化工进展 ›› 2025, Vol. 44 ›› Issue (7): 3892-3906.DOI: 10.16085/j.issn.1000-6613.2024-0889
• 工业催化 • 上一篇
收稿日期:2024-06-02
修回日期:2024-07-31
出版日期:2025-07-25
发布日期:2025-08-04
通讯作者:
刘家旭
作者简介:王惠(2000—),女,硕士研究生,研究方向为工业催化。E-mail:22245196wh@mail.dlut.edu.cn。
基金资助:Received:2024-06-02
Revised:2024-07-31
Online:2025-07-25
Published:2025-08-04
Contact:
LIU Jiaxu
摘要:
概述了SSZ-39分子筛的合成技术现状,特别是改性后在柴油车尾气处理氨气选择性催化还原(NH3-SCR)反应中的应用研究进展。从合成策略、NH3-SCR催化机制、催化剂的水热稳定性及抗失活性能等多个角度进行了深入探讨。详细梳理了SSZ-39分子筛的多种合成途径,包括转晶法、直接水热合成法、无溶剂法以及晶种辅助合成法等,并对这些方法的优劣进行了客观评价。此外,本文还总结了近年来关于Cu-SSZ-39催化剂活性位点[Cu(OH)]+及Cu2+的研究进展,深入剖析了水热老化、磷中毒、碱土金属中毒等因素导致其失活的内在机制,进一步揭示了分子筛结构与催化性能之间的紧密关联。为了提升催化剂性能,本文提出了通过选择特定金属掺杂和创新性的制备方法来实现对活性位点的精准调控。然而,当前研究主要聚焦于单一有毒物质对催化剂性能的影响,对真实工况下多种有毒物质共存时催化剂抗中毒失活策略尚需深入研究。尽管对失活机理的研究已取得一定进展,但如何提高催化剂的抗硫性能、耐碱金属性能等关键问题仍未能得到全面有效的解决。未来仍需进一步探索这些领域,以推动SSZ-39分子筛在柴油车尾气处理领域的广泛应用。
中图分类号:
王惠, 刘家旭. SSZ-39分子筛的合成及其NH3-SCR应用研究进展[J]. 化工进展, 2025, 44(7): 3892-3906.
WANG Hui, LIU Jiaxu. Research progress on the synthesis of SSZ-39 zeolite and NH3-SCR application[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3892-3906.
| 样例 | 硅源 | 铝源 | 有机结构导向剂 | 晶化温度/时间 | 收率/% | 参考文献 |
|---|---|---|---|---|---|---|
| 1 | USY(Si/Al=17) | USY(Si/Al=17) | DEDMPOH | 150℃/7d | 90 | [ |
| 2 | USY(Si/Al=17) | USY(Si/Al=17) | DEDMP+TEP | 150℃/2d | 78 | [ |
| 3 | USY(Si/Al=21) | USY(Si/Al=21) | TEP | 150℃/9d | — | [ |
| 4 | USY(Si/Al=30)+硅酸钠 | USY(Si/Al=30) | DMDMP | 135℃/7d | — | [ |
| 5 | NH4-FAU(Si/Al=2.6)+TEOS | NH4-FAU(Si/Al=2.6) | 顺式/反式DMDMPOH | 140℃/3d | 39 | [ |
| 6 | FAU(Si/Al=10.3)+硅溶胶 | NH4-FAU(Si/Al=10.3) | 顺式/反式DMDMPOH | 160℃/4d | 69 | [ |
| 7 | ZSM-5分子筛(Si/Al=15) | ZSM-5分子筛(Si/Al=15) | DEDMPOH | 140℃/3d | 63 | [ |
| 8 | Beta分子筛(Si/Al=12.5) | Beta分子筛(Si/Al=12.5) | DEDMPOH | 150℃/3d | 68 | [ |
| 9 | X分子筛(Si/Al=1)+硅溶胶 | X分子筛 | DMDMPOH | 150℃/3d | 40 | [ |
| 10 | 硅溶胶 | 铝酸钠 | DEDMPOH | 150℃/3d | 21.3 | [ |
| 11 | 硅溶胶 | 铝酸钠 | TMPOH | 210℃/80min | 29 | [ |
表1 SSZ-39分子筛的合成方法概览
| 样例 | 硅源 | 铝源 | 有机结构导向剂 | 晶化温度/时间 | 收率/% | 参考文献 |
|---|---|---|---|---|---|---|
| 1 | USY(Si/Al=17) | USY(Si/Al=17) | DEDMPOH | 150℃/7d | 90 | [ |
| 2 | USY(Si/Al=17) | USY(Si/Al=17) | DEDMP+TEP | 150℃/2d | 78 | [ |
| 3 | USY(Si/Al=21) | USY(Si/Al=21) | TEP | 150℃/9d | — | [ |
| 4 | USY(Si/Al=30)+硅酸钠 | USY(Si/Al=30) | DMDMP | 135℃/7d | — | [ |
| 5 | NH4-FAU(Si/Al=2.6)+TEOS | NH4-FAU(Si/Al=2.6) | 顺式/反式DMDMPOH | 140℃/3d | 39 | [ |
| 6 | FAU(Si/Al=10.3)+硅溶胶 | NH4-FAU(Si/Al=10.3) | 顺式/反式DMDMPOH | 160℃/4d | 69 | [ |
| 7 | ZSM-5分子筛(Si/Al=15) | ZSM-5分子筛(Si/Al=15) | DEDMPOH | 140℃/3d | 63 | [ |
| 8 | Beta分子筛(Si/Al=12.5) | Beta分子筛(Si/Al=12.5) | DEDMPOH | 150℃/3d | 68 | [ |
| 9 | X分子筛(Si/Al=1)+硅溶胶 | X分子筛 | DMDMPOH | 150℃/3d | 40 | [ |
| 10 | 硅溶胶 | 铝酸钠 | DEDMPOH | 150℃/3d | 21.3 | [ |
| 11 | 硅溶胶 | 铝酸钠 | TMPOH | 210℃/80min | 29 | [ |
| [1] | SIMMEN A, MCCUSKER L B, BAERLOCHER Ch, et al. The structure determination and rietveld refinement of the aluminophosphate AlPO4-18[J]. Zeolites, 1991, 11(7): 654-661. |
| [2] | DUSSELIER Michiel, DAVIS Mark E. Small-pore zeolites: Synthesis and catalysis[J]. Chemical Reviews, 2018, 118(11): 5265-5329. |
| [3] | XU Hao, ZHU Longfeng, WU Qinming, et al. Advances in the synthesis and application of the SSZ-39 zeolite[J]. Inorganic Chemistry Frontiers, 2022, 9(6): 1047-1057. |
| [4] | SHAN Yulong, SHAN Wenpo, SHI Xiaoyan, et al. A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13[J]. Applied Catalysis B: Environmental, 2020, 264: 118511. |
| [5] | ZHU Na, SHAN Yulong, SHAN Wenpo, et al. Distinct NO2 effects on Cu-SSZ-13 and Cu-SSZ-39 in the selective catalytic reduction of NO x with NH3 [J]. Environmental Science & Technology, 2020, 54(23): 15499-15506. |
| [6] | YASHIKI Ayako, HONDA Koutaro, FUJIMOTO Ayumi, et al. Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals[J]. Journal of Crystal Growth, 2011, 325(1): 96-100. |
| [7] | SANO Tsuneji, ITAKURA Masaya, SADAKANE Masahiro. High potential of interzeolite conversion method for zeolite synthesis[J]. Journal of the Japan Petroleum Institute, 2013, 56(4): 183-197. |
| [8] | HONDA Koutaro, ITAKURA Masaya, MATSUURA Yumiko, et al. Role of structural similarity between starting zeolite and product zeolite in the interzeolite conversion process[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(4): 3020-3026. |
| [9] | SONODA Takushi, MARUO Toshihiro, YAMASAKI Yoshitaka, et al. Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NO x with NH3 [J]. Journal of Materials Chemistry A, 2015, 3(2): 857-865. |
| [10] | KAKIUCHI Yutaro, YAMASAKI Yoshitaka, TSUNOJI Nao, et al. One-pot synthesis of phosphorus-modified AEI zeolites derived by the dual-template method as a durable catalyst with enhanced thermal/hydrothermal stability for selective catalytic reduction of NO x by NH3 [J]. Chemistry Letters, 2016, 45(2): 122-124. |
| [11] | Nuria MARTÍN, LI Zhibin, Joaquín MARTÍNEZ-TRIGUERO, et al. Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process[J]. Chemical Communications, 2016, 52(36): 6072-6075. |
| [12] | MOLINER Manuel, FRANCH Cristina, PALOMARES Eduardo, et al. Cu-SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NO x [J]. Chemical Communications, 2012, 48(66): 8264-8266. |
| [13] | DUSSELIER Michiel, SCHMIDT Joel E, MOULTON Roger, et al. Influence of organic structure directing agent isomer distribution on the synthesis of SSZ-39[J]. Chemistry of Materials, 2015, 27(7): 2695-2702. |
| [14] | NAKAZAWA Naoto, INAGAKI Satoshi, KUBOTA Yoshihiro. Direct hydrothermal synthesis of high-silica SSZ-39 zeolite with small particle size[J]. Chemistry Letters, 2016, 45(8): 919-921. |
| [15] | 刘中清, 王倩, 赵峰, 等. 一种SSZ-39分子筛及其制备方法和应用: CN112299438A[P]. 2021-02-02. |
| LIU Zhongqing, WANG Qian, ZHAO Feng, et al. A SSZ-39 molecular sieve and its preparation method and application: CN112299438A[P]. 2021-02-02. | |
| [16] | LIU Zhendong, CHOKKALINGAM Anand, MIYAGI Shoko, et al. Revealing scenarios of interzeolite conversion from FAU to AEI through the variation of starting materials[J]. Physical Chemistry Chemical Physics, 2022, 24(7): 4136-4146. |
| [17] | SADA Yuki, CHOKKALINGAM Anand, IYOKI Kenta, et al. Tracking the crystallization behavior of high-silica FAU during AEI-type zeolite synthesis using acid treated FAU-type zeolite[J]. RSC Advances, 2021, 11(37): 23082-23089. |
| [18] | XU Hao, CHEN Wei, WU Qinming, et al. Transformation synthesis of aluminosilicate SSZ-39 zeolite from ZSM-5 and beta zeolite[J]. Journal of Materials Chemistry A, 2019, 7(9): 4420-4425. |
| [19] | ZHANG Juan, CHU Yueying, DENG Feng, et al. Evolution of D6R units in the interzeolite transformation from FAU, MFI or *BEA into AEI: Transfer or reassembly?[J]. Inorganic Chemistry Frontiers, 2020, 7(11): 2204-2211. |
| [20] | 刘家旭, 刘港. 一种以X分子筛为原料制备SSZ-39分子筛的方法和应用: CN116040646A[P]. 2023-05-02. |
| LIU Jiaxu, LIU Gang. A method and application of preparing SSZ-39 zeolite from X zeolite: CN116040646A[P]. 2023-05-02. | |
| [21] | 刘港. SSZ-39分子筛的转晶合成及其NH3-SCR反应性能研究[D]. 大连: 大连理工大学, 2023. |
| LIU Gang. Synthesis of SSZ-39 by inter-zeolite transformation and its performance in NH3-selective catalytic reduction[D]. Dalian: Dalian University of Technology, 2023. | |
| [22] | BARRER R M. 435. Syntheses and reactions of mordenite[J]. Journal of the Chemical Society (Resumed), 1948: 2158-2163. |
| [23] | XU Hao, ZHANG Juan, WU Qinming, et al. Direct synthesis of aluminosilicate SSZ-39 zeolite using colloidal silica as a starting source[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23112-23117. |
| [24] | TSUNOJI Nao, SHIMONO Daigo, TSUCHIYA Kazuyoshi, et al. Formation pathway of AEI zeolites as a basis for a streamlined synthesis[J]. Chemistry of Materials, 2020, 32(1): 60-74. |
| [25] | JOICHI Yoko, SHIMONO Daigo, TSUNOJI Nao, et al. Stepwise gel preparation for high-quality CHA zeolite synthesis: A common tool for synthesis diversification[J]. Crystal Growth & Design, 2018, 18(9): 5652-5662. |
| [26] | MENG Xiangju, WU Qinming, CHEN Fang, et al. Solvent-free synthesis of zeolite catalysts[J]. Science China Chemistry, 2015, 58(1): 6-13. |
| [27] | WU Qinming, LIU Xiaolong, ZHU Longfeng, et al. Solvent-free synthesis of zeolites from anhydrous starting raw solids[J]. Journal of the American Chemical Society, 2015, 137(3): 1052-1055. |
| [28] | WU Qinming, LIU Xiaolong, ZHU Longfeng, et al. Solvent-free synthesis of zeolites from anhydrous starting raw solids[J]. Journal of the American Chemical Society, 2015, 137(3): 1052-1055. |
| [29] | REN Limin, WU Qinming, YANG Chengguang, et al. Solvent-free synthesis of zeolites from solid raw materials[J]. Journal of the American Chemical Society, 2012, 134(37): 15173-15176. |
| [30] | HU Peidong, IYOKI Kenta, FUJINUMA Haruko, et al. Broadening synthetic scope of SSZ-39 zeolite for NH3-SCR: A fast and direct route from amorphous starting materials[J]. Microporous and Mesoporous Materials, 2022, 330: 111583. |
| [31] | XU Hao, ZHU Jie, QIAO Jun, et al. Solvent-free synthesis of aluminosilicate SSZ-39 zeolite[J]. Microporous and Mesoporous Materials, 2021, 312: 110376. |
| [32] | LIU Zhendong, WAKIHARA Toru, NISHIOKA Daisuke, et al. One-minute synthesis of crystalline microporous aluminophosphate (AlPO4-5) by combining fast heating with a seed-assisted method[J]. Chemical Communications, 2014, 50(19): 2526-2528. |
| [33] | MAJANO Gerardo, DELMOTTE Luc, VALTCHEV Valentin, et al. Al-rich zeolite beta by seeding in the absence of organic template[J]. Chemistry of Materials, 2009, 21(18): 4184-4191. |
| [34] | IYOKI Kenta, ITABASHI Keiji, OKUBO Tatsuya. Seed-assisted, one-pot synthesis of hollow zeolite beta without using organic structure-directing agents[J]. Chemistry—An Asian Journal, 2013, 8(7): 1419-1427. |
| [35] | XIE Bin, SONG Jiangwei, REN Limin, et al. Organotemplate-free and fast route for synthesizing beta zeolite[J]. Chemistry of Materials, 2008, 20(14): 4533-4535. |
| [36] | XIE Bin, ZHANG Haiyan, YANG Chengguang, et al. Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates[J]. Chemical Communications, 2011, 47(13): 3945-3947. |
| [37] | KAMIMURA Yoshihiro, TANAHASHI Shinya, ITABASHI Keiji, et al. Crystallization behavior of zeolite beta in OSDA-free, seed-assisted synthesis[J]. The Journal of Physical Chemistry C, 2011, 115(3): 744-750. |
| [38] | 闫文付, 徐天昊, 白璞, 等. 一种SSZ-39分子筛的制备方法: CN113307283A[P]. 2021-08-27. |
| YAN Wenfu, Xu Tianhao, Bai Pu, et al. A preparation method of SSZ-39 zeolite: CN113307283A[P]. 2021-08-27. | |
| [39] | HAN Lupeng, CAI Sixiang, GAO Min, et al. Selective catalytic reduction of NO x with NH3 by using novel catalysts: State of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976. |
| [40] | YUAN Yuheng, GUAN Bin, CHEN Junyan, et al. Research status and outlook of molecular sieve NH3-SCR catalysts[J]. Molecular Catalysis, 2024, 554: 113846. |
| [41] | SHI Zhiwei, PENG Qingguo, Jiaqiang E, et al. Mechanism, performance and modification methods for NH3-SCR catalysts: A review[J]. Fuel, 2023, 331: 125885. |
| [42] | SUN Xiaoyi, LIU Qingjie, LIU Shuai, et al. Improvement of low-temperature NH3-SCR catalytic performance over nitrogen-doped MO x -Cr2O3-La2O3/TiO2-N (M = Cu, Fe, Ce) catalysts[J]. RSC Advances, 2021, 11(37): 22780-22788. |
| [43] | LONG Shanghai, XU Li, LIU Guoji. Preparation and modification of heterogeneous vanadium-titanium-based catalysts[J]. Russian Journal of General Chemistry, 2021, 91(3): 464-487. |
| [44] | HE Chongheng, WANG Yuhe, CHENG Yisun, et al. Activity, stability and hydrocarbon deactivation of Fe/Beta catalyst for SCR of NO with ammonia[J]. Applied Catalysis A: General, 2009, 368(1/2): 121-126. |
| [45] | KWAK Ja Hun, TONKYN Russell G, KIM Do Heui, et al. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NO x with NH3 [J]. Journal of Catalysis, 2010, 275(2): 187-190. |
| [46] | PAOLUCCI Christopher, PAREKH Atish A, KHURANA Ishant, et al. Catalysis in a cage: Condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites[J]. Journal of the American Chemical Society, 2016, 138(18): 6028-6048. |
| [47] | SONG James, WANG Yilin, WALTER Eric D, et al. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: Implications from atomic-level understanding of hydrothermal stability[J]. ACS Catalysis, 2017, 7(12): 8214-8227. |
| [48] | GAO Feng, MEI Donghai, WANG Yilin, et al. Selective catalytic reduction over Cu/SSZ-13: Linking homo- and heterogeneous catalysis[J]. Journal of the American Chemical Society, 2017, 139(13): 4935-4942. |
| [49] | RUGGERI Maria Pia, NOVA Isabella, TRONCONI Enrico, et al. In-situ DRIFTS measurements for the mechanistic study of NO oxidation over a commercial Cu-CHA catalyst[J]. Applied Catalysis B: Environmental, 2015, 166: 181-192. |
| [50] | DU Jinpeng, SHAN Yulong, SUN Yu, et al. Unexpected increase in low-temperature NH3-SCR catalytic activity over Cu-SSZ-39 after hydrothermal aging[J]. Applied Catalysis B: Environmental, 2021, 294: 120237. |
| [51] | CHENG Haodan, TANG Xiaolong, YI Honghong, et al. Application progress of small-pore zeolites in purifying NO x from motor vehicle exhaust[J]. Chemical Engineering Journal, 2022, 449: 137795. |
| [52] | BEALE A M, GAO F, LEZCANO-GONZALEZ I, et al. Recent advances in automotive catalysis for NO x emission control by small-pore microporous materials[J]. Chemical Society Reviews, 2015, 44(20): 7371-7405. |
| [53] | ALBARRACIN-CABALLERO Jonatan D, KHURANA Ishant, DI IORIO John R, et al. Structural and kinetic changes to small-pore Cu-zeolites after hydrothermal aging treatments and selective catalytic reduction of NO x with ammonia[J]. Reaction Chemistry & Engineering, 2017, 2(2): 168-179. |
| [54] | GAO Feng, WALTER Eric D, KARP Eric M, et al. Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies[J]. Journal of Catalysis, 2013, 300: 20-29. |
| [55] | SHAN Yulong, SHI Xiaoyan, DU Jinpeng, et al. Cu-exchanged RTH-type zeolites for NH3-selective catalytic reduction of NO x : Cu distribution and hydrothermal stability[J]. Catalysis Science & Technology, 2019, 9(1): 106-115. |
| [56] | Nuria MARTÍN, BORUNTEA Cristian R, MOLINER Manuel, et al. Efficient synthesis of the Cu-SSZ-39 catalyst for DeNO x applications[J]. Chemical Communications, 2015, 51(55): 11030-11033. |
| [57] | MARUO Toshihiro, YAMANAKA Naoki, TSUNOJI Nao, et al. Facile synthesis of AEI zeolites by hydrothermal conversion of FAU zeolites in the presence of tetraethylphosphonium cations[J]. Chemistry Letters, 2014, 43(3): 302-304. |
| [58] | LIN Qingjin, XU Shuhao, ZHAO Hongyan, et al. Highlights on key roles of Y on the hydrothermal stability at 900℃ of Cu/SSZ-39 for NH3-SCR[J]. ACS Catalysis, 2022, 12(22): 14026-14039. |
| [59] | WANG Yao, LI Junhua, LIU Zhiming. Selective catalytic reduction of NO x by NH3 over Cu-AEI zeolite catalyst: Current status and future perspectives[J]. Applied Catalysis B: Environmental, 2024, 343: 123479. |
| [60] | WANG Juan, WANG Linying, ZHU Dali, et al. One-pot synthesis of Na+-free Cu-SSZ-13 and its application in the NH3-SCR reaction[J]. Chemical Communications, 2021, 57(40): 4898-4901. |
| [61] | JIANG Han, GUAN Bin, LIN He, et al. Cu/SSZ-13 zeolites prepared by in situ hydrothermal synthesis method as NH3-SCR catalysts: Influence of the Si/Al ratio on the activity and hydrothermal properties[J]. Fuel, 2019, 255: 115587. |
| [62] | 贺泓, 杜金鹏, 单玉龙, 等. 一种Cu-SSZ-39分子筛及其制备方法和用途: CN110467200B[P]. 2021-08-27. |
| HE Hong, DU Jinpeng, SHAN Yulong, et al. A preparation method and use of SSZ-39 zeolite: CN110467200B[P]. 2021-08-27. | |
| [63] | DU Jinpeng, TANG Xiaomin, HUANG Chi, et al. Facile one-pot synthesis of Cu-SSZ-39 catalysts with excellent catalytic performance in NH3-SCR reaction[J]. Applied Catalysis B: Environment and Energy, 2024, 356: 124258. |
| [64] | DU Jinpeng, WANG Jingyi, SHAN Yulong, et al. Promoted NH3-SCR activity and hydrothermal stability of Cu-SSZ-50 catalyst synthesized by one-pot method[J]. Chinese Chemical Letters, 2024, 35(3): 108781. |
| [65] | SHAN Yulong, DU Jinpeng, YU Yunbo, et al. Precise control of post-treatment significantly increases hydrothermal stability of in situ synthesized Cu-zeolites for NH3-SCR reaction[J]. Applied Catalysis B: Environmental, 2020, 266: 118655. |
| [66] | WANG Aiyong, XIE Kunpeng, BERNIN Diana, et al. Deactivation mechanism of Cu active sites in Cu/SSZ-13—Phosphorus poisoning and the effect of hydrothermal aging[J]. Applied Catalysis B: Environmental, 2020, 269: 118781. |
| [67] | ZHU Na, SHAN Yulong, SHAN Wenpo, et al. Reaction pathways of standard and fast selective catalytic reduction over Cu-SSZ-39[J]. Environmental Science & Technology, 2021, 55(23): 16175-16183. |
| [68] | FU Guangying, YANG Runnong, LIANG Yuqian, et al. Enhanced hydrothermal stability of Cu/SSZ-39 with increasing Cu contents, and the mechanism of selective catalytic reduction of NO x [J]. Microporous and Mesoporous Materials, 2021, 320: 111060. |
| [69] | REN Limin, ZHANG Yibo, ZENG Shangjing, et al. Design and synthesis of a catalytically active Cu-SSZ-13 zeolite from a copper-amine complex template[J]. Chinese Journal of Catalysis, 2012, 33(1): 92-105. |
| [70] | WANG Yao, LI Ganggang, ZHANG Shaoqing, et al. Promoting effect of Ce and Mn addition on Cu-SSZ-39 zeolites for NH3-SCR reaction: Activity, hydrothermal stability, and mechanism study[J]. Chemical Engineering Journal, 2020, 393: 124782. |
| [71] | SONG Chaoming, ZHANG Lihong, LI Zhenguo, et al. Co-exchange of Mn: A simple method to improve both the hydrothermal stability and activity of Cu-SSZ-13 NH3-SCR catalysts[J]. Catalysts, 2019, 9(5): 455. |
| [72] | BIAN Chaoqun, LUO Xiaohui, CHEN Xiao, et al. One-pot synthesis of Ce-SSZ-39 zeolite with performance in the NH3-SCR reaction[J]. Inorganic Chemistry, 2024, 63(23): 10798-10808. |
| [73] | YU Rui, KONG Haiyu, ZHAO Zhenchao, et al. Rare-earth yttrium exchanged Cu-SSZ-39 zeolite with superior hydrothermal stability and SO2-tolerance in NH3-SCR of NO x [J]. ChemCatChem, 2022, 14(10): e202200228. |
| [74] | CHEN Junlin, SHAN Yulong, SUN Yu, et al. Hydrothermal aging alleviates the phosphorus poisoning of Cu-SSZ-39 catalysts for NH3-SCR reaction[J]. Environmental Science & Technology, 2023, 57(10): 4113-4121. |
| [75] | ZHAO Minru, WANG Yanhua, QI Xiaotong, et al. Rapid synthesis of Cu-SSZ-39 and study of phosphorus poisoning in NH3-SCR[J]. Fuel, 2024, 361: 130715. |
| [76] | ZHU Na, SHAN Wenpo, SHAN Yulong, et al. Effects of alkali and alkaline earth metals on Cu-SSZ-39 catalyst for the selective catalytic reduction of NO x with NH3 [J]. Chemical Engineering Journal, 2020, 388: 124250. |
| [1] | 张巍, 梁垚城, 伍乔, 付业昊, 尹艳山, 成珊, 阮敏, 刘涛, 周昭仪, 张凯凯, 李丹聪. 基于金属离子改性的Cu-SSZ-13催化剂在NH3-SCR脱硝中的应用[J]. 化工进展, 2025, 44(7): 3879-3891. |
| [2] | 柳永兵, 王亚军, 谷平, 张永民, 郭怀勇, 刘凯. 浆态床反应器中多相分离研究进展[J]. 化工进展, 2025, 44(6): 3345-3363. |
| [3] | 徐景东, 刘奔, 汪雪琴, 董鹏, 席志祥, 徐人威, 岳源源. FeCu-ZSM-5分子筛的绿色合成及其NH3-SCR性能[J]. 化工进展, 2025, 44(6): 3017-3030. |
| [4] | 孙涛, 汪鑫, 孙美莉, 王凯峰, 纪晓俊. 合成生物学优化酵母代谢过程中的碳保存和碳固定[J]. 化工进展, 2025, 44(5): 2834-2845. |
| [5] | 范晓娅, 赵镇, 彭强. 电催化二氧化碳和硝酸根共还原合成尿素研究进展[J]. 化工进展, 2025, 44(5): 2856-2869. |
| [6] | 汪柯, 胡登, 王星博, 孙楠楠, 魏伟. Fe x Co y Ca3Al双功能材料用于CO2捕集-转化一体化制合成气[J]. 化工进展, 2025, 44(5): 2888-2897. |
| [7] | 王媛媛, 张翀, 韩双艳, 邢新会. 毕赤酵母利用甲醇生产重组蛋白技术的研究进展[J]. 化工进展, 2025, 44(5): 2441-2450. |
| [8] | 姚陆, 马增新, 张聪, 杨松, 邢新会. 甲基杆菌有效同化工业甲醇和植物甲醇的研究进展[J]. 化工进展, 2025, 44(5): 2451-2462. |
| [9] | 盛华康, 张博, 申晓林, 孙新晓, 王佳, 袁其朋. 微生物合成白藜芦醇及其衍生物[J]. 化工进展, 2025, 44(5): 2463-2474. |
| [10] | 刘威, 侯雪兰, 杨贵东. 氢-氨绿色循环研究进展与展望[J]. 化工进展, 2025, 44(5): 2625-2641. |
| [11] | 冯娇, 刘明明, 刘耀, 王昕, 陈可泉. 利用可再生原料生物合成脂肪族短链二元胺与醇的研究进展[J]. 化工进展, 2025, 44(5): 2655-2666. |
| [12] | 丁阿静, 周巧巧, 顾学红. 膜反应器中杨木催化气化制清洁合成气[J]. 化工进展, 2025, 44(5): 2716-2723. |
| [13] | 王淑媛, 尹玲玲, 高志华, 黄伟. 插层Cu比例对CuZnAl-LDHs催化剂结构及催化性能的影响[J]. 化工进展, 2025, 44(4): 2036-2044. |
| [14] | 陶金泉, 贾亦静, 白天瑜, 姚荣鹏, 黄文斌, 崔岩, 周亚松, 魏强. Silicalite-1分子筛的低成本合成及其MTP催化性能[J]. 化工进展, 2025, 44(3): 1550-1558. |
| [15] | 刘法志, 张鹏威, 刘涛, 谢玉仙, 何建乐, 苏胜, 徐俊, 向军. Sb改性钒钛SCR脱硝催化剂抗CO中毒性能[J]. 化工进展, 2025, 44(2): 1129-1137. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |
