| [1] |
D’ALESSANDRO Deanna M, SMIT Berend, LONG Jeffrey R. Carbon dioxide capture: Prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082.
|
| [2] |
GAO Wanlin, LIANG Shuyu, WANG Rujie, et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686.
|
| [3] |
ZHAO Xiaomeng, LI Xingyu, LU Houfang, et al. Predicting phase-splitting behaviors of an amine-organic solvent-water system for CO2 absorption: A new model developed by density functional theory and statistical and experimental methods[J]. Chemical Engineering Journal, 2021, 422: 130389.
|
| [4] |
Mai BUI, ADJIMAN Claire S, BARDOW André, et al. Carbon capture and storage (CCS): The way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176.
|
| [5] |
HEPBURN Cameron, ADLEN Ella, BEDDINGTON John, et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature, 2019, 575(7781): 87-97.
|
| [6] |
MAKUL Natt. Towards computational CO2 capture and storage models[J]. The Global Environmental Engineers, 2021, 8: 55-69.
|
| [7] |
ROCHELLE Gary T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654.
|
| [8] |
ZHANG Qi, BAHAMON Daniel, ALKHATIB Ismail I I, et al. Molecular insights into the CO2 absorption mechanism by superbase protic ionic liquids by a combined density functional theory and molecular dynamics approach[J]. Journal of Molecular Liquids, 2024, 394: 123683.
|
| [9] |
DUTCHER Bryce, FAN Maohong, RUSSELL Armistead G. Amine-based CO2 capture technology development from the beginning of 2013—A review[J]. ACS Applied Materials & Interfaces, 2015, 7(4): 2137-2148.
|
| [10] |
OSMAN Ahmed I, HEFNY Mahmoud, ABDEL MAKSOUD M I A, et al. Recent advances in carbon capture storage and utilisation technologies: A review[J]. Environmental Chemistry Letters, 2021, 19(2): 797-849.
|
| [11] |
SMIT Berend. Carbon capture and storage: Introductory lecture[J]. Faraday Discussions, 2016, 192: 9-25.
|
| [12] |
Alicia GARCÍA-ABUÍN, Diego GÓMEZ-DÍAZ, NAVAZA José M, et al. Carbon dioxide capture with tertiary amines. Absorption rate and reaction mechanism[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80: 356-362.
|
| [13] |
WANG M, LAWAL A, STEPHENSON P, et al. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review[J]. Chemical Engineering Research and Design, 2011, 89(9): 1609-1624.
|
| [14] |
YU Y S, LU H F, WANG G X, et al. Characterizing the transport properties of multiamine solutions for CO2 capture by molecular dynamics simulation[J]. Journal of Chemical & Engineering Data, 2013, 58(6): 1429-1439.
|
| [15] |
CASTRO-ANAYA Luis E, OROZCO Gustavo A. Self-diffusion coefficients of amines, a molecular dynamics study[J]. Fluid Phase Equilibria, 2022, 553: 113301.
|
| [16] |
FENG Huajie, LIU Xin, GAO Wei, et al. Evolution of self-diffusion and local structure in some amines over a wide temperature range at high pressures: A molecular dynamics simulation study[J]. Physical Chemistry Chemical Physics, 2010, 12(45): 15007-15017.
|
| [17] |
SHARIF Maimoona, WU Xiaomei, YU Yunsong, et al. Estimation of diffusivity and intermolecular interaction strength of secondary and tertiary amine for CO2 absorption process by molecular dynamic simulation[J]. Molecular Simulation, 2022, 48(6): 484-494.
|
| [18] |
MELNIKOV Sergey M, STEIN Matthias. The effect of CO2 loading on alkanolamine absorbents in aqueous solutions[J]. Physical Chemistry Chemical Physics, 2019, 21(33): 18386-18392.
|
| [19] |
SNIJDER Erwin D, RIELE Marcel J M TE, VERSTEEG Geert F, et al. Diffusion coefficients of several aqueous alkanolamine solutions[J]. Journal of Chemical & Engineering Data, 1993, 38(3): 475-480.
|
| [20] |
BABA Hiromi, URANO Ryo, NAGAI Tetsuro, et al. Prediction of self-diffusion coefficients of chemically diverse pure liquids by all-atom molecular dynamics simulations[J]. Journal of Computational Chemistry, 2022, 43(28): 1892-1900.
|
| [21] |
HARUN N, MASIREN E E. Molecular dynamic simulation of amine-CO2 absorption process[J]. Indian Journal of Science and Technology, 2017, 10(2): 110382.
|
| [22] |
LIN Po-Hsun, Chih-Chiang KO, LI Menghui. Ternary diffusion coefficients of diethanolamine and N-methyldiethanolamine in aqueous solutions containing diethanolamine and N-methyldiethanolamine[J]. Fluid Phase Equilibria, 2009, 276(1): 69-74.
|
| [23] |
KIM Sunkyung, SHI Hu, LEE Jin Yong. CO2 absorption mechanism in amine solvents and enhancement of CO2 capture capability in blended amine solvent[J]. International Journal of Greenhouse Gas Control, 2016, 45: 181-188.
|
| [24] |
YIANNOURAKOU M, UNGERER P, LEBLANC B, et al. Molecular simulation of adsorption in microporous materials[J]. Oil & Gas Science and Technology-Revue d’IFP Energies Nouvelles, 2013, 68(6): 977-994.
|
| [25] |
MOOSAVI Fatemeh, ABDOLLAHI Farkhondeh, RAZMKHAH Mohammad. Carbon dioxide in monoethanolamine: Interaction and its effect on structural and dynamic properties by molecular dynamics simulation[J]. International Journal of Greenhouse Gas Control, 2015, 37: 158-169.
|
| [26] |
RODNIKOVA M N, SAMIGULLIN F M, SOLONINA I A, et al. Molecular mobility and the structure of polar liquids[J]. Journal of Structural Chemistry, 2014, 55(2): 256-262.
|
| [27] |
Chih-Chiang KO, CHANG Wen-Haur, LI Menghui. Ternary diffusion coefficients of monoethanolamine and N-methyldiethanolamine in aqueous solutions[J]. Journal of the Chinese Institute of Chemical Engineers, 2008, 39(6): 645-651.
|
| [28] |
ORLOV Alexey Alam, VALTZ Alain, COQUELET Christophe, et al. Computational screening methodology identifies effective solvents for CO2 capture[J]. Communications Chemistry, 2022, 5(1): 37.
|
| [29] |
ZHANG Shihan, SHEN Yao, SHAO Peijing, et al. Kinetics, thermodynamics, and mechanism of a novel biphasic solvent for CO2 capture from flue gas[J]. Environmental Science & Technology, 2018, 52(6): 3660-3668.
|
| [30] |
CHOWDHURY Firoz A, YAMADA Hidetaka, HIGASHII Takayuki, et al. CO2 capture by tertiary amine absorbents: A performance comparison study[J]. Industrial & Engineering Chemistry Research, 2013, 52(24): 8323-8331.
|