化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1376-1390.DOI: 10.16085/j.issn.1000-6613.2021-2353
张春(), 王学瑞, 刘华, 高雪超, 张玉亭, 顾学红()
收稿日期:
2021-11-16
修回日期:
2021-12-31
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
顾学红
作者简介:
张春(1982—),女,讲师,研究方向为膜分离。E-mail:基金资助:
ZHANG Chun(), WANG Xuerui, LIU Hua, GAO Xuechao, ZHANG Yuting, GU Xuehong()
Received:
2021-11-16
Revised:
2021-12-31
Online:
2022-03-23
Published:
2022-03-28
Contact:
GU Xuehong
摘要:
我国工业过程碳排放占比高达70%,实施节能增效、替代燃料、CO2捕集等是实现工业过程碳减排的重要路径。高效膜分离技术已成为过程工业节能减排和环境治理的共性支撑技术。本文围绕碳减排目标,结合本文作者课题组在分子筛膜领域的相关工作,重点论述分子筛膜分离技术在有机溶剂脱水、清洁能源生产、CO2分离和反应过程强化等领域的研究进展。基于本文作者课题组十余年的有机溶剂脱水产业化工作,提出降低膜装备投资的中空纤维分子筛膜技术路线、强化分子筛膜应用技术研究是实现大规模工业应用的关键。分子筛膜在工业气体分离领域仍属空白,加强高硅/全硅分子筛膜的制备及其在复杂组成气体的分离应用研究,对推动分子筛膜气体分离的实际应用至关重要。
中图分类号:
张春, 王学瑞, 刘华, 高雪超, 张玉亭, 顾学红. 面向工业过程碳减排的分子筛膜技术研究进展[J]. 化工进展, 2022, 41(3): 1376-1390.
ZHANG Chun, WANG Xuerui, LIU Hua, GAO Xuechao, ZHANG Yuting, GU Xuehong. Progress of zeolite membranes for reduction of carbon emission in industrial processes[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1376-1390.
1 | 习近平在第七十五届联合国大会一般性辩论上发表重要讲话[EB/OL]. 2020. . |
Xi Jinping delivers an important speech at the general debate of the 75th UN General Assembly[EB/OL]. 2020, . | |
2 | BP P. L. C. Statistical review of world energy[R]. 2021. |
3 | 白泉. 建设“碳中和”的现代化强国始终要把节能增效放在突出位置[J]. 中国能源, 2021, 43(1): 7-11, 16. |
BAI Quan. Persisting on energy conservation to ensure China to build a carbon neutral modern strong country[J]. Energy of China, 2021, 43(1): 7-11, 16. | |
4 | 邢卫红, 顾学红. 高性能膜材料与膜技术[M]. 北京: 化学工业出版社, 2017. |
XING Weihong, GU Xuehong. High performance membrane materials and membrane technology[M]. Beijing: Chemical Industry Press, 2017. | |
5 | LI Yanshuo, YANG Weishen. Molecular sieve membranes: from 3D zeolites to 2D MOFs[J]. Chinese Journal of Catalysis, 2015, 36(5): 692-697. |
6 | QIU Shilun, XUE Ming, ZHU Guangshan. Metal-organic framework membranes: from synthesis to separation application[J]. Chemical Society Reviews, 2014, 43(16): 6116-6140. |
7 | KIM Seok Jhin, LIU Yujun, MOORE Jason S, et al. Thin hydrogen-selective SAPO-34 zeolite membranes for enhanced conversion and selectivity in propane dehydrogenation membrane reactors[J]. Chemistry of Materials, 2016, 28(12): 4397-4402. |
8 | 顾学红, 张叶, 刘艳梅, 等. 一种NaA分子筛膜合成的方法: ZL200810155129.4[P]. 2009-03-11. |
GU Xuehong, ZHANG Ye, LIU Yanmei, et al. A method of NaA zeolite membrane synthesis: ZL200810155129.4[P]. 2009-03-11. | |
9 | YANG Zhanzhao, LIU Yanmei, YU Congli, et al. Ball-milled NaA zeolite seeds with submicron size for growth of NaA zeolite membranes[J]. Journal of Membrane Science, 2012, 392/393: 18-28. |
10 | YU Congli, LIU Yanmei, CHEN Gangling, et al. Pretreatment of isopropanol solution from pharmaceutical industry and pervaporation dehydration by NaA zeolite membranes[J]. Chinese Journal of Chemical Engineering, 2011, 19(6): 904-910. |
11 | KIM Pyoseop, HONG Sungwon, Seung Eun NAM, et al. On the effects of water exposure of as-synthesized LTA membranes on their structural properties and dehydration performances[J]. Separation and Purification Technology, 2020, 238: 116493. |
12 | TANAKA Ryuma, ITO Yuta, HASEGAWA Yasuhisa, et al. Synthesis of LTA zeolite membranes from metal alkoxides and examination of the pervaporation performance[J]. Microporous and Mesoporous Materials, 2021, 326: 111346. |
13 | WANG Lei, YANG Jianhua, RAZA Waseem, et al. Sustainable fabrication of large-scale tubular LTA zeolite membranes by a simple wet gel conversion[J]. Microporous and Mesoporous Materials, 2022, 329: 111541. |
14 | XU Can, ZHOU Chen, WANG Sui, et al. Copper-exchanged LTA zeolite membranes with enhanced water flux for ethanol dehydration[J]. Chinese Chemical Letters, 2019, 30(6): 1204-1206. |
15 | XU Kai, JIN Haiming, WANG Linfang, et al. Seeding-free synthesis of oriented zeolite LTA membrane on PDI-modified support for dehydration of alcohols[J]. Separation Science and Technology, 2018, 53 (11): 1741-1751. |
16 | WANG Zhengbao, GE Qinqin, SHAO Jia, et al. High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating-wiping seed deposition[J]. Journal of the American Chemical Society, 2009, 131(20): 6910-6911. |
17 | SHI Zhenzhou, ZHANG Yuting, CAI Chao, et al. Preparation and characterization of α-Al2O3 hollow fiber membranes with four-channel configuration[J]. Ceramics International, 2015, 41(1): 1333-1339. |
18 | CAI Chao, ZHANG Yuting, ZHANG Chun, et al. Microstructure modulation of α-Al2O3 hollow fiber membranes with four-channel geometric configuration[J]. Asia-Pacific Journal of Chemical Engineering, 2016, 11(6): 949-957. |
19 | LIU Dezhong, ZHANG Yuting, JIANG Ji, et al. High-performance NaA zeolite membranes supported on four-channel ceramic hollow fibers for ethanol dehydration[J]. RSC Advances, 2015, 5(116): 95866-95871. |
20 | YE Peng, ZHANG Yuting, WU Haifeng, et al. Mass transfer simulation on pervaporation dehydration of ethanol through hollow fiber NaA zeolite membranes[J]. AIChE Journal, 2016, 62(7): 2468-2478. |
21 | WANG Jiacheng, YE Peng, GAO Xuechao, et al. Modeling investigation of geometric size effect on pervaporation dehydration through scaled-up hollow fiber NaA zeolite membranes[J]. Chinese Journal of Chemical Engineering, 2018, 26(7): 1477-1484. |
22 | JI Miaomiao, GAO Xuechao, WANG Xuerui, et al. An ensemble synthesis strategy for fabrication of hollow fiber T-type zeolite membrane modules[J]. Journal of Membrane Science, 2018, 563: 460-469. |
23 | 王学瑞, 张春, 张玉亭, 等. 中空纤维分子筛膜制备与应用研究进展[J]. 膜科学与技术, 2020, 40(1): 313-321. |
WANG Xuerui, ZHANG Chun, ZHANG Yuting, et al. Fabrication and application of hollow fiber zeolite membranes[J]. Membrane Science and Technology, 2020, 40(1): 313-321. | |
24 | ZHANG Chun, PENG Li, JIANG Ji, et al. Mass transfer model, preparation and applications of zeolite membranes for pervaporation dehydration: a review[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1627-1638. |
25 | WANG Xuerui, JIANG Ji, LIU Dezhong, et al. Evaluation of hollow fiber T-type zeolite membrane modules for ethanol dehydration[J]. Chinese Journal of Chemical Engineering, 2017, 25(5): 581-586. |
26 | WANG Jiacheng, GAO Xuechao, JI Guozhao, et al. CFD simulation of hollow fiber supported NaA zeolite membrane modules[J]. Separation and Purification Technology, 2019, 213: 1-10. |
27 | BALAT Mustafa, BALAT Havva, Cahide ÖZ. Progress in bioethanol processing[J]. Progress in Energy and Combustion Science, 2008, 34(5): 551-573. |
28 | LI Peng, WU Yusheng, HAO Xiaoyu, et al. Performance of the glycerol-choline chloride deep eutectic solvent as an entrainer for separation of ethanol and water[J]. Journal of Chemical & Engineering Data, 2021, 66(8): 3101-3106. |
29 | LEI Zhigang, WANG Hongyou, ZHOU Rongqi, et al. Influence of salt added to solvent on extractive distillation[J]. Chemical Engineering Journal, 2002, 87(2): 149-156. |
30 | GAO Xuechao, WANG Shengxian, WANG Jiacheng, et al. The study on the coupled process of column distillation and vapor permeation by NaA zeolite membrane for ethanol dehydration[J]. Chemical Engineering Research and Design, 2019, 150: 246-253. |
31 | 邹才能, 薛华庆, 熊波, 等. “碳中和”的内涵、创新与愿景[J]. 天然气工业, 2021, 41(8): 46-57. |
ZOU Caineng, XUE Huaqing, XIONG Bo, et al. Connotation, innovation and vision of “carbon neutral”[J]. Natural Gas Industry B, 2021, 41(8): 46-57. | |
32 | 岳国君, 林海龙, 彭元亭, 等. 以生物质为原料的未来绿色氢能[J]. 化工进展, 2021, 40(8): 4678-4684. |
YUE Guojun, LIN Hailong, PENG Yuanting, et al. Future green hydrogen energy from biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4678-4684. | |
33 | 刘思明, 石乐. 碳中和背景下工业副产氢气能源化利用前景浅析[J]. 中国煤炭, 2021, 47(6): 53-56. |
LIU Siming, SHI Le. Analysis of the prospect of energy utilization in industrial by-product hydrogen under the background of carbon neutrality[J]. China Coal, 2021, 47(6): 53-56. | |
34 | Marc PERA-TITUS. Porous inorganic membranes for CO2 capture: present and prospects[J]. Chemical Reviews, 2014, 114(2): 1413-1492. |
35 | VOLDSUND Mari, JORDAL Kristin, ANANTHARAMAN Rahul. Hydrogen production with CO2 capture[J]. International Journal of Hydrogen Energy, 2016, 41(9): 4969-4992. |
36 | RAMASUBRAMANIAN Kartik, ZHAO Yanan, Winston HO W S. CO2 capture and H2 purification: prospects for CO2-selective membrane processes[J]. AIChE Journal, 2013, 59(4): 1033-1045. |
37 | GU Xuehong, TANG Zhong, DONG Junhang. On-stream modification of MFI zeolite membranes for enhancing hydrogen separation at high temperature[J]. Microporous and Mesoporous Materials, 2008, 111(1/2/3): 441-448. |
38 | HONG Zhou, WU Zaijuan, ZHANG Yuting, et al. Catalytic cracking deposition of methyldiethoxysilane for modification of zeolitic pores in MFI/α-Al2O3 zeolite membrane with H+ ion exchange pretreatment[J]. Industrial & Engineering Chemistry Research, 2013, 52(36): 13113-13119. |
39 | 陈冬冬, 张春, 洪周, 等. 不同硅烷修饰的MFI分子筛膜及其H2/CO2分离性能[J]. 膜科学与技术, 2016, 36(1): 1-6. |
CHEN Dongdong, ZHANG Chun, HONG Zhou, et al. MFI zeolite membranes modified by different silanes and their performances for H2/CO2 separation[J]. Membrane Science and Technology, 2016, 36(1): 1-6. | |
40 | HONG Zhou, SUN Feng, CHEN Dongdong, et al. Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane[J]. International Journal of Hydrogen Energy, 2013, 38(20): 8409-8414. |
41 | BERGH Johan VAN DEN, TIHAYA Anna, KAPTEIJN Freek. High temperature permeation and separation characteristics of an all-silica DDR zeolite membrane[J]. Microporous and Mesoporous Materials, 2010, 132(1/2): 137-147. |
42 | HUANG Aaisheng, CARO J. Steam-stable hydrophobic ITQ-29 molecular sieve membrane with H2 selectivity prepared by secondary growth using Kryptofix 222 as SDA[J]. Chemical Communications, 2010, 46(41): 7748-7750. |
43 | ZHOU Tao, SHI Mengyang, CHEN Lingjie, et al. Fluorine-free synthesis of all-silica STT zeolite membranes for H2/CH4 separation[J]. Chemical Engineering Journal, 2021: 133567. |
44 | DAKHCHOUNE Mostapha, VILLALOBOS Luis Francisco, SEMINO Rocio, et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets[J]. Nature Materials, 2021, 20(3): 362-369. |
45 | JANG Eunhee, LEE Jeong Hyeon, HONG Sungwon, et al. An unprecedented c-oriented DDR@MWW zeolite hybrid membrane: new insights into H2-permselectivities via six membered-ring pores[J]. Journal of Materials Chemistry A, 2020, 8(28): 14071-14081. |
46 | 周军武. 焦炉煤气综合利用技术分析[J]. 化工设计通讯, 2020, 46(5): 4, 6. |
ZHOU Junwu. Analysis on comprehensive utilization technology of coke oven gas[J]. Chemical Engineering Design Communications, 2020, 46(5): 4, 6. | |
47 | DU Peng, SONG Jieyu, WANG Xuerui, et al. Efficient scale-up synthesis and hydrogen separation of hollow fiber DD3R zeolite membranes[J]. Journal of Membrane Science, 2021, 636: 119546. |
48 | WANG Lin, ZHANG Chun, GAO Xuechao, et al. Preparation of defect-free DDR zeolite membranes by eliminating template with ozone at low temperature[J]. Journal of Membrane Science, 2017, 539: 152-160. |
49 | 国家能源局石油天然气司, 等. 中国天然气发展报告[R]. 北京: 石油工业出版社, 2021: 3-5. |
Petroleum and Natural Gas Division, National Energy Administration, et al. China natural cas development report[R]. Beijing: Petroleum Industry Press, 2021: 3-5. | |
50 | 国家市场监督管理总局, 中国国家标准化管理委员会. 进入天然气长输管道的气体质量要求: [S]. 北京: 中国标准出版社, 2019. |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Quality requirements for gases entering the long-distance transportation gas pipeline: [S]. Beijing: Standards Press of China, 2019. | |
51 | ZHANG Lixiong, JIA Mengdong, MIN Enze. Synthesis of SAPO-34/ceramic composite membranes[J]. Studies in Surface Science and Catalysis, 1997, 105: 2211-2216. |
52 | LI Shiguan, FALCONER John L, NOBLE Richard D. SAPO-34 membranes for CO2/CH4 separation[J]. Journal of Membrane Science, 2004, 241(1): 121-135. |
53 | POSHUSTA Joe C, NOBLE Richard D, FALCONER John L. Characterization of SAPO-34 membranes by water adsorption[J]. Journal of Membrane Science, 2001, 186(1): 25-40. |
54 | CHEN Yang, ZHANG Yuting, ZHANG Chun, et al. Fabrication of high-flux SAPO-34 membrane on α-Al2O3 four- channel hollow fibers for CO2 capture from CH4 [J]. Journal of CO2 Utilization, 2017, 18: 30-40. |
55 | ZHOU Rongfei, PING Eric W, FUNKE Hans H, et al. Improving SAPO-34 membrane synthesis[J]. Journal of Membrane Science, 2013, 444: 384-393. |
56 | KWON Yeon Hye, MIN Byunghyun, YANG Shaowei, et al. Ion-exchanged SAPO-34 membranes for krypton-xenon separation: control of permeation properties and fabrication of hollow fiber membranes[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6361-6368. |
57 | REHMAN Rashid Ur, SONG Qingnan, PENG Li, et al. Hydrophobic modification of SAPO-34 membranes for improvement of stability under wet condition[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2397-2406. |
58 | KOSINOV Nikolay, AUFFRET Clement, BORGHUIS Gerard J, et al. Influence of the Si/Al ratio on the separation properties of SSZ-13 zeolite membranes[J]. Journal of Membrane Science, 2015, 484: 140-145. |
59 | KOSINOV Nikolay, AUFFRET Clement, SRIPATHI Venkata G P, et al. Influence of support morphology on the detemplation and permeation of ZSM-5 and SSZ-13 zeolite membranes[J]. Microporous and Mesoporous Materials, 2014, 197: 268-277. |
60 | KOSINOV Nikolay, AUFFRET Clement, GUCUYENER Canan, et al. High flux high-silica SSZ-13 membrane for CO2 separation[J]. Journal of Materials Chemistry A, 2014, 2(32): 13083-13092. |
61 | YANG Shaowei, KWON Yeon Hye, Dong Yeun KOH, et al. Highly selective SSZ-13 zeolite hollow fiber membranes by ultraviolet activation at near-ambient temperature[J]. ChemNanoMat, 2019, 5(1): 61-67. |
62 | YANG Shaowei, CHIANG Yadong, NAIR Sankar. Scalable one-step gel conversion route to high-performance CHA zeolite hollow fiber membranes and modules for CO2 separation[J]. Energy Technology, 2019, 7(9): 1900494. |
63 | LIU Hua, GAO Xuechao, WANG Shengxian, et al. SSZ-13 zeolite membranes on four-channel α-Al2O3 hollow fibers for CO2 separation[J]. Separation and Purification Technology, 2021, 267: 118611. |
64 | YU Liang, NOBANDEGANI Mojtaba Sinaei, HEDLUND Jonas. Industrially relevant CHA membranes for CO2/CH4 separation[J]. Journal of Membrane Science, 2022, 641: 119888. |
65 | TOMITA Takashi, NAKAYAMA Kunio, SAKAI Hitoshi. Gas separation characteristics of DDR type zeolite membrane[J]. Microporous and Mesoporous Materials, 2004, 68(1/2/3): 71-75. |
66 | BERGH Jeroen VAN DEN, ZHU Weidong, GASCON Jorge, et al. Separation and permeation characteristics of a DD3R zeolite membrane[J]. Journal of Membrane Science, 2008, 316(1/2): 35-45. |
67 | HASEGAWA Hiroaki, NISHIDA Keiichi, OGURO Shuichi, et al. Gas separation process for CO2 removal from natural gas with DDR-type zeolite membrane[J]. Energy Procedia, 2017, 114: 32-36. |
68 | HYUN Sang Hwan, SONG Jian kun, KWAK Byung Il, et al. Synthesis of ZSM-5 zeolite composite membranes for CO2 separation[J]. Journal of Materials Science, 1999, 34(13): 3095-3105. |
69 | GU Xuehong, DONG Junhang, NENOFF Tina M, et al. Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist CO2/N2 mixtures[J]. Industrial & Engineering Chemistry Research, 2005, 44(4): 937-944. |
70 | SHIN Dong Wook, HYUN Sang Hoon, CHO Churl Hee, et al. Synthesis and CO2/N2 gas permeation characteristics of ZSM-5 zeolite membranes[J]. Microporous and Mesoporous Materials, 2005, 85(3): 313-323. |
71 | CHEW Thiam Leng, YEONG Yin Fong, Chii Dong HO, et al. Ion-exchanged silicoaluminophosphate-34 membrane for efficient CO2/N2 separation with low CO2 concentration in the gas mixture[J]. Industrial & Engineering Chemistry Research, 2019, 58(2): 729-735. |
72 | WANG Bin, ZHENG Yihong, ZHANG Jinfeng, et al. Separation of light gas mixtures using zeolite SSZ-13 membranes[J]. Microporous and Mesoporous Materials, 2019, 275: 191-199. |
73 | BAKER Richard W, FREEMAN Brice, KNIEP Jay, et al. CO2 capture from cement plants and steel mills using membranes[J]. Industrial & Engineering Chemistry Research, 2018, 57(47): 15963-15970. |
74 | XU Jiayou, WANG Zhi, QIAO Zhihua, et al. Post-combustion CO2 capture with membrane process:practical membrane performance and appropriate pressure[J]. Journal of Membrane Science, 2019, 581: 195-213. |
75 | 洪周, 张春, 吴再娟, 等. 原位法制备MFI型分子筛膜及其渗透性能[J]. 南京工业大学学报(自然科学版), 2012, 34(6): 22-26. |
HONG Zhou, ZHANG Chun, WU Zaijuan, et al. Preparation and permeability performances of MFI zeolite membranes by in-situ crystallization method[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2012, 34(6): 22-26. | |
76 | GU Xuehong, DONG Junhang, NENOFF Tina M, et al. Separation of p-xylene from multicomponent vapor mixtures using tubular MFI zeolite mmbranes[J]. Journal of Membrane Science, 2006, 280(1/2): 624-633. |
77 | 孙峰, 张春, 洪周, 等. 中空纤维MFI/α-Al2O3分子筛膜的制备及其二甲苯分离研究[J]. 膜科学与技术, 2014, 34(2): 11-17. |
SUN Feng, ZHANG Chun, HONG Zhou, et al. Preparation of MFI/α-Al2O3 hollow fiber zeolite membranes and its application to xylene separation[J]. Membrane Science and Technology, 2014, 34(2): 11-17. | |
78 | ZHANG Chun, HONG Zhou, GU Xuehong, et al. Silicalite-1 zeolite membrane reactor packed with HZSM-5 catalyst for meta-xylene isomerization[J]. Industrial & Engineering Chemistry Research, 2009, 48(9): 4293-4299. |
79 | ZHANG Chun, HONG Zhou, CHEN Jinxian, et al. Catalytic MFI zeolite membranes supported on α-Al2O3 substrates for m-xylene isomerization[J]. Journal of Membrane Science, 2012, 389: 451-458. |
80 | Albert BOS, PÜNT Ineke G M, WESSLING Matthias, et al. CO2-induced plasticization phenomena in glassy polymers[J]. Journal of Membrane Science, 1999, 155(1): 67-78. |
81 | PETERS Thijs A, STANGE Marit, VEENSTRA Peter, et al. The performance of Pd-Ag alloy membrane films under exposure to trace amounts of H2S[J]. Journal of Membrane Science, 2016, 499: 105-115. |
82 | ZHANG Yuting, WU Zaijuan, HONG Zhou, et al. Hydrogen-selective zeolite membrane reactor for low temperature water gas shift reaction[J]. Chemical Engineering Journal, 2012, 197: 314-321. |
83 | ZHANG Yuting, SUN Qi, GU Xuehong. Pure H2 production through hollow fiber hydrogen-selective MFI zeolite membranes using steam as sweep gas[J]. AIChE Journal, 2015, 61(10): 3459-3469. |
84 | ZHU Feng, PENG Li, YAO Xun, et al. Hollow-fiber-supported gold and zirconium-doped faujasite catalytic membranes for hydrogen purification[J]. Energy Technology, 2017, 5(12): 2283-2293. |
85 | ZHU Feng, ZHANG Yuting, GU Xuehong, et al. CO preferential oxidation in a novel Au@ZrO2 flow-through catalytic membrane reactor with high stability and efficiency[J]. International Journal of Hydrogen Energy, 2016, 41(31): 13513-13520. |
86 | PENG Li, WANG Limin, ZHU Feng, et al. Polydopamine modified Au/FAU catalytic membrane for CO preferential oxidation[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2560-2565. |
[1] | 舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478. |
[2] | 李文秀, 杨宇航, 黄艳, 王涛, 王镭, 方梦祥. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057. |
[3] | 孙晖, 孟祥海, 魏景海, 周红军, 徐春明. 绿电制氢生产氨的新场景与实践[J]. 化工进展, 2023, 42(2): 1098-1102. |
[4] | 康宇, 苟泽念. 氨基酸和DTAC对CO2水合分离动力学影响[J]. 化工进展, 2023, 42(10): 5067-5075. |
[5] | 陶雨萱, 郭亮, 高聪, 宋伟, 陈修来. 代谢工程改造微生物固定二氧化碳研究进展[J]. 化工进展, 2023, 42(1): 40-52. |
[6] | 闫鹏, 程易. 用于分布式制氢的甲烷蒸汽重整膜反应器的数值模拟[J]. 化工进展, 2022, 41(7): 3446-3454. |
[7] | 杨学萍. 碳中和背景下现代煤化工技术路径探索[J]. 化工进展, 2022, 41(7): 3402-3412. |
[8] | 陈加波, 周鑫, 李旭. 以活性污泥为接种污泥厌氧氨氧化工艺的快速启动及脱氮效能[J]. 化工进展, 2022, 41(7): 3900-3907. |
[9] | 敬双怡, 刘超, 蔡怡婷, 李卫平, 于玲红, 侯娜. 低温下磁性载体强化MBBR硝化性能及微生物群落分析[J]. 化工进展, 2022, 41(4): 2180-2190. |
[10] | 陈健, 姬存民, 卜令兵. 碳中和背景下工业副产气制氢技术研究与应用[J]. 化工进展, 2022, 41(3): 1479-1486. |
[11] | 甘凤丽, 江霞, 常玉龙, 靳紫恒, 汪华林, 师敬伟. 石化行业碳中和技术路径探索[J]. 化工进展, 2022, 41(3): 1364-1375. |
[12] | 何盛宝, 黄格省. 化工新材料产业及其在低碳发展中的作用[J]. 化工进展, 2022, 41(3): 1634-1644. |
[13] | 朱家华, 穆立文, 蒋管聪, 刘立, 熊晶晶, 陆小华. 生物质协同流程工业节能、降污、减碳路径思考[J]. 化工进展, 2022, 41(3): 1111-1114. |
[14] | 闫国春, 温亮, 张华. 现代煤化工产业发展路径分析[J]. 化工进展, 2022, 41(12): 6201-6212. |
[15] | 刘艳, 年佩, 张轩, 黄锐, 王政, 姜男哲. Langmuir-Blodgett法制备高H2选择性取向ZSM-5分子筛分离膜[J]. 化工进展, 2021, 40(4): 2243-2250. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |