化工进展 ›› 2025, Vol. 44 ›› Issue (9): 5018-5032.DOI: 10.16085/j.issn.1000-6613.2024-1143
• 材料科学与技术 • 上一篇
张文静1(
), 黄致新1, 李士腾1, 邓帅1(
), 李双俊2
收稿日期:2024-07-17
修回日期:2024-10-14
出版日期:2025-09-25
发布日期:2025-09-30
通讯作者:
邓帅
作者简介:张文静(2001—),女,硕士研究生,研究方向为碳气凝胶吸附CO2。E-mail:zwj189377@tju.edu.cn。
基金资助:
ZHANG Wenjing1(
), HUANG Zhixin1, LI Shiteng1, DENG Shuai1(
), LI Shuangjun2
Received:2024-07-17
Revised:2024-10-14
Online:2025-09-25
Published:2025-09-30
Contact:
DENG Shuai
摘要:
为应对全球气候危机,二氧化碳(CO2)捕集技术受到广泛关注。吸附法作为一项有前景的低成本CO2捕集技术,其研究核心在于吸附剂材料的开发。碳气凝胶材料具有比表面积高、孔隙结构丰富、孔径结构可调、再生能耗低等优点,同时拥有大量的表面活性位点,能够高效吸附CO2。利用可再生的生物质资源作为原料制备高性能碳气凝胶CO2吸附剂,是一种有效降低经济与环境成本的材料开发新途径。本文旨在整理和总结近年来国内外关于生物质碳气凝胶CO2吸附剂的研究进展,包括碳气凝胶吸附CO2的机理、制备方法以及性能表征,并着重关注其功能化方法。综合分析结果显示,生物质碳气凝胶凭借其高比表面积、良好的化学稳定性以及可调控的孔结构,展现出在CO2吸附领域的巨大潜力和广阔应用前景。未来应进一步探索生物质碳气凝胶的规模化制备技术及其在复杂工业环境中的实际应用,推动其从实验室研究向实际应用转化。
中图分类号:
张文静, 黄致新, 李士腾, 邓帅, 李双俊. 生物质碳气凝胶CO2吸附剂研究进展[J]. 化工进展, 2025, 44(9): 5018-5032.
ZHANG Wenjing, HUANG Zhixin, LI Shiteng, DENG Shuai, LI Shuangjun. Biomass carbon aerogels for CO2 adsorbents[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5018-5032.
| 方法 | 工作原理 | 优点 | 缺点 | 案例 |
|---|---|---|---|---|
| 溶液吸收法 | 化学溶液与CO2之间的化学反应 | 技术较为成熟,去除效果好,对CO2选择性好 | 易腐蚀设备,能耗高,不易再生、易产生二次污染 | 醇胺溶液[ |
| 膜分离法 | 膜材料的选择透过性 | 效果好,能耗低 | 技术尚不成熟,成本较高,安全性和稳定性有待提高 | 橡胶态聚合物、玻璃态聚合物、金属膜[ |
| 深冷分离法 | 组分沸点和挥发度不同 | 可以产生用管道输送的液体CO2 | 能耗高,分离效果差 | 收油田伴生气中的CO2[ |
| 固体吸附法 | 化学吸附和物理吸附 | 吸附剂再生能耗低,应用场景丰富 | 选择性不好、水蒸气影响严重 | 活性炭[ |
表1 CO2捕集技术对比
| 方法 | 工作原理 | 优点 | 缺点 | 案例 |
|---|---|---|---|---|
| 溶液吸收法 | 化学溶液与CO2之间的化学反应 | 技术较为成熟,去除效果好,对CO2选择性好 | 易腐蚀设备,能耗高,不易再生、易产生二次污染 | 醇胺溶液[ |
| 膜分离法 | 膜材料的选择透过性 | 效果好,能耗低 | 技术尚不成熟,成本较高,安全性和稳定性有待提高 | 橡胶态聚合物、玻璃态聚合物、金属膜[ |
| 深冷分离法 | 组分沸点和挥发度不同 | 可以产生用管道输送的液体CO2 | 能耗高,分离效果差 | 收油田伴生气中的CO2[ |
| 固体吸附法 | 化学吸附和物理吸附 | 吸附剂再生能耗低,应用场景丰富 | 选择性不好、水蒸气影响严重 | 活性炭[ |
| 前体 | TGA | SEM | TEM | XRD | 吸附仪 | FTIR | XPS | EDX |
|---|---|---|---|---|---|---|---|---|
| 甘蔗渣[ | √ | √ | √ | √ | ||||
| 农业废弃物[ | √ | √ | √ | √ | √ | √ | ||
| 纤维素[ | √ | √ | √ | √ | √ | |||
| 废纸[ | √ | √ | √ | √ | √ | |||
| 木质素[ | √ | √ | √ | √ | ||||
| 玉米秸秆[ | √ | √ | √ | √ | √ | √ | √ | |
| 微藻[ | √ | √ | √ | √ | √ | √ | ||
| 淀粉[ | √ | √ | √ | √ | √ | √ | ||
| 黄麻线[ | √ | √ | √ | √ | √ | √ | √ | |
| 纤维素[ | √ | √ | √ | √ | √ | √ |
表2 碳气凝胶表征手段
| 前体 | TGA | SEM | TEM | XRD | 吸附仪 | FTIR | XPS | EDX |
|---|---|---|---|---|---|---|---|---|
| 甘蔗渣[ | √ | √ | √ | √ | ||||
| 农业废弃物[ | √ | √ | √ | √ | √ | √ | ||
| 纤维素[ | √ | √ | √ | √ | √ | |||
| 废纸[ | √ | √ | √ | √ | √ | |||
| 木质素[ | √ | √ | √ | √ | ||||
| 玉米秸秆[ | √ | √ | √ | √ | √ | √ | √ | |
| 微藻[ | √ | √ | √ | √ | √ | √ | ||
| 淀粉[ | √ | √ | √ | √ | √ | √ | ||
| 黄麻线[ | √ | √ | √ | √ | √ | √ | √ | |
| 纤维素[ | √ | √ | √ | √ | √ | √ |
| 年份 | 单位 | 原料 | 制备方法 | 干燥方法 | 改性方法 | 吸附容量(1bar,25℃)/mmol·g-1 | CO2-N2选择性 | 吸附热/kJ·mol-1 |
|---|---|---|---|---|---|---|---|---|
| 2014[ | 凯斯西储大学 | 壳聚糖和聚苯并𫫇嗪 | 溶胶-凝胶 | 冷冻干燥 | KOH | 4.15 | — | 21.3 |
| 2016[ | 国防科技大学 | 棉花纤维 | 溶胶-凝胶 | 冷冻干燥 | 氮掺杂 | 4.99 | — | — |
| — | 3.56 | — | — | |||||
| 2016[ | 凯斯西储大学 | 壳聚糖 | 溶胶-凝胶 | 冷冻干燥 | 载胺 | 5.72 | — | — |
| — | 2.13 | — | — | |||||
| 2016[ | 新加坡国立大学 | 纤维素 | 溶胶-凝胶 | 冷冻干燥 | CO2活化 | 3.42 | — | — |
| — | 3.00 | — | — | |||||
| 2018[ | 南开大学 | 葡萄糖 | 水热法 | 冷冻干燥 | 氮掺杂 | 4.12 | 9.2 | — |
| 2018[ | 斯里贾亚瓦德纳普拉大学 | 甲壳素 | 溶胶-凝胶 | 冷冻干燥 | KOH | 3.44 | — | — |
| — | 0.76 | — | — | |||||
| 2019[ | 南京林业大学 | 桉树纸浆 | 溶胶-凝胶 | 冷冻干燥 | 载胺 | 2.09 | — | — |
| — | 0.28 | — | — | |||||
| 2019[ | 兰州理工大学 | 向日葵 | 冰模板法 | 冷冻干燥 | KOH | 4.09(0℃) | 40 | 17~23 |
| 2020[ | 普纳大学 | 废纸巾 | 溶胶-凝胶 | 冷冻干燥 | 空气 | 3.08 | 26 | 28.2~34.6 |
| — | 2.62 | — | — | |||||
| 2020[ | 吕勒奥理工大学 | 木质素 | 冰模板法 | 冷冻干燥 | 氮掺杂 | 5.23 | — | 26.7 |
| 2020[ | 南京工业大学 | 纤维素 | 溶胶-凝胶 | 超临界干燥 | 载胺 | 1.2(1%) | — | — |
| — | 0.15 | — | — | |||||
| 2021[ | 吕勒奥理工大学 | 木质素和纤维素纳米纤维 | 冰模板法 | 冷冻干燥 | 氮掺杂 | 4.49 | 21 | 19.98 |
| 2022[ | 山东科技大学 | 纤维素纳米纤维 | 溶胶-凝胶 | 冷冻干燥 | 载胺 | 7.74 | — | 7.08~21.92 |
| — | 1.34 | — | — | |||||
| 2023[ | 内蒙古工业大学 | 香蒲 | 溶胶-凝胶 | 冷冻干燥 | KOH | 2.14(0.5bar),16(30bar) | — | — |
| — | 1.79(30bar) | — | — | |||||
| 2023[ | 华北电力大学 | 纤维素 | 溶胶-凝胶 | 冷冻干燥 | 载胺 | 5.58(40℃) | 33.8 | 55~60 |
| — | 3.5 | — | — | |||||
| 2023[ | 美国开罗大学 | 农业废弃物 | 溶胶-凝胶 | 冷冻干燥 | 载胺 | 2.83 | — | — |
| — | 1.99 | — | — | |||||
| 2023[ | 福建工业大学 | 纤维素 | 水热法 | 冷冻干燥 | 氮掺杂 | 3.65 | 19.69 | 11.96~21.35 |
| — | 1.74 | — | — | |||||
| 2023[ | 苏黎世理工学院 | 食物蛋白 | 溶胶-凝胶 | 超临界干燥 | 载胺 | 0.58(400μg/g) | — | — |
| — | 0.25 | — | — | |||||
| 2023[ | 浙江大学 | 纤维素 | 冰模板法 | 冷冻干燥 | 载胺 | 6.45 | — | — |
| — | 2.62 | — | — | |||||
| 2024[ | 华中科技大学 | 废纸 | 溶胶-凝胶 | 冷冻干燥 | 氮掺杂 | 5.61(0℃) | 11 | — |
表3 不同功能化方法制备的生物质碳气凝胶性能
| 年份 | 单位 | 原料 | 制备方法 | 干燥方法 | 改性方法 | 吸附容量(1bar,25℃)/mmol·g-1 | CO2-N2选择性 | 吸附热/kJ·mol-1 |
|---|---|---|---|---|---|---|---|---|
| 2014[ | 凯斯西储大学 | 壳聚糖和聚苯并𫫇嗪 | 溶胶-凝胶 | 冷冻干燥 | KOH | 4.15 | — | 21.3 |
| 2016[ | 国防科技大学 | 棉花纤维 | 溶胶-凝胶 | 冷冻干燥 | 氮掺杂 | 4.99 | — | — |
| — | 3.56 | — | — | |||||
| 2016[ | 凯斯西储大学 | 壳聚糖 | 溶胶-凝胶 | 冷冻干燥 | 载胺 | 5.72 | — | — |
| — | 2.13 | — | — | |||||
| 2016[ | 新加坡国立大学 | 纤维素 | 溶胶-凝胶 | 冷冻干燥 | CO2活化 | 3.42 | — | — |
| — | 3.00 | — | — | |||||
| 2018[ | 南开大学 | 葡萄糖 | 水热法 | 冷冻干燥 | 氮掺杂 | 4.12 | 9.2 | — |
| 2018[ | 斯里贾亚瓦德纳普拉大学 | 甲壳素 | 溶胶-凝胶 | 冷冻干燥 | KOH | 3.44 | — | — |
| — | 0.76 | — | — | |||||
| 2019[ | 南京林业大学 | 桉树纸浆 | 溶胶-凝胶 | 冷冻干燥 | 载胺 | 2.09 | — | — |
| — | 0.28 | — | — | |||||
| 2019[ | 兰州理工大学 | 向日葵 | 冰模板法 | 冷冻干燥 | KOH | 4.09(0℃) | 40 | 17~23 |
| 2020[ | 普纳大学 | 废纸巾 | 溶胶-凝胶 | 冷冻干燥 | 空气 | 3.08 | 26 | 28.2~34.6 |
| — | 2.62 | — | — | |||||
| 2020[ | 吕勒奥理工大学 | 木质素 | 冰模板法 | 冷冻干燥 | 氮掺杂 | 5.23 | — | 26.7 |
| 2020[ | 南京工业大学 | 纤维素 | 溶胶-凝胶 | 超临界干燥 | 载胺 | 1.2(1%) | — | — |
| — | 0.15 | — | — | |||||
| 2021[ | 吕勒奥理工大学 | 木质素和纤维素纳米纤维 | 冰模板法 | 冷冻干燥 | 氮掺杂 | 4.49 | 21 | 19.98 |
| 2022[ | 山东科技大学 | 纤维素纳米纤维 | 溶胶-凝胶 | 冷冻干燥 | 载胺 | 7.74 | — | 7.08~21.92 |
| — | 1.34 | — | — | |||||
| 2023[ | 内蒙古工业大学 | 香蒲 | 溶胶-凝胶 | 冷冻干燥 | KOH | 2.14(0.5bar),16(30bar) | — | — |
| — | 1.79(30bar) | — | — | |||||
| 2023[ | 华北电力大学 | 纤维素 | 溶胶-凝胶 | 冷冻干燥 | 载胺 | 5.58(40℃) | 33.8 | 55~60 |
| — | 3.5 | — | — | |||||
| 2023[ | 美国开罗大学 | 农业废弃物 | 溶胶-凝胶 | 冷冻干燥 | 载胺 | 2.83 | — | — |
| — | 1.99 | — | — | |||||
| 2023[ | 福建工业大学 | 纤维素 | 水热法 | 冷冻干燥 | 氮掺杂 | 3.65 | 19.69 | 11.96~21.35 |
| — | 1.74 | — | — | |||||
| 2023[ | 苏黎世理工学院 | 食物蛋白 | 溶胶-凝胶 | 超临界干燥 | 载胺 | 0.58(400μg/g) | — | — |
| — | 0.25 | — | — | |||||
| 2023[ | 浙江大学 | 纤维素 | 冰模板法 | 冷冻干燥 | 载胺 | 6.45 | — | — |
| — | 2.62 | — | — | |||||
| 2024[ | 华中科技大学 | 废纸 | 溶胶-凝胶 | 冷冻干燥 | 氮掺杂 | 5.61(0℃) | 11 | — |
| 胺试剂 | 相对分子质量 | 密度/g·cm-3 | 标准沸腾温度/℃ | 分子结构 |
|---|---|---|---|---|
| 2-氨基-2-甲基-1,3-丙二醇(AMPD) | 105.14 | — | 544.5 | ![]() |
| 乙醇胺(MEA)[ | 61.08 | 1.01 | 170.9 | ![]() |
| 四乙烯五胺(TEPA)[ | 189.30 | 1.00 | 341 | ![]() |
| 三亚乙基四胺(TETA)[ | 146.23 | 0.98 | 266 | ![]() |
| 聚乙烯亚胺(PEI)[ | — | 1.05 | 645 | ![]() |
表4 CO2吸附材料载胺常用试剂
| 胺试剂 | 相对分子质量 | 密度/g·cm-3 | 标准沸腾温度/℃ | 分子结构 |
|---|---|---|---|---|
| 2-氨基-2-甲基-1,3-丙二醇(AMPD) | 105.14 | — | 544.5 | ![]() |
| 乙醇胺(MEA)[ | 61.08 | 1.01 | 170.9 | ![]() |
| 四乙烯五胺(TEPA)[ | 189.30 | 1.00 | 341 | ![]() |
| 三亚乙基四胺(TETA)[ | 146.23 | 0.98 | 266 | ![]() |
| 聚乙烯亚胺(PEI)[ | — | 1.05 | 645 | ![]() |
| [1] | LEUNG Dennis Y C, CARAMANNA Giorgio, Mercedes MAROTO-VALER M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443. |
| [2] | ROCHELLE Gary T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654. |
| [3] | 李磊, 赵宴民, 田海洋, 等. 燃气烟气中低浓度CO2的低能耗高效捕集工艺模拟优化[J]. 化工进展, 2024, 43(S1): 581-589. |
| LI Lei, ZHAO Yanmin, TIAN Haiyang, et al. Simulation and optimization of low energy consumption and high efficiency capture process for low concentration CO2 in flue gas[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 581-589. | |
| [4] | 闫瀚钊, 王艳丽, 李进锋. 膜分离法捕集烟气中二氧化碳的研究进展[J]. 低碳化学与化工, 2024, 49(11): 113-121, 132. |
| YAN Hanzhao, WANG Yanli, LI Jinfeng. Research progress of carbon dioxide capture in flue gas by membrane separation method[J].Low-Carbon Chemistry and Chemical Engineering, 2024, 49(11): 113-121, 132. | |
| [5] | 穆中华, 张平, 白剑锋, 等. 油田伴生气中CO2捕集与液化技术研究[J]. 油气田地面工程, 2023, 42(7): 1-5. |
| MU Zhonghua, ZHANG Ping, BAI Jianfeng, et al. Research on CO2 capture and liquefaction technology in oilfield associated gas[J].Oil-Gas Field Surface Engineering, 2023, 42(7): 1-5. | |
| [6] | 高赫. 煤和生物质制备活性焦及CO2吸附性能探究[D]. 济南:山东大学, 2023. |
| GAO He, Study on preparation of activated coke from coal and biomass and their CO 2 adsorption performance[D]. Jinan: Shandong University, 2023. | |
| [7] | 刘牛. 强吸碳MOFs及衍生多孔材料掺杂混合基质膜选择性分离CO2研究[D]. 杭州:浙江大学, 2022. |
| LIU Niu. CO2 selective separation via mixed matrix membrane doped with strongly CO2-adsorptive MOFs and derived porous materials[D]. Hangzhou: Zhejiang University, 2022. | |
| [8] | 张家伟, 左莉莉, 王淇, 等. 金属有机骨架/碳气凝胶复合吸附剂对模拟烟气中CO2的吸附性能[J]. 低碳化学与化工, 2024, 49(7): 55-61. |
| ZHANG Jiawei, ZUO Lili, WANG Qi, et al. Adsorption performance of metal-organic framework/carbon aerogel composite adsorbent for CO2 in simulated flue gas[J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(7): 55-61. | |
| [9] | ABUELNOOR Nada, ALHAJAJ Ahmed, KHALEEL Maryam, et al. Activated carbons from biomass-based sources for CO2 capture applications[J]. Chemosphere, 2021, 282: 131111. |
| [10] | SINGH Gurwinder, LEE Jangmee, KARAKOTI Ajay, et al. Emerging trends in porous materials for CO2 capture and conversion[J]. Chemical Society Reviews, 2020, 49(13): 4360-4404. |
| [11] | Eduardo PÉREZ-BOTELLA, VALENCIA Susana, Fernando REY. Zeolites in adsorption processes: State of the art and future prospects[J]. Chemical Reviews, 2022, 122(24): 17647-17695. |
| [12] | HUDSON Matthew R, QUEEN Wendy L, MASON Jarad A, et al. Unconventional, highly selective CO2 adsorption in zeolite SSZ-13[J]. Journal of the American Chemical Society, 2012, 134(4): 1970-1973. |
| [13] | LIN Yichao, KONG Chunglong, ZHANG Qiuju, et al. Metal-organic frameworks for carbon dioxide capture and methane storage[J]. Advanced Energy Materials, 2017, 7(4): 1601296. |
| [14] | D’ALESSANDRO Deanna M, SMIT Berend, LONG Jeffrey R. Carbon dioxide capture: Prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082. |
| [15] | YUAN Xiangzhou, LI Shuangjun, JEON Sunbin, et al. Valorization of waste polyethylene terephthalate plastic into N-doped microporous carbon for CO2 capture through a one-pot synthesis[J]. Journal of Hazardous Materials, 2020, 399: 123010. |
| [16] | SIMMONS Jason M, WU Hui, ZHOU Wei, et al. Carbon capture in metal-organic frameworks—A comparative study[J]. Energy & Environmental Science, 2011, 4(6): 2177-2185. |
| [17] | RAO Linli, LIU Shenfang, WANG Linlin, et al. N-doped porous carbons from low-temperature and single-step sodium amide activation of carbonized water chestnut shell with excellent CO2 capture performance[J].Chemical Engineering Journal, 2019, 359: 428-435. |
| [18] | YANG Jing, XIAO Yi, GU Guo-yu-lin, et al. Efficient CO2 capture and in situ electrocatalytic conversion on MgO surface by metal single-atom engineering: A comprehensive DFT study[J]. Separation and Purification Technology, 2024, 338: 126489. |
| [19] | PEKALA R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. Journal of Materials Science, 1989, 24(9): 3221-3227. |
| [20] | ZHANG S Q, WANG J, SHEN J, et al. The investigation of the adsorption character of carbon aerogels[J]. Nanostructured Materials, 1999, 11(3): 375-381. |
| [21] | TIAN H Y, BUCKLEY C E, MULÈ S, et al. Preparation, microstructure and hydrogen sorption properties of nanoporous carbon aerogels under ambient drying[J]. Nanotechnology, 2008, 19(47): 475605. |
| [22] | 欧阳玲, 沈军, 周斌, 等. 用于储氢材料的碳/掺杂碳气凝胶研究[J]. 原子能科学技术, 2008, 42(5): 423-427. |
| OUYANG Ling, SHEN Jun, ZHOU Bin, et al. Carbon and metal-doped carbon aerogels for hydrogen storage[J]. Atomic Energy Science and Technology, 2008, 42(5): 423-427. | |
| [23] | 陈庆军. 炭质多孔材料的结构控制及对H2S、CO2脱除行为研究[D]. 上海:华东理工大学, 2012. |
| CHEN Qingjun. H2S and CO2 removal by carbon based porous materials with control structures[D]. Shanghai: East China University of Science and Technology, 2012. | |
| [24] | BRODA Marcin, MÜLLER Christoph R. Synthesis of highly efficient, Ca-based, Al2O3-stabilized, carbon gel-templated CO2 sorbents[J]. Advanced Materials, 2012, 24(22): 3059-3064. |
| [25] | 甘礼华, 李光明, 朱大章, 等. 碳气凝胶的制备研究[J]. 高等学校化学学报, 2000, 21(6): 955-957. |
| GAN Lihua, LI Guangming, ZHU Dazhang, et al. Studies on preparation of carbon aerogels[J]. Chemical Journal of Chinese Universities, 2000, 21(6): 955-957. | |
| [26] | SINGH Ashish, KOHLI D K, BHARTIYA Sushmita, et al. Conductivity enhancement of carbon aerogel by modified gelation using self additive[J]. AIP Conference Proceedings, 2018, 1942: 140056. |
| [27] | THUBSUANG Uthen, SUKANAN Darunee, SAHASITHIWAT Somboon, et al. Highly sensitive room temperature organic vapor sensor based on polybenzoxazine-derived carbon aerogel thin film composite[J]. Materials Science and Engineering: B, 2015, 200: 67-77. |
| [28] | WANG Guixing, LIU Xiaona, SONG Zhaoping, et al. Multifunctional flexible pressure sensor based on a cellulose fiber-derived hierarchical carbon aerogel[J]. ACS Applied Electronic Materials, 2023, 5(3): 1581-1591. |
| [29] | 胡艺洁. 壳聚糖基碳气凝胶的表界面设计与性能调控[D]. 广州:华南理工大学, 2022. |
| HU Yijie. Interfacial design for property regulation of chitosan-based carbon aerogel[D]. Guangzhou: South China University of Technology, 2022. | |
| [30] | SUN Jiaming, LI Wei, LEI E, et al. Ultralight carbon aerogel with tubular structures and N-containing sandwich-like wall from kapok fibers for supercapacitor electrode materials[J]. Journal of Power Sources, 2019, 438: 227030. |
| [31] | DUAN Huiyu, WANG Mengxue, ZHANG Ziwei, et al. Biomass-derived photothermal carbon aerogel for efficient solar-driven seawater desalination[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109295. |
| [32] | CHEN Zehong, ZHUO Hao, HU Yijie, et al. Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage[J]. Advanced Functional Materials, 2020, 30(17): 1910292. |
| [33] | XU Xuezhu, ZHOU Jian, NAGARAJU D H, et al. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: Catalyst-free synthesis and its application in energy storage devices[J]. Advanced Functional Materials, 2015, 25(21): 3193-3202. |
| [34] | ZHU Lin, JIANG Haitao, RAN Wenxu, et al. Turning biomass waste to a valuable nitrogen and boron dual-doped carbon aerogel for high performance lithium-sulfur batteries[J]. Applied Surface Science, 2019, 489:154-164. |
| [35] | TIAN Yu, ESTEVEZ Diana, WEI Huijie, et al. Chitosan-derived carbon aerogels with multiscale features for efficient microwave absorption[J]. Chemical Engineering Journal, 2021, 421: 129781. |
| [36] | GU Weihua, SHENG Jiaqi, HUANG Qianqian, et al. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption[J]. Nano-Micro Letters, 2021, 13(1): 102. |
| [37] | ZHANG S Q, HUANG C G, ZHOU Z Y, et al. Investigation of the microwave absorbing properties of carbon aerogels[J]. Materials Science and Engineering: B, 2002, 90(1/2): 38-41. |
| [38] | 宗泽. 生物质碳基复合材料的制备及电磁屏蔽性能研究[D]. 西安:西安理工大学, 2022. |
| ZONG Ze. Study on fabrication and electromagnetic interference shielding performance of biomass-derived carbon-based composites[D]. Xi’an: Xi’an University of Technology, 2022. | |
| [39] | 吕斌, 郭卓, 高党鸽, 等. 胶原纤维碳气凝胶的制备及电磁屏蔽与吸波性能[J]. 精细化工, 2024, 42(3): 537-543. |
| Bin LYU, GUO Zhuo, GAO Dangge, et al. Preparation of collagen fiber carbon aerogel and its performance on electromagnetic shielding and microwave absorbing[J]. Fine Chemicals, 2024, 42(3): 537-543. | |
| [40] | ZHU Lin, WANG Ya, WANG Yaxiong, et al. An environmentally friendly carbon aerogels derived from waste pomelo peels for the removal of organic pollutants/oils[J]. Microporous and Mesoporous Materials, 2017, 241: 285-292. |
| [41] | JING Zefeng, DING Jichao, ZHANG Tao, et al. Flexible, versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation[J]. Food and Bioproducts Processing, 2019, 115: 134-142. |
| [42] | LI Zhaoxin, LEI Shijun, XI Jianchao, et al. Bio-based multifunctional carbon aerogels from sugarcane residue for organic solvents adsorption and solar-thermal-driven oil removal[J]. Chemical Engineering Journal, 2021, 426: 129580. |
| [43] | HAN Shenjie, SUN Qingfeng, ZHENG Huanhuan, et al. Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution[J]. Carbohydrate Polymers, 2016, 136: 95-100. |
| [44] | LI Lingxiao, HU Tao, SUN Hanxue, et al. Pressure-sensitive and conductive carbon aerogels from poplars catkins for selective oil absorption and oil/water separation[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 18001-18007. |
| [45] | DAI Jiangdong, ZHANG Ruilong, GE Wenna, et al. 3D macroscopic superhydrophobic magnetic porous carbon aerogel converted from biorenewable popcorn for selective oil-water separation[J]. Materials & Design, 2018, 139:122-131. |
| [46] | ZAKER Ali, HAMMOUDA Samia BEN, SUN Jie, et al. Carbon-based materials for CO2 capture: Their production, modification and performance[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109741. |
| [47] | WILCOX Jennifer. Adsorption[M]//Carbon Capture. New York: Springer New York, 2012: 115-175. |
| [48] | THIELE E W. Relation between catalytic activity and size of particle[J]. Industrial & Engineering Chemistry, 1939, 31(7): 916-920. |
| [49] | PRESSER Volker, MCDONOUGH John, YEON Sun-Hwa, et al. Effect of pore size on carbon dioxide sorption by carbide derived carbon[J]. Energy & Environmental Science, 2011, 4(8): 3059-3066. |
| [50] | 孔勇, 江幸, 沈晓冬. 氨基功能化气凝胶二氧化碳吸附研究进展[J]. 中国材料进展, 2021, 40(5): 352-358. |
| KONG Yon, JIANG Xing, SHEN Xiaodong. Recent advances in amine functionalized aerogels for CO2 adsorption[J]. Materials China, 2021, 40(5): 352-358. | |
| [51] | DONG Zhou, PEYDAYESH Mohammad, DONAT Felix, et al. Amine-functionalized amyloid aerogels for CO2 capture[J]. ChemSusChem, 2023, 16(23): 202300767. |
| [52] | 刘守新, 李伟, 孙佳明, 等. 一种N、P共掺杂气凝胶及其制备方法和应用:CN110589826A[P]. 2019-12-20. |
| LIU S, LI W, SUN J, et al. Preparing nitrogen and phosphorus co-doped carbon aerogels as electrode material, by pretreating biomass fibers, mixing water-biomass fiber with ammonium dihydrogen phosphate, and subjecting to carbonization and activation treatment: CN110589826A[P]. 2019-12-20. | |
| [53] | ZHANG Shibiao, ZHENG Huanhuan, ZHANG Xiong, et al. Biomass-based carbon aerogels prepared by ZnCl2-assisted pyrolysis of cellulosic aerogels for selective electrocatalytic CO2 reduction[J]. Journal of Analytical and Applied Pyrolysis, 2024, 177: 106363. |
| [54] | LI Lingxiao, LI Bucheng, SUN Hanxue, et al. Compressible and conductive carbon aerogels from waste paper with exceptional performance for oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(28): 14858-14864. |
| [55] | AHAMAD Tansir, NAUSHAD Mu, ALHABARAH Ameen N, et al. N/S doped highly porous magnetic carbon aerogel derived from sugarcane bagasse cellulose for the removal of bisphenol-A[J]. International Journal of Biological Macromolecules, 2019, 132:1031-1038. |
| [56] | LI Yuanqing, SAMAD Yarjan Abdul, POLYCHRONOPOULOU Kyriaki, et al. Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(6): 1492-1497. |
| [57] | ZHANG Hai, ZHANG Ze, LUO Jindi, et al. A chemical blowing strategy to fabricate biomass-derived carbon-aerogels with graphene-like nanosheet structures for high-performance supercapacitors[J]. ChemSusChem, 2019, 12(11): 2462-2470. |
| [58] | WANG Yiliang, ZHANG Mingchao, SHEN Xinyi, et al. Biomass-derived carbon materials: Controllable preparation and versatile applications[J]. Small, 2021, 17(40): 2008079. |
| [59] | SONG Ping, LIU Bei, LIANG Chaobo, et al. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities[J]. Nano-Micro Letters, 2021, 13(1): 91. |
| [60] | KUMAR Gopal, DORA D T K, DEVARAPU Srinivasa Reddy. Hydrophobicized cum amine-grafted robust cellulose-based aerogel for CO2 capture[J]. Biomass Conversion and Biorefinery, 2024, 14(11): 12127-12141. |
| [61] | ZHU Mingshuo, KONG Lingshuai, XIE Meng, et al. Carbon aerogel from forestry biomass as a peroxymonosulfate activator for organic contaminants degradation[J]. Journal of Hazardous Materials, 2021, 413: 125438. |
| [62] | FISHER Travis, HAJALIGOL Mohammad, WAYMACK Bruce, et al. Pyrolysis behavior and kinetics of biomass derived materials[J]. Journal of Analytical and Applied Pyrolysis, 2002, 62(2): 331-349. |
| [63] | WHITE John E, James CATALLO W, LEGENDRE Benjamin L. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(1): 1-33. |
| [64] | OGHENEKOHWO Victor James, MAAMOUN Ahmed Abdelhamid, ZULFIQAR Sonia, et al. Unlocking the potential of polymeric aerogels from food and agricultural waste for sustainable CO2 capture[J]. ACS Applied Polymer Materials, 2024, 6(1): 638-648. |
| [65] | CHEN Xinjie, LIN Jian, WANG Hanwei, et al. Epoxy-functionalized polyethyleneimine modified epichlorohydrin-cross-linked cellulose aerogel as adsorbents for carbon dioxide capture[J]. Carbohydrate Polymers, 2023, 302: 120389. |
| [66] | VAZHAYAL Linsha, WILSON Praveen, PRABHAKARAN Kuttan. Waste to wealth: Lightweight, mechanically strong and conductive carbon aerogels from waste tissue paper for electromagnetic shielding and CO2 adsorption[J]. Chemical Engineering Journal, 2020, 381: 122628. |
| [67] | GENG Shiyu, MAENNLEIN Alexis, YU Liang, et al. Monolithic carbon aerogels from bioresources and their application for CO2 adsorption[J]. Microporous and Mesoporous Materials, 2021, 323: 111236. |
| [68] | LI Yao, ZHANG Tao, WANG Yage, et al. Transformation of waste cornstalk into versatile porous carbon adsorbent for selective CO2 capture and efficient methanol adsorption[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106149. |
| [69] | TIAN Jie, DING Xiaoxiao, WANG Qiang, et al. Spontaneous formation of nitrogen-doped hierarchical porous microcrystalline nanosheets with improved CO2 capture at low and medium pressures[J]. Separation and Purification Technology, 2022, 301:121809. |
| [70] | AHMADI Raziyeh, ALIVAND Masood S, HAJ MOHAMMAD HOSSEIN TEHRANI Neda, et al. Preparation of fiber-like nanoporous carbon from jute thread waste for superior CO2 and H2S removal from natural gas: Experimental and DFT study[J]. Chemical Engineering Journal, 2021, 415: 129076. |
| [71] | LI Tongxin, AN Xuefei, CHEN Jiaqi, et al. One-step synthesis of cellulosed-based nitrogen-doped carbon aerogel and its CO2 adsorption performance[J]. Energy & Fuels, 2024, 38(1): 555-564. |
| [72] | CHIANG Yu-Chun, JUANG Ruey-Shin. Surface modifications of carbonaceous materials for carbon dioxide adsorption: A review[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71:214-234. |
| [73] | ALHWAIGE Almahdi Atteya. Novel biobased chitosan/polybenzoxazine cross-linked polymers and advanced carbon aerogels for CO2 adsorption [M]. Case Western Reserve University, 2014. |
| [74] | HU Yijie, TONG Xing, ZHUO Hao, et al. 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: An attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption[J]. RSC Advances, 2016, 6(19): 15788-15795. |
| [75] | ALHWAIGE Almahdi A, ISHIDA Hatsuo, QUTUBUDDIN Syed. Carbon aerogels with excellent CO2 adsorption capacity synthesized from clay-reinforced biobased chitosan-polybenzoxazine nanocomposites[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1286-1295. |
| [76] | ZHUO Hao, HU Yijie, TONG Xing, et al. Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture[J]. Industrial Crops and Products, 2016, 87:229-235. |
| [77] | LIANG Liang, ZHOU Minghua, LI Kerui, et al. Facile and fast polyaniline-directed synthesis of monolithic carbon cryogels from glucose[J]. Microporous and Mesoporous Materials, 2018, 265: 26-34. |
| [78] | DASSANAYAKE Rohan S, GUNATHILAKE Chamila, ABIDI Noureddine, et al. Activated carbon derived from chitin aerogels: Preparation and CO2 adsorption[J]. Cellulose, 2018, 25(3): 1911-1920. |
| [79] | 刘双. 纳米纤维素纤丝制备气凝胶及其吸附CO2性能研究[D]. 南京: 南京林业大学, 2018. |
| LIU Shuang. Preparation of cellulose nanofibrill aerogel and its adsorption capacity for CO2 [D]. Nanjing: Nanjing Forestry University, 2018. | |
| [80] | SUN Hanxue, YANG Boli, LI An. Biomass derived porous carbon for efficient capture of carbon dioxide, organic contaminants and volatile iodine with exceptionally high uptake[J]. Chemical Engineering Journal, 2019, 372: 65-73. |
| [81] | GENG Shiyu, WEI Jiayuan, JONASSON Simon, et al. Multifunctional carbon aerogels with hierarchical anisotropic structure derived from lignin and cellulose nanofibers for CO2 capture and energy storage[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7432-7441. |
| [82] | JIANG Xing, KONG Yong, ZOU Huiru, et al. Amine grafted cellulose aerogel for CO2 capture[J]. Journal of Porous Materials, 2021, 28(1): 93-97. |
| [83] | ZHANG Qian, LU Wei, WU Mingyue, et al. Preparation and properties of cellulosenanofiber (CNF)/polyvinyl alcohol (PVA)/graphene oxide (GO): Application of CO2 absorption capacity and molecular dynamics simulation[J]. Journal of Environmental Management, 2022, 302: 114044. |
| [84] | CHENG Jiahao, CHENG Xingxing, WANG Zhiqiang, et al. Multifunctional carbon aerogels from typha orientalis for applications in adsorption: Hydrogen storage, CO2 capture and VOCs removal[J]. Energy, 2023, 263:125984. |
| [85] | AN Xuefei, LI Tongxin, CHEN Jiaqi, et al. 3D-hierarchical porous functionalized carbon aerogel from renewable cellulose: An innovative solid-amine adsorbent with high CO2 adsorption performance[J]. Energy, 2023, 274:127392. |
| [86] | 顾锦阳, 张雄, 张俊杰, 等. 超微孔废纸碳气凝胶的制备及其CO2吸附性能研究[J]. 燃料化学学报(中英文), 2024, 52(9): 1336-1347. |
| GU Jinyang, ZHANG Xiong, ZHANG Junjie, et al. Preparation of ultra-microporous waste paper carbon aerogel and its CO2 adsorption performance[J]. Journal of Fuel Chemistry and Technology, 2024, 52(9): 1336-1347. | |
| [87] | 黄坤, 许明, 吴秀娟, 等. 生物质活性炭的制备与微结构特性调控研究进展[J]. 化工进展, 2024, 43(5): 2475-2493. |
| HUANG Kun, XU Ming, WU Xiujuan, et al. Research progress on preparation and microstructural characteristics regulation of biomass activated carbon[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2475-2493. | |
| [88] | ZHANG Xiong, ZHANG Shihong, YANG Haiping, et al. Influence of NH3/CO2 modification on the characteristic of biochar and the CO2 capture[J]. BioEnergy Research, 2013, 6(4): 1147-1153. |
| [89] | ZHANG Xiong, ZHANG Shihong, YANG Haiping, et al. Nitrogen enriched biochar modified by high temperature CO2-ammonia treatment: Characterization and adsorption of CO2 [J]. Chemical Engineering Journal, 2014, 257:20-27. |
| [90] | 左宋林. 磷酸活化法活性炭孔隙结构的调控机制[J]. 新型炭材料, 2018, 33(4): 289-302. |
| ZUO Songlin. A review of the control of pore texture of phosphoric acid-activated carbons[J]. New Carbon Materials, 2018, 33(4): 289-302. | |
| [91] | 左宋林. 磷酸活化法制备活性炭综述(Ⅰ)——磷酸的作用机理[J]. 林产化学与工业, 2017, 37(3): 1-9. |
| ZUO Songlin. Review on phosphoric acid activation for preparation of activated carbon(Ⅰ): Roles of phosphoric acid[J]. Chemistry and Industry of Forest Products, 2017, 37(3): 1-9. | |
| [92] | ALHAMED Yahia Abobakor, RATHER Sami Ullah, EL-SHAZLY Ahmad Hasan, et al. Preparation of activated carbon from fly ash and its application for CO2 capture[J]. Korean Journal of Chemical Engineering, 2015, 32(4): 723-730. |
| [93] | HAO Pin, ZHAO Zhenhuan, TIAN Jian, et al. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode[J]. Nanoscale, 2014, 6(20): 12120-12129. |
| [94] | HAO Pin, ZHAO Zhenhuan, LENG Yanhua, et al. Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors[J]. Nano Energy, 2015, 15:9-23. |
| [95] | 杨又鸣, 王焦飞, 张玉洁, 等. 氮掺杂技术在碳基材料中的应用进展[J]. 环境化学, 2025, 44(1): 41-52. |
| YANG Youming, WANG Jiaofei, ZHANG Yujie, et al. Application progress of nitrogen doping technology in carbon-based materials[J]. Environmental Chemistry, 2025, 44(1): 41-52. | |
| [96] | Aliakbar HEYDARI-GORJI, BELMABKHOUT Youssef, SAYARI Abdelhamid. Polyethylenimine-impregnated mesoporous silica: Effect of amine loading and surface alkyl chains on CO2 adsorption[J]. Langmuir, 2011, 27(20): 12411-12416. |
| [97] | 唐游, 唐盛伟, 张涛. 纤维素气凝胶负载有机胺强化CO2吸附的研究[J]. 天然气化工(C1化学与化工), 2019, 44(1): 43-50. |
| TANG You, TANG Shengwei, ZHANG Tao. Intensifying CO2 adsorption on aerocellulose functionalized with organic amine[J]. Natural Gas chemical Industry, 2019, 44(1): 43-50. | |
| [98] | 李海生. 基于氨基硅烷修饰改性的海泡石吸附剂高效捕获二氧化碳的探究[D]. 长沙:湖南大学, 2021. |
| LI Haisheng. Efficient carbon dioxide capture of sepiolite adsorbent modified by aminosilane[D]. Changsha: Hunan University, 2021. | |
| [99] | 蒋晓萍, 周钰, 许琦. 氨基功能化硅胶的制备及其对CO2的吸附性能[J]. 材料科学与工程学报, 2017, 35(2): 301-305. |
| JIANG Xiaoping, ZHOU Yu, XU Qi. Synthesis of amino functionalized silica gels and their CO2-adsorption properities[J]. Journal of Materials Science and Engineering, 2017, 35(2): 301-305. | |
| [100] | LIU Fenglei, WANG Shuoyu, LIN Guorong, et al. Development and characterization of amine-functionalized hyper-cross-linked resin for CO2 capture[J]. New Journal of Chemistry, 2018, 42(1): 420-428. |
| [101] | 王燕霞, 胡修德, 郝健, 等. TEPA负载复合氧化活性炭吸附烟气中的CO2性能[J]. 化工学报, 2020, 71(5): 2333-2343. |
| WANG Yanxia, HU Xiude, HAO Jian, et al. The CO2 adsorption performance under flue gas for TEPA-impregnated composited oxidized activated carbon[J]. CIESC Journal, 2020, 71(5): 2333-2343. | |
| [102] | 韦力. 胺功能化介孔分子筛的烟气CO2吸附研究[D]. 北京:北京化工大学, 2017. |
| WEI Li. Studies on CO2 adsorption in flue gas with amine functional mesoporous molecular sieves[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
| [103] | 娄飞健. 氨基功能化固体吸附剂的结构调控及CO2吸附性能研究[D]. 大连:大连理工大学, 2021. |
| LOU Feijian. Structure tailoring and CO2, sorption performance of amine-functionalized solid sorbents[D]. Dalian: Dalian University of Technology, 2021. |
| [1] | 蒋春喜, 林定标, 卞耀, 周威, 陆海峰, 郭晓镭, 刘海峰. 用于气流床气化的稻壳原料特性及其影响[J]. 化工进展, 2025, 44(9): 4937-4944. |
| [2] | 符红梅, 刘定华, 刘晓勤. MOF材料在芳烃同分异构体分离中的研究进展[J]. 化工进展, 2025, 44(9): 5006-5017. |
| [3] | 杨证禄, 杨立峰, 路晓飞, 锁显, 张安运, 崔希利, 邢华斌. 机器学习加速多孔吸附剂筛选发现的研究进展[J]. 化工进展, 2025, 44(8): 4288-4301. |
| [4] | 李卡, 夏宇轩, 吴晓琴, 易兰, 罗浩. 双层多孔介质燃烧反应器的孔隙尺度计算流体动力学模拟[J]. 化工进展, 2025, 44(8): 4381-4393. |
| [5] | 戴贵龙, 王孝宇, 皇甫江飞, 龚凌诸. 孔隙尺度下Laguerre Voronoi开孔泡沫的对流传热特性[J]. 化工进展, 2025, 44(8): 4394-4407. |
| [6] | 李浩东, 沈胜强, 陈亮. 氨氢燃烧余热利用耦合氨裂解制氢过程数值模拟[J]. 化工进展, 2025, 44(8): 4443-4453. |
| [7] | 杨勇, 张钊, 王东亮, 周怀荣, 赵子豪, 李煜坤. 二甲苯异构体不同分离策略的技术经济评价[J]. 化工进展, 2025, 44(8): 4732-4740. |
| [8] | 秘一芳, 王保国, 王文强, 孙国金, 曹志海. 氮自掺杂蓝藻生物质基活性炭的制备及其CO2吸附性能[J]. 化工进展, 2025, 44(7): 4223-4232. |
| [9] | 杨心柳, 刘强, 曹倩, 崔岳铭, 方朝合. 储层渗流对单地热井同轴换热器取热特性的影响[J]. 化工进展, 2025, 44(7): 3860-3868. |
| [10] | 高姣姣, 颜诗宇, 杨太顺, 谢尚志, 杨艳娟, 徐晶. 不同晶型Al2O3负载Ru催化剂对聚乙烯氢解的影响[J]. 化工进展, 2025, 44(7): 3917-3927. |
| [11] | 梁书玮, 俞杰, 谢钟音, 裴鉴禄, 林中鑫, 陈泽翔. 共价有机框架吸附放射性气态碘的研究进展[J]. 化工进展, 2025, 44(7): 3965-3975. |
| [12] | 王影, 汤孟菲, 王莹, 张传芳, 张国杰, 刘俊, 赵钰琼. 碱金属催化煤热解制备CNT复合材料用于吸附罗丹明B[J]. 化工进展, 2025, 44(7): 3985-3996. |
| [13] | 张健, 林日辉, 银江林, 李彦姿, 付雨璐, 刘晓霞. 甘蔗尾叶的干法预处理及其乙酰化产物的制备与表征[J]. 化工进展, 2025, 44(7): 3997-4005. |
| [14] | 赵保华, 刘晓娜, 胡彦云, 贾天聪, 谢强, 贺燕, 马相帅, 马双忱. 传统电吸附与流动电极电容去离子技术对比和发展趋势[J]. 化工进展, 2025, 44(7): 4101-4116. |
| [15] | 叶晓生, 袁婷, 贾鑫, 任庆霞. 多元复合纳米材料去除微囊藻毒素-LR研究进展[J]. 化工进展, 2025, 44(7): 4144-4157. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |