | ±0.28 |
Tc | ±0.57 |
Q | ±2.9 |
R | ±5.0 |
q | ±5.02 |
1 | XU Y Y, XUE Y Q, QI H, et al. An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes[J]. Renewable and Sustainable Energy Reviews, 2021, 144: 110995. |
2 | BASTAKOTI D, ZHANG H N, LI D, et al. An overview on the developing trend of pulsating heat pipe and its performance[J]. Applied Thermal Engineering, 2018, 141: 305-332. |
3 | 冯剑超, 曲伟. 纳米流体脉动热管的性能实验[J]. 中国科学院研究生院学报, 2009, 26(1): 50-57. |
FENG Jianchao, QU Wei. Experimental investigation of heat transfer performance of nanofluid pulsating heat pipes[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2009, 26(1): 50-57. | |
4 | JI Y L, MA H B, SU F M, et al. Particle size effect on heat transfer performance in an oscillating heat pipe[J]. Experimental Thermal and Fluid Science, 2011, 35(4): 724-727. |
5 | KARTHIKEYAN V K, RAMACHANDRAN K, PILLAI B C, et al. Effect of nanofluids on thermal performance of closed loop pulsating heat pipe[J]. Experimental Thermal and Fluid Science, 2014, 54: 171-178. |
6 | WU Q P, XU R J, WANG R X, et al. Effect of C60 nanofluid on the thermal performance of a flat-plate pulsating heat pipe[J]. International Journal of Heat and Mass Transfer, 2016, 100: 892-898. |
7 | ZUFAR M, GUNNASEGARAN P, KUMAR H M, et al. Numerical and experimental investigations of hybrid nanofluids on pulsating heat pipe performance[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118887. |
8 | QU J, WU H Y, CHENG P. Thermal performance of an oscillating heat pipe with Al2O3-water nanofluids[J]. International Communications in Heat and Mass Transfer, 2010, 37(2): 111-115. |
9 | LI Q M, ZOU J, YANG Z, et al. Visualization of two-phase flows in nanofluid oscillating heat pipes[J]. Journal of Heat Transfer, 2011, 133(5): 052901. |
10 | MEHRALI M, SADEGHINEZHAD E, LATIBARI S T, et al. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets[J]. Nanoscale Research Letters, 2014, 9(1): 15. |
11 | LEE G J, RHEE C K. Enhanced thermal conductivity of nanofluids containing graphene nanoplatelets prepared by ultrasound irradiation[J]. Journal of Materials Science, 2014, 49(4): 1506-1511. |
12 | SARSAM W S, AMIRI A, KAZI S N, et al. Stability and thermophysical properties of non-covalently functionalized graphene nanoplatelets nanofluids[J]. Energy Conversion and Management, 2016, 116: 101-111. |
13 | 张飞龙, 王莉, 俞树荣, 等. 氧化石墨烯及其导热纳米流体的制备与性能[J]. 功能材料, 2015, 46(16): 16138-16141. |
ZHANG Feilong, WANG Li, YU Shurong, et al. Preparation and properties of graphene oxide and theirthermal conductivity nanofluids[J]. Journal of Functional Materials, 2015, 46(16): 16138-16141. | |
14 | 施赛燕, 崔晓钰, 周宇, 等. 石墨烯/去离子水纳米流体振荡热管传热性能[J]. 化工学报, 2016, 67(12): 4944-4950. |
SHI Saiyan, CUI Xiaoyu, ZHOU Yu, et al. Heat transfer performance of pulsating heat pipe with graphene aqueous nanofluids[J]. CIESC Journal, 2016, 67(12): 4944-4950. | |
15 | ZHOU Y, CUI X Y, WENG J H, et al. Experimental investigation of the heat transfer performance of an oscillating heat pipe with graphene nanofluids[J]. Powder Technology, 2018, 332: 371-380. |
16 | SU X J, ZHANG M, HAN W, et al. Enhancement of heat transport in oscillating heat pipe with ternary fluid[J]. International Journal of Heat and Mass Transfer, 2015, 87: 258-264. |
17 | 张明, 苏新军, 韩魏, 等. 氧化石墨烯/自湿润流体脉动热管的传热特性[J]. 化工进展, 2015, 34(8): 2951-2954. |
ZHANG Ming, SU Xinjun, HAN Wei, et al. Heat transfer characteristics of pulsating heat pipe with graphene oxide/self-rewetting fluid[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 2951-2954. | |
18 | 韩魏, 苏新军, 张明, 等. 氧化石墨烯脉动热管传热性能实验研究[J]. 太阳能学报, 2016, 37(6): 1476-1480. |
HAN Wei, SU Xinjun, ZHANG Ming, et al. Experimental study of thermal performance of pulsating heat pipe with graphene oxide[J]. Acta Energiae Solaris Sinica, 2016, 37(6): 1476-1480. | |
19 | NAZARI M A, GHASEMPOUR R, AHMADI M H, et al. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe[J]. International Communications in Heat and Mass Transfer, 2018, 91: 90-94. |
20 | CACUA K, BUITRAGO-SIERRA R, PABÓN E, et al. Nanofluids stability effect on a thermosyphon thermal performance[J]. International Journal of Thermal Sciences, 2020, 153: 106347. |
21 | KHANDEKAR S, CHAROENSAWAN P, GROLL M, et al. Closed loop pulsating heat pipes Part B: Visualization and semi-empirical modeling[J]. Applied Thermal Engineering, 2003, 23(16): 2021-2033. |
22 | SHAFII M B, ARABNEJAD S, SABOOHI Y, et al. Experimental investigation of pulsating heat pipes and a proposed correlation[J]. Heat Transfer Engineering, 2010, 31(10): 854-861. |
23 | YEBOAH S K, DARKWA J. Thermal performance of a novel helically coiled oscillating heat pipe (HCOHP) for isothermal adsorption. An experimental study[J]. International Journal of Thermal Sciences, 2018, 128: 49-58. |
24 | SCHMULLER J. Statistical analysis with excel for dummies[J]. Wiley & Sons, 2013. |
25 | HALIMI M, ABBAS NEJAD A, NOROUZI M. A comprehensive experimental investigation of the performance of closed-loop pulsating heat pipes[J]. Journal of Heat Transfer, 2017, 139(9): 092003. |
26 | 杨洪海, 林天伦, 万勍, 等. 开式脉动热管传热极限的试验研究[J]. 动力工程, 2009, 29(10): 936-940. |
YANG Honghai, LIN Tianlun, WAN Qing, et al. Experimental study on heat transfer limit of open loop pulsating heat pipes[J]. Journal of Power Engineering, 2009, 29(10): 936-940. | |
27 | YANG H H, KHANDEKAR S, GROLL M. Operational limit of closed loop pulsating heat pipes[J]. Applied Thermal Engineering, 2008, 28(1): 49-59. |
28 | 毛兰, 周文斌, 胡学功, 等. 氧化石墨烯表面的饱和池沸腾强化传热实验[J]. 化工进展, 2019, 38(9): 4164-4173. |
MAO Lan, ZHOU Wenbin, HU Xuegong, et al. Enhanced pool boiling heat transfer performance on graphene oxide nanocoating surface[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4164-4173. | |
29 | 尹大燕, 贾力. 振荡热管管内流型对传热性能的影响[J]. 应用基础与工程科学学报, 2007, 15(3): 363-368. |
YIN Dayan, JIA Li. The influence of flow patterns on heat transfer characteristic of oscillating heat pipe[J]. Journal of Basic Science and Engineering, 2007, 15(3): 363-368. | |
30 | 王宇, 李惟毅. 充液率对单环路脉动热管启动运行的影响[J]. 中国电机工程学报, 2011, 31(17): 79-85. |
WANG Yu, LI Weiyi. Influence of filling ratio on startup and operation of a single loop pulsating heat pipe[J]. Proceedings of the CSEE, 2011, 31(17): 79-85. | |
31 | YANG H H, KHANDEKAR S, GROLL M. Performance characteristics of pulsating heat pipes as integral thermal spreaders[J]. International Journal of Thermal Sciences, 2009, 48(4): 815-824. |
32 | JO J, KIM J, KIM S J. Experimental investigations of heat transfer mechanisms of a pulsating heat pipe[J]. Energy Conversion and Management, 2019, 181: 331-341. |
33 | YUAN D Z, QU W, MA T Z. Flow and heat transfer of liquid plug and neighboring vapor slugs in a pulsating heat pipe[J]. International Journal of Heat and Mass Transfer, 2010, 53(7/8): 1260-1268. |
34 | RITTIDECH S, PIPATPAIBOON N, TERDTOON P. Heat-transfer characteristics of a closed-loop oscillating heat-pipe with check valves[J]. Applied Energy, 2007, 84(5): 565-577. |
35 | LIN Z R, WANG S F, CHEN J J, et al. Experimental study on effective range of miniature oscillating heat pipes[J]. Applied Thermal Engineering, 2011, 31(5): 880-886. |
36 | HAN X H, WANG X H, ZHENG H C, et al. Review of the development of pulsating heat pipe for heat dissipation[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 692-709. |
37 | QU J, WANG Q. Experimental study on the thermal performance of vertical closed-loop oscillating heat pipes and correlation modeling[J]. Applied Energy, 2013, 112: 1154-1160. |
38 | LIANG Q Q, HAO T T, WANG K, et al. Startup and transport characteristics of oscillating heat pipe using ionic liquids[J]. International Communications in Heat and Mass Transfer, 2018, 94: 1-13. |
39 | EBRAHIMI DEHSHALI M, NAZARI M A, SHAFII M B. Thermal performance of rotating closed-loop pulsating heat pipes: experimental investigation and semi-empirical correlation[J]. International Journal of Thermal Sciences, 2018, 123: 14-26. |
40 | PAK B C, CHO Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer, 1998, 11(2): 151-170. |
41 | SAID Z, ABDELKAREEM M A, REZK H, et al. Stability, thermophysical and electrical properties of synthesized carbon nanofiber and reduced-graphene oxide-based nanofluids and their hybrid along with fuzzy modeling approach[J]. Powder Technology, 2020, 364: 795-809. |
42 | 刘利伟. 氧化石墨烯脉动热管传热特性及实验关联式的研究[D]. 上海: 东华大学, 2020. |
LIU Liwei. Study on heat transfer characteristics and experimental correlation of graphene oxide pulsating heat pipe[D]Shanghai: Donghua University,2020. | |
43 | 郑兆志, 何钦波, 刘玉东. 水基氧化石墨烯纳米流体表面张力实验研究[J]. 热科学与技术, 2015, 14(3): 203-207. |
ZHENG Zhaozhi, HE Qinbo, LIU Yudong. Experimental investigation on surface tension of water-based graphene oxide nanofluids[J]. Journal of Thermal Science and Technology, 2015, 14(3): 203-207. | |
44 | IJAM A, SAIDUR R, GANESAN P, et al. Stability, thermo-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid[J]. International Journal of Heat and Mass Transfer, 2015, 87: 92-103. |
[1] | 惠博, 侯宏艺, 张涛, 车生文. 圆柱形环状脉动热管烧干特性[J]. 化工进展, 2023, 42(S1): 33-40. |
[2] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[3] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[4] | 张浩月, 李春丽, 徐博, 李筱贺, 仝铃, 邱广明. 分段取样法研究改进Hummers法制备GO结构特性及其机理[J]. 化工进展, 2023, 42(5): 2606-2615. |
[5] | 何阳, 李思盈, 李传强, 袁小亚, 郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能[J]. 化工进展, 2023, 42(4): 1983-1994. |
[6] | 高婷婷, 蒋振, 吴晓毅, 郝婷婷, 马学虎, 温荣福. 微乳液脉动热管应用于锂离子电池的散热性能[J]. 化工进展, 2023, 42(3): 1167-1177. |
[7] | 余俊声, 朱晔, 李乾坤, 徐士轩, 张昕阳, 汪城, 屈健. 升降热流条件下的脉动热管性能[J]. 化工进展, 2023, 42(3): 1178-1186. |
[8] | 郭志鹏, 卜宪标, 李华山, 龚宇烈, 王令宝. 基于热-流-化耦合作用的单井增强地热系统性能分析[J]. 化工进展, 2023, 42(2): 711-721. |
[9] | 杨茂飞, 李金旺, 周刘伟. 亲水改性超薄平板热管传热性能[J]. 化工进展, 2023, 42(2): 692-698. |
[10] | 张建伟, 许蕊, 张忠闯, 董鑫, 冯颖. 基于卷积神经网络的撞击流反应器浓度场混合特性[J]. 化工进展, 2023, 42(2): 658-668. |
[11] | 朱戈, 毕勤成, 田书建, 颜建国. 非均匀高热通量内置纽带冷却通道阻力特性分析[J]. 化工进展, 2023, 42(10): 5083-5091. |
[12] | 孙义明, 冉宝清, 卞武勋, 刘进超, 尹少鼎, 赵西坡. 聚丙烯蜡固-固相变材料的制备与工艺优化[J]. 化工进展, 2023, 42(1): 336-345. |
[13] | 秦振芳, 廖日红, 马伟芳. 吸收-微藻法固定燃气电厂低浓度CO2同步产油技术研究进展[J]. 化工进展, 2023, 42(1): 94-106. |
[14] | 张辛亥, 赵思琛, 朱辉, 张首石, 王凯. 多种碳材料与碳酸钠复合后脱硫性能对比[J]. 化工进展, 2022, 41(S1): 424-435. |
[15] | 彭德其, 冯源, 王依然, 谭卓伟, 俞天兰, 吴淑英. 立式缩放管内液固颗粒群浓度分布与汇聚特性[J]. 化工进展, 2022, 41(9): 4662-4672. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |