1 |
BP p.l.c. BP statistical review of world energy[R]. 2021.
|
2 |
SHAN Yuli, HUANG Qi, GUAN Dabo, et al. China CO2 emission accounts 2016—2017[J]. Scientific Data, 2020, 7: 54.
|
3 |
LIN Boqiang, WANG Xiaolei. Carbon emissions from energy intensive industry in China: evidence from the iron & steel industry[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 746-754.
|
4 |
LIN Boqiang, LONG Houyin. Emissions reduction in China’s chemical industry—Based on LMDI[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1348-1355.
|
5 |
CHEN Wanlin, YANG Shiyu, ZHANG Xinzhen, et al. Embodied energy and carbon emissions of building materials in China[J]. Building and Environment, 2022, 207: 108434.
|
6 |
MAN Yi, LI Jigeng, HONG Mengna, et al. Energy transition for the low-carbon pulp and paper industry in China[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 109998.
|
7 |
项目综合报告编写组. 《中国长期低碳发展战略与转型路径研究》综合报告[J]. 中国人口·资源与环境, 2020, 30(11): 1-25.
|
|
Project Comprehensive Report Writing Group. A comprehensive report on China’s long-term low-carbon development strategy and transformation path[J]. China Population, Resources and Environment, 2020, 30(11): 1-25.
|
8 |
An energy sector roadmap to carbon neutrality in China[R]. International Energy Agency, 2021.
|
9 |
奚文怡, 蒋小谦, 张默凡, 等. 零碳之路: “十四五”开启中国 绿色发展新篇章[R]. 世界资源研究所, 2020.
|
|
XI Wenyi, JIANG Xiaoqian, ZHANG Mofan, et al. Accelerating the net-zero transition: strategic action for China’s 14th five-year plan[R]. World Resources Institute, 2020.
|
10 |
WOETZEL J, 许浩, 汪小帆, 等. “中国加速迈向碳中和”钢铁篇:钢铁行业碳减排路径[R]. 麦肯锡公司, 2021.
|
|
WOETZEL J, XU H, WANG X F, et al. “China accelerates towards carbon neutrality” steel chapter: carbon emission reduction path for steel industry[R]. McKinsey & Company, 2021.
|
11 |
WOETZEL J, 许浩, 汪小帆, 等. “中国加速迈向碳中和”水泥篇:水泥行业碳减排路径[R]. 麦肯锡公司, 2021.
|
|
WOETZEL J, XU H, WANG X F, et al. “China accelerates towards carbon neutrality” cement chapter: carbon emission reduction path for cement industry[R]. McKinsey & Company, 2021.
|
12 |
CHONG C H, TAN W X, TING Z J, et al. The driving factors of energy-related CO2 emission growth in Malaysia: the LMDI decomposition method based on energy allocation analysis[J]. Renewable and Sustainable Energy Reviews, 2019, 115: 109356.
|
13 |
CHEN Y W, WONG C W Y, YANG R, et al. Optimal structure adjustment strategy, emission reduction potential and utilization efficiency of fossil energies in China[J]. Energy, 2021, 237: 121623.
|
14 |
HOWARTH R W, JACOBSON M Z. How green is blue hydrogen? [J]. Energy Science & Engineering, 2021, 9(10): 1676-1687.
|
15 |
李函珂, 党成雄, 杨光星, 等. 面向二氧化碳捕集的过程强化技术进展[J]. 化工进展, 2020, 39(12): 4919-4939.
|
|
LI Hanke, DANG Chengxiong, YANG Guangxing, et al. Process intensification techniques towards carbon dioxide capture: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4919-4939.
|
16 |
ABUELGASIM S, WANG W J, ABDALAZEEZ A. A brief review for chemical looping combustion as a promising CO2 capture technology: fundamentals and progress[J]. Science of the Total Environment, 2021, 764: 142892.
|
17 |
BACHU S. CO2 storage in geological media: role, means, status and barriers to deployment[J]. Progress in Energy and Combustion Science, 2008, 34(2): 254-273.
|
18 |
KREVOR S C M, LACKNER K S. Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 1073-1080.
|
19 |
刁玉杰, 张森琦, 郭建强, 等. CO2地质储存泄露安全风险评价方法初探[J]. 中国人口·资源与环境, 2012, 22(8): 84-89.
|
|
DIAO Yujie, ZHANG Senqi, GUO Jianqiang, et al. Preliminary research on CO2 leakage safety risk assessment method of geological storage project[J]. China Population, Resources and Environment, 2012, 22(8): 84-89.
|
20 |
SAIRA, JANNA F, LE-HUSSAIN F. Effectiveness of modified CO2 injection at improving oil recovery and CO2 storage—Review and simulations[J]. Energy Reports, 2020, 6: 1922-1941.
|
21 |
余晓晖, 刘默, 蒋昕昊, 等. 工业互联网体系架构2.0[J]. 计算机集成制造系统, 2019, 25(12): 2983-2996.
|
|
YU Xiaohui, LIU Mo, JIANG Xinhao, et al. Industrial Internet architecture 2.0[J]. Computer Integrated Manufacturing Systems, 2019, 25(12): 2983-2996.
|
22 |
杨晨, 马瑞成, 王雨石, 等. 深度学习与工业互联网安全:应用与挑战[J]. 中国工程科学, 2021, 23(2): 95-103.
|
|
YANG Chen, MA Ruicheng, WANG Yushi, et al. Deep learning and industrial Internet security: application and challenges[J]. Strategic Study of CAE, 2021, 23(2): 95-103.
|
23 |
胡琳, 杨建军, 韦莎, 等. 工业互联网标准体系构建与实施路径[J]. 中国工程科学, 2021, 23(2): 88-94.
|
|
HU Lin, YANG Jianjun, WEI Sha, et al. Construction and implementation path for industrial Internet standards system in China[J]. Strategic Study of CAE, 2021, 23(2): 88-94.
|
24 |
王玲, 李广建, 张文娟, 等. 富氧底吹粗铜熔炼渣中铜的赋存状态研究[J]. 有色金属(冶炼部分), 2019(9): 97-102.
|
|
WANG Ling, LI Guangjian, ZHANG Wenjuan, et al. Mineralogical study of copper loss in oxygen bottom blown smelting slag[J]. Nonferrous Metals (Extractive Metallurgy), 2019(9): 97-102.
|
25 |
LIN Boqiang, XU Lin. Energy conservation of electrolytic aluminum industry in China[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 676-686.
|
26 |
VOGL V, ÅHMAN M, NILSSON L J. Assessment of hydrogen direct reduction for fossil-free steelmaking[J]. Journal of Cleaner Production, 2018, 203: 736-745.
|
27 |
SUOPAJÄRVI H, UMEKI K, MOUSA E, et al. Use of biomass in integrated steelmaking—Status quo, future needs and comparison to other low-CO2 steel production technologies[J]. Applied Energy, 2018, 213: 384-407.
|
28 |
BAO Qipeng, GUO Lei, GUO Zhancheng. A novel direct reduction-flash smelting separation process of treating high phosphorous iron ore fines[J]. Powder Technology, 2021, 377: 149-162.
|
29 |
MAIHATCHI AHAMED A, PONS M N, RICOUX Q, et al. Production of electrolytic iron from red mud in alkaline media[J]. Journal of Environmental Management, 2020, 266: 110547.
|
30 |
CHEN Gaofeng, YUAN Yifei, JIANG Haifeng, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst[J]. Nature Energy, 2020, 5(8): 605-613.
|
31 |
武娟妮, 张岳玲, 田亚峻, 等. 新型煤化工的生命周期碳排放趋势分析[J]. 中国工程科学, 2015, 17(9): 69-74.
|
|
WU Juanni, ZHANG Yueling, TIAN Yajun, et al. Anylysis on carbon emission based on the life cycle of new coal chemical industry[J]. Engineering Sciences, 2015, 17(9): 69-74.
|
32 |
王明华. 氢能-煤基能源产业战略转型路径研究[J]. 现代化工, 2021, 41(7): 1-4.
|
|
WANG Minghua. Research on strategic transformation paths for hydrogen energy-coal-based energy industry[J]. Modern Chemical Industry, 2021, 41(7): 1-4.
|
33 |
GHOSH S, SEBASTIAN J, OLSSON L, et al. Experimental and kinetic modeling studies of methanol synthesis from CO2 hydrogenation using In2O3 catalyst[J]. Chemical Engineering Journal, 2021, 416: 129120.
|
34 |
HU Jingting, YU Liang, DENG Jiao, et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol[J]. Nature Catalysis, 2021, 4(3): 242-250.
|
35 |
LI Ziwei, LIN Qian, LI Min, et al. Recent advances in process and catalyst for CO2 reforming of methane[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110312.
|
36 |
WANG D, XIE Z H, POROSOFF M D, et al. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics[J]. Chem., 2021, 7(9): 2277-2311.
|
37 |
MATHEW G M, RAINA D, NARISETTY V, et al. Recent advances in biodiesel production: challenges and solutions[J]. Science of the Total Environment, 2021, 794: 148751.
|
38 |
CHHANDAMA M V L, SATYAN K B, CHANGMAI B, et al. Microalgae as a feedstock for the production of biodiesel: a review[J]. Bioresource Technology Reports, 2021, 15: 100771.
|
39 |
谭天伟, 陈必强, 张会丽, 等. 加快推进绿色生物制造 助力实现“碳中和”[J]. 化工进展, 2021, 40(3): 1137-1141.
|
|
TAN Tianwei, CHEN Biqiang, ZHANG Huili, et al. Accelerate promotion of green bio-manufacturing to help achieve “carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1137-1141.
|