化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1364-1375.DOI: 10.16085/j.issn.1000-6613.2021-1601
甘凤丽1,2(), 江霞1,2, 常玉龙1,2, 靳紫恒1,2, 汪华林3, 师敬伟4()
收稿日期:
2021-07-29
修回日期:
2021-09-16
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
师敬伟
作者简介:
甘凤丽(1996—),女,博士研究生,主要从事碳中和技术研究。E-mail:基金资助:
GAN Fengli1,2(), JIANG Xia1,2, CHANG Yulong1,2, JIN Ziheng1,2, WANG Hualin3, SHI Jingwei4()
Received:
2021-07-29
Revised:
2021-09-16
Online:
2022-03-23
Published:
2022-03-28
Contact:
SHI Jingwei
摘要:
2019年,中国石油和天然气消费所排放的CO2为21.1亿吨,占全国总排放量的21%。在我国2060年碳中和目标下,石化行业亟需碳中和技术创新。本文介绍了国内外石化行业碳中和政策措施,从碳减排、碳零排和碳负排三方面分析了石化行业碳中和技术路径。碳减排方面包括石油/天然气绿色开发、过程低碳利用、减污降碳协同技术;碳零排方面包括可再生能源与核能发电、绿氢以及零碳原料/燃料替代,如生物质制汽柴油、芳烃等大宗能源化学品技术;碳负排方面包括生物能源与碳捕获和存储(BECCS)及CO2转化燃料化学品技术。此外,还介绍了石化行业碳中和信息技术,包括人工智能、大数据和物联网三方面。本文将为我国石化行业碳中和路径探索提供技术参考。
中图分类号:
甘凤丽, 江霞, 常玉龙, 靳紫恒, 汪华林, 师敬伟. 石化行业碳中和技术路径探索[J]. 化工进展, 2022, 41(3): 1364-1375.
GAN Fengli, JIANG Xia, CHANG Yulong, JIN Ziheng, WANG Hualin, SHI Jingwei. Exploration of carbon neutral technology path in petrochemical industry[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1364-1375.
1 | FULTON L M. Achieving a near-zero CO2 transportation system worldwide by 2050[M]//International encyclopedia of transportation. Amsterdam: Elsevier, 2021: 353-358. |
2 | ZHANG A P, GAO J, QUAN J L, et al. The implications for energy crops under China’s climate change challenges[J]. Energy Economics, 2021, 96: 105103. |
3 | BP. BP energy outlook 2020 edition[R]. London: BP, 2020. |
4 | Our World in Data. CO2 emissions by fuel[EB/OL]. [2021-07-19]. . |
5 | 宋铁君. 中国石油石化行业碳排放波动与低碳策略研究[D]. 大庆: 东北石油大学, 2012. |
SONG Tiejun. Carbon wave of China petroleum and petrochemical industry and research on low-carbon strategy[D]. Daqing: Northeast Petroleum University, 2012. | |
6 | 中华人民共和国国务院新闻办公室. 《新时代的中国能源发展》白皮书[EB/OL]. [2021-07-19]. . |
The State Council Information Office of the People’s Republic of China. China’s energy development in the new era White Paper[EB/OL]. [2020-12-21]. . | |
7 | 石油和化学工业“十四五”发展指南发布[J]. 浙江化工, 2021, 52(2): 8. |
The 14th Five-Year development guideline for the petroleum and chemical industry was released[J]. Zhejiang Chemical Industry, 2021, 52(2): 8. | |
8 | 国家能源局. 2021年能源工作指导意见[EB/OL]. [2021-07-19]. . |
National Energy Administration. Guidelines on energy work in 2021[EB/OL]. [2021-04-22]. . | |
9 | 乔凯, 孙宝翔, 王璐瑶. 降本+创新,让氢能走进千家万户[N]. 中国石化报, 2021-01-19. |
QIAO Kai, SUN Baoxiang, WANG Luyao. Cost reduction+innovation, so that hydrogen can enter thousands of households[N]. China Petrochemical News, 2021-01-19. | |
10 | 孙明华, 王继勇, 董雷, 等. “双碳”大考[J]. 国企管理, 2021(6): 28-56. |
SUN Minghua, WANG Jiyong, DONG Lei, et al. “Double carbon” test[J]. China State-owned Enterprise Management, 2021(6): 28-56. | |
11 | 王香增, 孙晓, 罗攀, 等. 非常规油气CO2压裂技术进展及应用实践[J]. 岩性油气藏, 2019, 31(2): 1-7. |
WANG Zengxiang, SUN Xiao, LUO Pan, et al. Progress and application of CO2 fracturing technology for unconventional oil and gas[J]. Lithologic Reservoirs, 2019, 31(2): 1-7. | |
12 | 李阳. 低渗透油藏CO2驱提高采收率技术进展及展望[J]. 油气地质与采收率, 2020, 27(1): 1-10. |
LI Yang. Technical advancement and prospect for CO2 flooding enhanced oil recovery in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 1-10. | |
13 | 徐栋, 陈映赫, 韩旭波, 等. CO2置换开采海域天然气水合物联合技术展望[J]. 现代化工, 2021, 41(9): 22-26, 32. |
XU Dong, CHEN Yinghe, HAN Xubo, et al. Prospects of combined technology of CO2 replacement and exploitation of natural gas hydrate in sea[J]. Modern Chemical Industry, 2021, 41(9): 22-26, 32. | |
14 | 张海桐, 王广炜, 薛炳刚. 对分子炼油技术的认识和实践[J]. 化学工业, 2016, 34(4): 16-23. |
ZHANG Haitong, WANG Guangwei, XUE Binggang. Understanding and practice of molecular oil refining technology[J]. Chemical Industry, 2016, 34(4): 16-23. | |
15 | 中国石化原油直接制化学品技术取得突破性进展[J]. 石油炼制与化工, 2021, 52(7): 100. |
Sinopec has made breakthroughs in the direct production of chemicals from crude oil[J]. Petroleum Processing and Petrochemicals, 2021, 52(7): 100. | |
16 | WANG H L, FU P B, LI J P, et al. Separation-and-recovery technology for organic waste liquid with a high concentration of inorganic particles[J]. Engineering, 2018, 4(3): 406-415. |
17 | 吴霁薇, 汪华林, 潘嘉科, 等. 废弃油基泥浆岩屑基础油的回收方法和装置: CN109184600A[P]. 2019-01-11. |
WU Jiwei, WANG Hualin, PAN Jiake, et al. Method and device for recovery of waste oil-based mud cuttings base oil: CN109184600A[P]. 2019-01-11. | |
18 | 吴霁薇, 汪华林, 潘嘉科, 等. 含油污泥悬浮态自转除油处置方法和装置: CN109052903A[P]. 2018-12-21. |
WU Jiwei, WANG Hualin, PAN Jiake, et al. Method and device for oil removal by suspension rotation of oily sludge: CN109052903A[P]. 2018-12-21. | |
19 | 刘忠生, 廖昌建, 方向晨, 等. 柴油低温临界吸收油气回收技术的应用[J]. 石油炼制与化工, 2013, 44(8): 37-40. |
LIU Zhongsheng, LIAO Changjian, FANG Xiangchen, et al. Application of diesel low temperature critical absorption technology in oil vapor recovery[J]. Petroleum Processing and Petrochemicals, 2013, 44(8): 37-40. | |
20 | 邹才能, 熊波, 薛华庆, 等. 新能源在碳中和中的地位与作用[J]. 石油勘探与开发, 2021, 48(2): 411-420. |
ZOU Caineng, XIONG Bo, XUE Huaqing, et al. The role of new energy in carbon neutral[J]. Petroleum Exploration and Development, 2021, 48(2): 411-420. | |
21 | 李建林, 李光辉, 马速良, 等. 碳中和目标下制氢关键技术进展及发展前景综述[J]. 热力发电, 2021, 50(6): 1-8. |
LI Jianlin, LI Guanghui, MA Suliang, et al. Overview of the progress and development prospects of key technologies for hydrogen production under the goal of carbon neutrality[J]. Thermal Power Generation, 2021, 50(6): 1-8. | |
22 | 常世彦, 郑丁乾, 付萌. 2℃/ 1.5℃温控目标下生物质能结合碳捕集与封存技术(BECCS)[J]. 全球能源互联网, 2019, 2(3): 277-287. |
CHANG Shiyan, ZHENG Dingqian, FU Meng. Bioenergy with carbon capture and storage (BECCS) in the pursuit of the 2℃ /1.5℃ target[J]. Journal of Global Energy Interconnection, 2019, 2(3): 277-287. | |
23 | JADHAV S G, VAIDYA P D, BHANAGE B M, et al. Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies[J]. Chemical Engineering Research and Design, 2014, 92(11): 2557-2567. |
24 | 龚燕, 杨维军, 王如强, 等. 我国智能炼厂技术现状及展望[J]. 石油科技论坛, 2018, 37(3): 28-33. |
GONG Yan, YANG Weijun, WANG Ruqiang, et al. Present conditions and prospect of China’s intelligent refinery technology[J]. Oil Forum, 2018, 37(3): 28-33. | |
25 | 陶泽俊. 大庆油田应用CO2压裂技术的前景分析[J]. 化工管理, 2020(35): 193-194. |
TAO Zejun. Prospect analysis of CO2 fracturing technology in Daqing oilfield[J]. Chemical Enterprise Management, 2020(35): 193-194. | |
26 | 长庆油田首口页岩油水平井“无水压裂”试验成功[N]. 中新网, 2020. |
The “waterless fracturing” test of the first shale oil horizontal well in Changqing Oilfield was successful[N]. China News, 2020. | |
27 | 胡永乐, 郝明强, 陈国利, 等. 中国CO2驱油与埋存技术及实践[J]. 石油勘探与开发, 2019, 46(4): 716-727. |
HU Yongle, HAO Mingqiang, CHEN Guoli, et al. Technologies and practice of CO2 flooding and sequestration in China[J]. Petroleum Exploration and Development, 2019, 46(4): 716-727. | |
28 | BOSWELL R, COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy & Environmental Science, 2011, 4(4): 1206-1215. |
29 | OTA M, MOROHASHI K, ABE Y, et al. Replacement of CH4 in the hydrate by use of liquid CO2 [J]. Energy Conversion & Management, 2005, 46(11/12): 1680-1691. |
30 | 王刚, 孙静, 方东, 等. 分子炼油为导向的催化裂化加工重质油策略[J]. 中国科学: 化学, 2018, 48(4): 362-368. |
WANG Gang, SUN Jing, FANG Dong, et al. Molecular-refining oriented strategy of catalytic cracking for processing heavy oil[J]. Scientia Sinica (Chimica), 2018, 48(4): 362-368. | |
31 | 徐海丰, 于晗. 全球原油制化学品项目发展现状及石化产品前景分析[J]. 国际石油经济, 2019, 27(5): 23-30. |
XU Haifeng, YU Han. Development status of global crude oil-to-chemicals projects and prospects of petrochemical products[J]. International Petroleum Economics, 2019, 27(5): 23-30. | |
32 | 邵宇, 闫鑫玉, 周立波, 等. EBIS(改良AO)工艺在石化废水处理上的研究及应用[J]. 环境与发展, 2019, 31(12): 69-70, 72. |
SHAO Yu, YAN Xinyu, ZHOU Libo, et al. Research and application of EBIS(improved AO) process in petrochemical waste water treatment[J]. Environment and Development, 2019, 31(12): 69-70, 72. | |
33 | SUN Y X, LIU Y, CHEN J Q, et al. Physical pretreatment of petroleum refinery wastewater instead of chemicals addition for collaborative removal of oil and suspended solids[J]. Journal of Cleaner Production, 2021, 278: 123821. |
34 | 李志磊, 柴环景, 程凯, 等. 一种采用海洋石油钻井平台固体废弃物烧结建材的方法: CN110759712A[P]. 2019-11-14. |
LIN Zhilei, CHAI Huanjing, CHENG Kai, et al. The invention relates to a method for sintering building materials using solid waste from offshore oil drilling platform: CN110759712A[P]. 2019-11-14. | |
35 | 李志磊, 柴环景, 程凯, 等. 一种海洋石油钻井平台固体废弃物无害化处理方法: CN110835267A[P]. 2019-11-14. |
LIN Zhilei, CHAI Huanjing, CHENG Kai, et al. The invention discloses a method for harmless disposal of solid waste from offshore oil drilling platform: CN110835267A[P]. 2019-11-14. | |
36 | 刘俊, 张琪琦, 张国杰, 等. 一种利用石化污泥等危废资源制备CH+CO重整催化剂的方法: CN111514877A[P]. 2020-08-11. |
LIU Jun, ZHANG Qiqi, ZHANG Guojie, et al. The invention relates to a method of preparing CH+CO reforming catalyst from petrochemical sludge and other hazardous waste resources: CN111514877A[P]. 2020-08-11. | |
37 | 常玉龙, 汪华林, 唐子腾, 等. 污泥裂解加氢利用方法及装置: CN108423960A[P]. 2018-03-05. |
CHANG Yulong, WANG Hualin, TANG Ziteng, et al. Method and device for utilization of sludge cracking and hydrogenation: CN108423960A[P]. 2018-03-05. | |
38 | LI J P, WANG Y, CHANG Y L, et al. Cold model testing of in situ catalyst activation by swirling self-rotation in ebullated bed reactor for biomass pyrolysis oils hydrogenation[J]. Chemical Engineering Journal, 2021, 406: 126909. |
39 | 杨鹏飞. 膜分离技术在VOCs回收领域的应用[J]. 科学技术创新, 2018(4): 5-7. |
YANG Pengfei. Application of membrane separation technology in VOCs recovery area[J]. Scientific and Technological Innovation, 2018(4): 5-7. | |
40 | 陈思晗, 张珂, 常丽萍, 等. 传统和新型制氢方法概述[J]. 天然气化工, 2019, 44(2): 122-127. |
CHEN Sihan, ZHANG Ke, CHANG Liping, et al. Overview of traditional and new hydrogen production methods[J]. Natural Gas Chemical Industry, 2019, 44(2): 122-127. | |
41 | 中国氢能联盟. 中国氢能源及燃料电池产业白皮书(2019版)[R]. 潍坊: 中国氢能联盟, 2019. |
China Hydrogen Energy Alliance. White paper on China’s hydrogen energy and fuel cell industry (2019 Edition)[R]. Weifang: China Hydrogen Energy Alliance, 2019. | |
42 | 王敏. 国内外新能源制氢发展现状及未来趋势[J]. 化学工业, 2018, 36(6): 13-18. |
WANG Min. The status quo and trend of producing hydrogen from new energy[J]. Chemical Industry, 2018, 36(6): 13-18. | |
43 | YANG Q, ZHOU H W, BARTOCCI P, et al. Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals[J]. Nature Communications, 2021, 12: 1698. |
44 | 徐兴敏. 生物质热解油催化加氢脱氧提质研究[D]. 郑州: 郑州大学, 2014. |
XU Xingmin. Upgrading of biomass pyrolysis oil via catalytic hydrodeoxygenation[D]. Zhengzhou: Zhengzhou University, 2014. | |
45 | 罗俊, 邵敬爱, 杨海平, 等. 生物质催化热解制备低碳烯烃的研究进展[J]. 化工进展, 2017, 36(5): 1555-1564. |
LUO Jun, SHAO Jing’ai, YANG Haiping, et al. Research progresses on production of light olefins from catalytic pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1555-1564. | |
46 | 郑云武, 杨晓琴, 王霏, 等. 生物质催化裂解制备芳烃化合物的研究进展[J]. 林产化学与工业, 2015, 35(5): 149-158. |
ZHENG Yunwu, YANG Xiaoqin, WANG Fei, et al. Research progress of aromatics production from catalytic pyrolysis of biomass[J]. Chemistry and Industry of Forest Products, 2015, 35(5): 149-158. | |
47 | CHOI Y Y, PATEL A K, HONG M E, et al. Microalgae bioenergy with carbon capture and storage (BECCS): an emerging sustainable bioprocess for reduced CO2 emission and biofuel production[J]. Bioresource Technology Reports, 2019, 7: 100270. |
48 | SKJÅNES K, REBOURS C, LINDBLAD P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process[J]. Critical Reviews in Biotechnology, 2013, 33(2): 172-215. |
49 | BEILEN J B VAN. Why microalgal biofuels won’t save the internal combustion machine[J]. Biofuels, Bioproducts and Biorefining, 2010, 4(1): 41-52. |
50 | VAUGHAN N E, GOUGH C, MANDER S, et al. Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios[J]. Environmental Research Letters, 2018, 13(4): 044014. |
51 | ROGELJ J, POPP A, CALVIN K V, et al. Scenarios towards limiting global mean temperature increase below 1.5℃[J]. Nature Climate Change, 2018, 8(4): 325-332. |
52 | VUUREN D P, DEETMAN S, VLIET J V, et al. The role of negative CO2 emissions for reaching 2℃—insights from integrated assessment modelling[J]. Climatic Change, 2013, 118(1): 15-27. |
53 | GOUGH C, GARCIA-FREITES S, JONES C, et al. Challenges to the use of BECCS as a keystone technology in pursuit of 1.5℃[J]. Global Sustainability, 2018, 1: e5. |
54 | SMITH P, DAVIS S J, CREUTZIG F, et al. Biophysical and economic limits to negative CO2 emissions[J]. Nature Climate Change, 2016, 6(1): 42-50. |
55 | SU Y J, SONG K H, ZHANG P D, et al. Progress of microalgae biofuel’s commercialization[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 402-411. |
56 | TAKHT RAVANCHI M, SAHEBDELFAR S. Carbon dioxide capture and utilization in petrochemical industry: potentials and challenges[J]. Applied Petrochemical Research, 2014, 4(1): 63-77. |
57 | LI L, ZHAO N, WEI W, et al. A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences[J]. Fuel, 2013, 108: 112-130. |
58 | GRAVES C, EBBESEN S D, MOGENSEN M, et al. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 1-23. |
59 | AHOUARI H, SOUALAH A, LE VALANT A, et al. Hydrogenation of CO2 into hydrocarbons over bifunctional system Cu-ZnO/Al2O3+HZSM-5: effect of proximity between the acidic and methanol synthesis sites[J]. Comptes Rendus Chimie, 2015, 18(12): 1264-1269. |
60 | NILSSON M, PETTERSSON L J, LINDSTRÖM B. Hydrogen generation from dimethyl ether for fuel cell auxiliary power units[J]. Energy & Fuels, 2006, 20(5): 2164-2169. |
61 | CHO W, SONG T, MITSOS A, et al. Optimal design and operation of a natural gas tri-reforming reactor for DME synthesis[J]. Catalysis Today, 2009, 139(4): 261-267. |
62 | SHAO B, HU G, ALKEBSI K A M, et al. Heterojunction-redox catalysts of Fe x Co y Mg10CaO for high-temperature CO2 capture and in situ conversion in the context of green manufacturing[J]. Energy & Environmental Science, 2021, 14(4): 2291-2301. |
63 | MOHAMMADPOOR M, TORABI F. Big Data analytics in oil and gas industry: an emerging trend[J]. Petroleum, 2020, 6(4): 321-328. |
64 | GOLPÎRA H, KHAN S A R, SAFAEIPOUR S. A review of logistics internet-of-things: current trends and scope for future research[J]. Journal of Industrial Information Integration, 2021, 22: 100194. |
[1] | 舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478. |
[2] | 索寒生, 贾梦达, 宋光, 刘东庆. 数字孪生技术助力石化智能工厂[J]. 化工进展, 2023, 42(7): 3365-3373. |
[3] | 李文秀, 杨宇航, 黄艳, 王涛, 王镭, 方梦祥. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057. |
[4] | 孙晖, 孟祥海, 魏景海, 周红军, 徐春明. 绿电制氢生产氨的新场景与实践[J]. 化工进展, 2023, 42(2): 1098-1102. |
[5] | 陶雨萱, 郭亮, 高聪, 宋伟, 陈修来. 代谢工程改造微生物固定二氧化碳研究进展[J]. 化工进展, 2023, 42(1): 40-52. |
[6] | 杨学萍. 碳中和背景下现代煤化工技术路径探索[J]. 化工进展, 2022, 41(7): 3402-3412. |
[7] | 张春, 王学瑞, 刘华, 高雪超, 张玉亭, 顾学红. 面向工业过程碳减排的分子筛膜技术研究进展[J]. 化工进展, 2022, 41(3): 1376-1390. |
[8] | 何盛宝, 黄格省. 化工新材料产业及其在低碳发展中的作用[J]. 化工进展, 2022, 41(3): 1634-1644. |
[9] | 陈健, 姬存民, 卜令兵. 碳中和背景下工业副产气制氢技术研究与应用[J]. 化工进展, 2022, 41(3): 1479-1486. |
[10] | 朱家华, 穆立文, 蒋管聪, 刘立, 熊晶晶, 陆小华. 生物质协同流程工业节能、降污、减碳路径思考[J]. 化工进展, 2022, 41(3): 1111-1114. |
[11] | 闫国春, 温亮, 张华. 现代煤化工产业发展路径分析[J]. 化工进展, 2022, 41(12): 6201-6212. |
[12] | 杨庆春, 杨庆, 张金亮, 高明林, 梅树美, 张大伟. 耦合SOEC的煤制乙二醇新工艺开发与系统评价[J]. 化工进展, 2021, 40(11): 6061-6070. |
[13] | 谢文俊,李小森,邹颖楠,徐纯刚. 含环戊烷体系中二氧化碳水合物形成分解热特性[J]. 化工进展, 2020, 39(1): 129-136. |
[14] | 厉雄峰, 李清毅, 胡达清, 赵金龙, 李立. 微藻生物固碳法在煤电碳减排应用的研究进展[J]. 化工进展, 2016, 35(S2): 347-351. |
[15] | 孙洪志,王 倩,宋名秀,阿不都拉江?那斯尔,王付燕,朱维群. CO2化学利用的研究进展[J]. 化工进展, 2013, 32(07): 1666-1672. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |