化工进展 ›› 2025, Vol. 44 ›› Issue (7): 3879-3891.DOI: 10.16085/j.issn.1000-6613.2024-0856
• 工业催化 • 上一篇
张巍1,2(
), 梁垚城1,2, 伍乔1,2, 付业昊1,2, 尹艳山1,2, 成珊1,2, 阮敏1,2, 刘涛1,2, 周昭仪1,2, 张凯凯1,2, 李丹聪1,2
收稿日期:2024-05-26
修回日期:2024-09-08
出版日期:2025-07-25
发布日期:2025-08-04
通讯作者:
张巍
作者简介:张巍(1974—),男,博士,副教授,硕士生导师,研究方向为能源高效清洁利用。E-mail:weizhang@csust.edu.cn。
基金资助:
ZHANG Wei1,2(
), LIANG Yaocheng1,2, WU Qiao1,2, FU Yehao1,2, YIN Yanshan1,2, CHENG Shan1,2, RUAN Min1,2, LIU Tao1,2, ZHOU Zhaoyi1,2, ZHANG Kaikai1,2, LI Dancong1,2
Received:2024-05-26
Revised:2024-09-08
Online:2025-07-25
Published:2025-08-04
Contact:
ZHANG Wei
摘要:
选择性催化还原(NH3-SCR)技术是当前广泛应用的脱硝技术,其关键在于研发高效稳定的催化剂。Cu-SSZ-13分子筛脱硝催化剂因其优异的N2选择性和良好的催化活性备受研究人员关注。然而,Cu-SSZ-13分子筛催化剂存在的抗硫性和水热稳定性不足等问题严重限制了其工业应用。为了克服硫氧化物和水热老化对Cu-SSZ-13催化剂脱硝活性的影响,可通过向催化剂中引入不同的自由态金属离子来进行改性。本文综述了近年来有关碱(土)金属离子、过渡金属离子和稀土金属离子改性Cu-SSZ-13催化剂在NH3-SCR反应中的应用,并阐述了其抗硫机制和水热稳定性强化方法。展望了未来研究方向:综合利用不同金属离子的特点并结合离子之间的协同作用,制备具有优良抗硫性和水热稳定性的新型Cu-SSZ-13催化剂,明确金属离子在SSZ-13分子筛中的存在形式和相互作用机制,以及通过实验和计算相结合制备高效的金属离子改性Cu-SSZ-13催化剂以满足工业化应用。
中图分类号:
张巍, 梁垚城, 伍乔, 付业昊, 尹艳山, 成珊, 阮敏, 刘涛, 周昭仪, 张凯凯, 李丹聪. 基于金属离子改性的Cu-SSZ-13催化剂在NH3-SCR脱硝中的应用[J]. 化工进展, 2025, 44(7): 3879-3891.
ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891.
| 改性离子 | 新鲜样品的最佳脱硝效率 | 水热老化样品的最佳脱硝效率 | 碱金属改性的作用 | 反应条件 | 参考文献 |
|---|---|---|---|---|---|
| Li+ | >90% (200~500℃) | >90% (225~500℃) | 防止Brønsted酸位点水解 | NO=0.05L/min,O2=14%(体积分数),NH3=0.05L/min,N2作为平衡气,GHSV=100000h-1 | [ |
| Na+ | >90% (180~500℃) | >90% (225~500℃) | 防止Brønsted酸位点水解 | NO=0.05L/min,O2=14%,NH3=0.05L/min,N2作为平衡气,GHSV=100000h-1 | [ |
| Na+ | >95% (150~650℃) | >90%( 200~600℃) | 增加催化剂的氧化还原能力,保留更多的骨架Al | NO=0.05L/min,O2=10%,NH3=0.05L/min,N2作为平衡气,GHSV=80000h-1 | [ |
| Na+ | >80% (200~500℃) | — | 作为Lewis酸位点增加对NH3的吸附 | NO=0.036L/min,O2=14%,NH3=0.036L/min,N2作为平衡气,GHSV=100000h-1 | [ |
| K+ | >90% (225~500℃) | — | 堵塞分子筛孔道,使催化剂内部的传质能力受到限制 | NO=0.05L/min,O2=14%,NH3=0.05L/min,N2作为平衡气,GHSV=100000h-1 | [ |
| Mg2+ | >90% (250~450℃) | — | Brønsted酸位点和Cu2+减少,生成Cu x O y,堵塞沸石孔道 | NO=0.05L/min,O2=5%,NH3=0.05L/min,N2作为平衡气,GHSV=400000h-1 | [ |
| Ca2+ | >90% (250~400℃) | — | Brønsted酸位点和Cu2+减少,生成Cu x O y,堵塞沸石孔道,造成骨架结构崩溃 | NO=0.05L/min,O2=5%,NH3=0.05L/min,N2作为平衡气,GHSV=400000h-1 | [ |
表1 近年来文献报道较多的碱(土)金属离子改性Cu-SSZ-13催化剂
| 改性离子 | 新鲜样品的最佳脱硝效率 | 水热老化样品的最佳脱硝效率 | 碱金属改性的作用 | 反应条件 | 参考文献 |
|---|---|---|---|---|---|
| Li+ | >90% (200~500℃) | >90% (225~500℃) | 防止Brønsted酸位点水解 | NO=0.05L/min,O2=14%(体积分数),NH3=0.05L/min,N2作为平衡气,GHSV=100000h-1 | [ |
| Na+ | >90% (180~500℃) | >90% (225~500℃) | 防止Brønsted酸位点水解 | NO=0.05L/min,O2=14%,NH3=0.05L/min,N2作为平衡气,GHSV=100000h-1 | [ |
| Na+ | >95% (150~650℃) | >90%( 200~600℃) | 增加催化剂的氧化还原能力,保留更多的骨架Al | NO=0.05L/min,O2=10%,NH3=0.05L/min,N2作为平衡气,GHSV=80000h-1 | [ |
| Na+ | >80% (200~500℃) | — | 作为Lewis酸位点增加对NH3的吸附 | NO=0.036L/min,O2=14%,NH3=0.036L/min,N2作为平衡气,GHSV=100000h-1 | [ |
| K+ | >90% (225~500℃) | — | 堵塞分子筛孔道,使催化剂内部的传质能力受到限制 | NO=0.05L/min,O2=14%,NH3=0.05L/min,N2作为平衡气,GHSV=100000h-1 | [ |
| Mg2+ | >90% (250~450℃) | — | Brønsted酸位点和Cu2+减少,生成Cu x O y,堵塞沸石孔道 | NO=0.05L/min,O2=5%,NH3=0.05L/min,N2作为平衡气,GHSV=400000h-1 | [ |
| Ca2+ | >90% (250~400℃) | — | Brønsted酸位点和Cu2+减少,生成Cu x O y,堵塞沸石孔道,造成骨架结构崩溃 | NO=0.05L/min,O2=5%,NH3=0.05L/min,N2作为平衡气,GHSV=400000h-1 | [ |
| 改性离子 | 新鲜样品的最佳脱硝效率 | 水热老化样品的最佳脱硝效率 | 过渡金属改性的作用 | 反应条件 | 参考文献 |
|---|---|---|---|---|---|
| Fe3+ | >90% (175~450℃) | >90% (200~350℃) | 增加了新的活性位点,提高了催化剂的氧化还原能力 | NO=0.015L/min,O2=5%,NH3=0.015L/min,N2作为平衡气,总流量=0.3L/min,GHSV=150000h-1 | [ |
| Fe3+ | >80% (150~500℃) | — | 增加了活性位点的数量 | NO=0.015L/min,O2=5%,NH3=0.015L/min,N2作为平衡气,总流量=0.3L/min GHSV=120000h-1 | [ |
| Mn n+ | >90% (175~525℃) | >90% (200~500℃) | 提升了催化剂的氧化还原能力,抑制了脱铝和CuOx的生成 | NO=0.05L/min,O2=10%,NH3=0.05L/min,N2作为平衡气,GHSV=30000h-1 | [ |
| Mn n+ | >90% (200~450℃) | >90% (300~400℃) | 提供了更多的活性位点,增强了对NO的吸附 | NO=0.01L/min,O2=3%,NH3=0.01L/min,N2作为平衡气,总流量=0.2mL/min,GHSV=300000h-1 | [ |
| Co2+ | >90% (275~450℃) | — | 控制Cu离子以[Cu(OH)]+-Z形式位于1Al位点,促进产生更多的活性更强的Lewis酸位点 | NO=0.05L/min,O2=10%,NH3=0.05L/min,N2作为平衡气,GHSV=240000h-1 | [ |
| Nb5+ | >90% (200~625℃) | — | 增加了酸位点和活性位点数量,稳定了分子筛结构 | NO=0.05L/min,O2=5%,NH3=0.05L/min,N2作为平衡气,GHSV=60000h-1 | [ |
| Pt2+ | >90% (175~275℃) | — | 催化氧化NH3 | NO=0.05L/min,O2=5%,NH3=0.055L/min,N2作为平衡气,GHSV=200000h-1 | [ |
| Ti4+ | >95% (150~525℃) | >95% (200~450℃) | 增加活性位点 | NO=0.049L/min,NO2=0.001L/min,O2=5%,NH3=0.05L/min,Ar作为平衡气,GHSV=50000h-1 | [ |
| Zr4+ | >95% (200~400℃) | — | 调节催化剂表面Cu2+和Cu+的比例,从而提高Cu+的含量 | NO=0.01L/min,O2=5%,NH3=0.01L/min,N2作为平衡气,总流量=0.2mL/min,GHSV=24000h-1 | [ |
表2 近年来文献报道较多的过渡金属离子改性Cu-SSZ-13催化剂
| 改性离子 | 新鲜样品的最佳脱硝效率 | 水热老化样品的最佳脱硝效率 | 过渡金属改性的作用 | 反应条件 | 参考文献 |
|---|---|---|---|---|---|
| Fe3+ | >90% (175~450℃) | >90% (200~350℃) | 增加了新的活性位点,提高了催化剂的氧化还原能力 | NO=0.015L/min,O2=5%,NH3=0.015L/min,N2作为平衡气,总流量=0.3L/min,GHSV=150000h-1 | [ |
| Fe3+ | >80% (150~500℃) | — | 增加了活性位点的数量 | NO=0.015L/min,O2=5%,NH3=0.015L/min,N2作为平衡气,总流量=0.3L/min GHSV=120000h-1 | [ |
| Mn n+ | >90% (175~525℃) | >90% (200~500℃) | 提升了催化剂的氧化还原能力,抑制了脱铝和CuOx的生成 | NO=0.05L/min,O2=10%,NH3=0.05L/min,N2作为平衡气,GHSV=30000h-1 | [ |
| Mn n+ | >90% (200~450℃) | >90% (300~400℃) | 提供了更多的活性位点,增强了对NO的吸附 | NO=0.01L/min,O2=3%,NH3=0.01L/min,N2作为平衡气,总流量=0.2mL/min,GHSV=300000h-1 | [ |
| Co2+ | >90% (275~450℃) | — | 控制Cu离子以[Cu(OH)]+-Z形式位于1Al位点,促进产生更多的活性更强的Lewis酸位点 | NO=0.05L/min,O2=10%,NH3=0.05L/min,N2作为平衡气,GHSV=240000h-1 | [ |
| Nb5+ | >90% (200~625℃) | — | 增加了酸位点和活性位点数量,稳定了分子筛结构 | NO=0.05L/min,O2=5%,NH3=0.05L/min,N2作为平衡气,GHSV=60000h-1 | [ |
| Pt2+ | >90% (175~275℃) | — | 催化氧化NH3 | NO=0.05L/min,O2=5%,NH3=0.055L/min,N2作为平衡气,GHSV=200000h-1 | [ |
| Ti4+ | >95% (150~525℃) | >95% (200~450℃) | 增加活性位点 | NO=0.049L/min,NO2=0.001L/min,O2=5%,NH3=0.05L/min,Ar作为平衡气,GHSV=50000h-1 | [ |
| Zr4+ | >95% (200~400℃) | — | 调节催化剂表面Cu2+和Cu+的比例,从而提高Cu+的含量 | NO=0.01L/min,O2=5%,NH3=0.01L/min,N2作为平衡气,总流量=0.2mL/min,GHSV=24000h-1 | [ |
| 改性离子 | 新鲜样品的最佳脱硝效率 | 水热老化样品的最佳脱硝效率 | 稀土金属改性的作用 | 反应条件 | 参考文献 |
|---|---|---|---|---|---|
| Ce3+ | >85%(210~590℃) | >85%(220~540℃) | 稳定了活性位点Cu2+, 阻止脱铝 | NO=0.02L/min,O2=7%,H2O=10%,NH3=0.02L/min,Ar作为平衡气,总流量=0.4L/min,GHSV=40000h-1 | [ |
| Ce3+ | >95%(210~600℃) | >90%(210~600℃) | 增加酸位点数量,保护活性位点Cu2+和骨架Al | NO=0.05L/min,O2=5%,H2O=10%,NH3=0.05L/min,N2作为平衡气, GHSV=36000h-1 | [ |
| Sm3+ | >90%(200~550℃) | >80%(250~550℃) | 增加活性位点[Cu(OH)]+-Z的数量,抑制CuO x 的生成 | NO=0.05L/min,O2=5%,H2O=5%,NH3=0.05L/min,N2作为平衡气, GHSV=200000h-1 | [ |
| Pr3+ | >80%(200~550℃) | >80%(225~550℃) | 抑制Z2 Cu2+在水热老化过程中的迁移和聚集 | NO=0.05L/min,O2=5%,H2O=5%,NH3=0.05L/min,N2作为平衡气, GHSV=200000h-1 | [ |
| Y3+ | >80%(150~600℃) | >80%(150~580℃) | 保护活性位点, 稳定骨架Al | NO=0.05L/min,O2=10%,H2O=5%,NH3=0.05L/min,N2作为平衡气, GHSV=40000h-1 | [ |
表3 近年来文献报道较多的稀土金属离子改性Cu-SSZ-13催化剂
| 改性离子 | 新鲜样品的最佳脱硝效率 | 水热老化样品的最佳脱硝效率 | 稀土金属改性的作用 | 反应条件 | 参考文献 |
|---|---|---|---|---|---|
| Ce3+ | >85%(210~590℃) | >85%(220~540℃) | 稳定了活性位点Cu2+, 阻止脱铝 | NO=0.02L/min,O2=7%,H2O=10%,NH3=0.02L/min,Ar作为平衡气,总流量=0.4L/min,GHSV=40000h-1 | [ |
| Ce3+ | >95%(210~600℃) | >90%(210~600℃) | 增加酸位点数量,保护活性位点Cu2+和骨架Al | NO=0.05L/min,O2=5%,H2O=10%,NH3=0.05L/min,N2作为平衡气, GHSV=36000h-1 | [ |
| Sm3+ | >90%(200~550℃) | >80%(250~550℃) | 增加活性位点[Cu(OH)]+-Z的数量,抑制CuO x 的生成 | NO=0.05L/min,O2=5%,H2O=5%,NH3=0.05L/min,N2作为平衡气, GHSV=200000h-1 | [ |
| Pr3+ | >80%(200~550℃) | >80%(225~550℃) | 抑制Z2 Cu2+在水热老化过程中的迁移和聚集 | NO=0.05L/min,O2=5%,H2O=5%,NH3=0.05L/min,N2作为平衡气, GHSV=200000h-1 | [ |
| Y3+ | >80%(150~600℃) | >80%(150~580℃) | 保护活性位点, 稳定骨架Al | NO=0.05L/min,O2=10%,H2O=5%,NH3=0.05L/min,N2作为平衡气, GHSV=40000h-1 | [ |
| [41] | LEZCANO-GONZALEZ I, DEKA U, van der BIJ H E, et al. Chemical deactivation of Cu-SSZ-13 ammonia selective catalytic reduction (NH3-SCR) systems[J]. Applied Catalysis B: Environmental, 2014, 154: 339-349. |
| [42] | ZHAO Huawang, HAN Lei, WANG Yujie, et al. Insight into platinum poisoning effect on Cu-SSZ-13 in selective catalytic reduction of NO x with NH3 [J]. Catalysts, 2021, 11(7): 796. |
| [43] | AN Qi, XU Guangyan, LIU Jianhua, et al. Designing a bifunctional Pt/Cu-SSZ-13 catalyst for ammonia-selective catalytic oxidation with superior selectivity[J]. ACS Catalysis, 2023, 13(10): 6851-6861. |
| [44] | CHEN Mengyang, SUN Qiming, YANG Xiangguang, et al. A dual-template method for the synthesis of bimetallic CuNi/SSZ-13 zeolite catalysts for NH3-SCR reaction[J]. Inorganic Chemistry Communications, 2019, 105: 203-207. |
| [45] | WAN Jie, CHEN Jiawei, SHI Yijun, et al. In-situ one-pot synthesis of Ti/Cu-SSZ-13 catalysts with highly efficient NH3-SCR catalytic performance as well as superior H2O/SO2 tolerability[J]. Catalysis Surveys from Asia, 2022, 26(4): 346-357. |
| [46] | DU Huiyong, YANG Shuo, LI Ke, et al. Study on the performance of the Zr-modified Cu-SSZ-13 catalyst for low-temperature NH3-SCR[J]. ACS Omega, 2022, 7(49): 45144-45152. |
| [47] | SUN Lvesheng, CAO Shunxin, HUANG Yun, et al. VO x supported on TiO2-Ce0.9Zr0.1O2 core-shell structure catalyst for NH3-SCR of NO[J]. RSC Advances, 2019, 9(52): 30340-30349. |
| [48] | HU Guang, YANG Jian, TIAN Yuanmeng, et al. Effect of Ce doping on the resistance of Na over V2O5-WO3/TiO2 SCR catalysts[J]. Materials Research Bulletin, 2018, 104: 112-118. |
| [49] | WANG Jiancheng, PENG Zhaoliang, QIAO Hui, et al. Cerium-stabilized Cu-SSZ-13 catalyst for the catalytic removal of NO x by NH3 [J]. Industrial & Engineering Chemistry Research, 2016, 55(5): 1174-1182. |
| [50] | WANG Baorui, FENG Xiangbo, XU Yurong, et al. Role of Ce in promoting low-temperature performance and hydrothermal stability of Ce/Cu-SSZ-13 in the selective catalytic reduction of NO x with NH3 [J]. Separation and Purification Technology, 2023, 315: 123679. |
| [51] | USUI Toyohiro, LIU Zhendong, Sayoko IBE, et al. Improve the hydrothermal stability of Cu-SSZ-13 zeolite catalyst by loading a small amount of Ce[J]. ACS Catalysis, 2018, 8(10): 9165-9173. |
| [52] | DENG Di, DENG Shujun, HE Dandan, et al. A comparative study of hydrothermal aging effect on cerium and lanthanum doped Cu/SSZ-13 catalysts for NH3-SCR[J]. Journal of Rare Earths, 2021, 39(8): 969-978. |
| [1] | BONINGARI Thirupathi, SMIRNIOTIS Panagiotis G. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NO x abatement[J]. Current Opinion in Chemical Engineering, 2016, 13: 133-141. |
| [2] | KAMPA Marilena, CASTANAS Elias. Human health effects of air pollution[J]. Environmental Pollution, 2008, 151(2): 362-367. |
| [3] | 生态环境部.中国移动源环境管理年报(2023年)[J]. 环境保护, 2024, 52(2): 48-62. |
| Ministry of Ecology and Environment of the People's Republic of China. China mobile source environmental management annual report in 2023[J]. Environmental Protection, 2024, 52(2): 48-62. | |
| [4] | 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[N]. 人民日报, 2021-03-13(1). |
| The fourteenth five-year plan for the national economic and social development of the people's republic of China and the outline of the vision for 2035[N]. People's Daily, 2021-03-13(1). | |
| [5] | Radek DVOŘÁK, Petr CHLÁPEK, JECHA David, et al. New approach to common removal of dioxins and NO x as a contribution to environmental protection[J]. Journal of Cleaner Production, 2010, 18(9): 881-888. |
| [6] | SHI Zhiwei, PENG Qingguo, Jiaqiang E, et al. Mechanism, performance and modification methods for NH3-SCR catalysts: A review[J]. Fuel, 2023, 331: 125885. |
| [7] | WANG Jihui, ZHAO Huawang, HALLER Gary, et al. Recent advances in the selective catalytic reduction of NO x with NH3 on Cu-chabazite catalysts[J]. Applied Catalysis B: Environmental, 2017, 202: 346-354. |
| [8] | PAOLUCCI Christopher, PAREKH Atish A, KHURANA Ishant, et al. Catalysis in a cage: Condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites[J]. Journal of the American Chemical Society, 2016, 138(18): 6028-6048. |
| [9] | ANDERSEN Casper Welzel, BREMHOLM Martin, VENNESTRØM Peter Nicolai Ravnborg, et al. Location of Cu2+ in CHA zeolite investigated by X-ray diffraction using the Rietveld/maximum entropy method[J]. IUCrJ, 2014, 1(6): 382-386. |
| [10] | LEE Hwangho, SONG Inhak, JEON Se Won, et al. Mobility of Cu ions in Cu-SSZ-13 determines the reactivity of selective catalytic reduction of NO x with NH3 [J]. The Journal of Physical Chemistry Letters, 2021, 12(12): 3210-3216. |
| [53] | CHEN Mengyang, LI Junyan, XUE Wenjuan, et al. Unveiling secondary-ion-promoted catalytic properties of Cu-SSZ-13 zeolites for selective catalytic reduction of NO x [J]. Journal of the American Chemical Society, 2022, 144(28): 12816-12824. |
| [54] | CHEN Mengyang, ZHAO Wenru, WEI Yingzhen, et al. Improving the hydrothermal stability of Al-rich Cu-SSZ-13 zeolite via Pr-ion modification[J]. Chemical Science, 2024, 15(15): 5548-5554. |
| [55] | LI Shihan, KONG Haiyu, ZHANG Weiping. A density functional theory modeling on the framework stability of Al-rich Cu-SSZ-13 zeolite modified by metal ions[J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 5675-5685. |
| [56] | ZHAO Zhenchao, YU Rui, SHI Chuan, et al. Rare-earth ion exchanged Cu-SSZ-13 zeolite from organotemplate-free synthesis with enhanced hydrothermal stability in NH3-SCR of NO x [J]. Catalysis Science & Technology, 2019, 9(1): 241-251. |
| [57] | JANGJOU Yasser, Quan DO, GU Yuntao, et al. Nature of Cu active centers in Cu-SSZ-13 and their responses to SO2 exposure[J]. ACS Catalysis, 2018, 8(2): 1325-1337. |
| [58] | LIN Zheguan, WANG Chan, LI Tiesen, et al. Insight into the SO2 poisoning of heterobimetallic FeCu-SSZ-13 zeolite in NH3‐SCR reaction[J]. AIChE Journal, 2024, 70(3): e18335. |
| [59] | WIJAYANTI Kurnia, LEISTNER Kirsten, CHAND Shilpa, et al. Deactivation of Cu-SSZ-13 by SO2 exposure under SCR conditions[J]. Catalysis Science & Technology, 2016, 6(8): 2565-2579. |
| [60] | YU Rui, ZHAO Zhenchao, HUANG Shengjun, et al. Cu-SSZ-13 zeolite-metal oxide hybrid catalysts with enhanced SO2-tolerance in the NH3-SCR of NO x [J]. Applied Catalysis B: Environmental, 2020, 269: 118825. |
| [61] | XIE Lijuan, LIU Chang, DENG Yun, et al. Promotion effect of Fe species on SO2 resistance of Cu-SSZ-13 catalysts for NO x reduction by NH3 [J]. Industrial & Engineering Chemistry Research, 2022, 61(25): 8698-8707. |
| [62] | LI Xiaoliang, FENG Jiangjiang, XU Zhigang, et al. Cerium modification for improving the performance of Cu-SSZ-13 in selective catalytic reduction of NO by NH3 [J]. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128(1): 163-174. |
| [63] | Sunil KUMAR M, ALPHIN M S. Influence of Fe-Cu-SSZ-13 and hybrid Fe-Cu-SSZ-13 zeolite catalyst in ammonia-selective catalytic reduction (NH3-SCR) of NO x [J]. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135(5): 2551-2563. |
| [64] | CHEN Zhiqiang, WANG Hang, ZHANG Xinjia, et al. Construction of multifunctional interface engineering on Cu-SSZ-13@Ce-MnO x /mesoporous-silica catalyst for boosting activity, SO2 tolerance and hydrothermal stability[J]. Journal of Hazardous Materials, 2024, 477: 135268. |
| [65] | WANG Rui, FAN Hao, WANG Yuhan, et al. Improvement of SO2 resistance of Cu-SSZ-13 with polyoxometalates in selective catalytic reduction of NO x [J]. Microporous and Mesoporous Materials, 2023, 349: 112421. |
| [66] | WANG Fuli, WANG Penglu, ZHANG Jin, et al. Deactivation mechanisms and anti-deactivation strategies of molecular sieve catalysts for NO x reduction[J]. Chinese Chemical Letters, 2024, 35(3): 108800. |
| [67] | KHARAS K C C, ROBOTA H J, LIU D J. Deactivation in Cu-ZSM-5 lean-burn catalysts[J]. Applied Catalysis B: Environmental, 1993, 2(2/3): 225-237. |
| [68] | PARK Joo-Hyoung, PARK Hye Jun, BAIK Joon Hyun, et al. Hydrothermal stability of CuZSM5 catalyst in reducing NO by NH3 for the urea selective catalytic reduction process[J]. Journal of Catalysis, 2006, 240(1): 47-57. |
| [69] | VENNESTRØM Peter N R, JANSSENS Ton V W, KUSTOV Arkady, et al. Influence of lattice stability on hydrothermal deactivation of Cu-ZSM-5 and Cu-IM-5 zeolites for selective catalytic reduction of NO x by NH3 [J]. Journal of Catalysis, 2014, 309: 477-490. |
| [70] | SIMANCAS Raquel, CHOKKALINGAM Anand, ELANGOVAN Shanmugam P, et al. Recent progress in the improvement of hydrothermal stability of zeolites[J]. Chemical Science, 2021, 12(22): 7677-7695. |
| [71] | ZHAO Huawang, ZHAO Yingnan, LIU Mengke, et al. Phosphorus modification to improve the hydrothermal stability of a Cu-SSZ-13 catalyst for selective reduction of NO x with NH3 [J]. Applied Catalysis B: Environmental, 2019, 252: 230-239. |
| [72] | KOVARIK Libor, WASHTON Nancy M, KUKKADAPU Ravi, et al. Transformation of active sites in Fe/SSZ-13 SCR catalysts during hydrothermal aging: A spectroscopic, microscopic, and kinetics study[J]. ACS Catalysis, 2017, 7(4): 2458-2470. |
| [73] | FICKEL Dustin W, Elizabeth D’ADDIO, LAUTERBACH Jochen A, et al. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J]. Applied Catalysis B: Environmental, 2011, 102(3/4): 441-448. |
| [74] | CHEN Mengyang, ZHAO Wenru, WEI Yingzhen, et al. La ions-enhanced NH3-SCR performance over Cu-SSZ-13 catalysts[J]. Nano Research, 2023, 16(10): 12126-12133. |
| [75] | CHEN Zhiqiang, GUO Lei, QU Hongxia, et al. Controllable positions of Cu2+ to enhance low-temperature SCR activity on novel Cu-Ce-La-SSZ-13 by a simple one-pot method[J]. Chemical Communications, 2020, 56(15): 2360-2363. |
| [76] | XU Ruinian, WANG Ziyang, LIU Ning, et al. Understanding Zn functions on hydrothermal stability in a one-pot-synthesized Cu&Zn-SSZ-13 catalyst for NH3 selective catalytic reduction[J]. ACS Catalysis, 2020, 10(11): 6197-6212. |
| [11] | XI Yuanzhou, SU Changsheng, OTTINGER Nathan A, et al. Effects of hydrothermal aging on the sulfur poisoning of a Cu-SSZ-13 SCR catalyst[J]. Applied Catalysis B: Environmental, 2021, 284: 119749. |
| [12] | 李欣羽. Mn基金属氧化物混合Cu-SSZ-13提升低温脱硝性能及其反应机理研究[D]. 泉州: 华侨大学, 2023. |
| LI Xinyu. Study on Mn-based metal oxides mixed with Cu-SSZ-13 to improve denitration performance at low temperature and its reaction mechanism[D]. Quanzhou: Huaqiao University, 2023. | |
| [13] | FORZATTI Pio, NOVA Isabella, TRONCONI Enrico. Enhanced NH3 selective catalytic reduction for NO x abatement[J]. Angewandte Chemie International Edition, 2009, 48(44): 8366-8368. |
| [14] | LIU Chang, SHI Jianwen, GAO Chen, et al. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NO x with NH3: A review[J]. Applied Catalysis A: General, 2016, 522: 54-69. |
| [15] | MOHAN Sooraj, DINESHA P, KUMAR Shiva. NO x reduction behaviour in copper zeolite catalysts for ammonia SCR systems: A review[J]. Chemical Engineering Journal, 2020, 384: 123253. |
| [16] | SHAN Yulong, DU Jinpeng, ZHANG Yan, et al. Selective catalytic reduction of NO x with NH3: Opportunities and challenges of Cu-based small-pore zeolites[J]. National Science Review, 2021, 8(10): nwab010. |
| [17] | 陈梦阳. 金属离子改性Cu-SSZ-13分子筛及其NH3-SCR催化性能研究[D]. 长春: 吉林大学, 2022. |
| CHEN Mengyang. Metal ions modified Cu-SSZ-13 molecular sieve and its catalytic performance for NH3-SCR[D]. Changchun: Jilin University, 2022. | |
| [18] | XU Ruifang, LIU Jiaxu, LIANG Cuicui, et al. Effect of alkali metal ion modification on the catalytic performance of nano-HZSM-5 zeolite in butene cracking[J]. Journal of Fuel Chemistry and Technology, 2011, 39(6): 449-454. |
| [19] | GAO Feng, WANG Yilin, WASHTON Nancy M, et al. Effects of alkali and alkaline earth cocations on the activity and hydrothermal stability of Cu/SSZ-13 NH3-SCR catalysts[J]. ACS Catalysis, 2015, 5(11): 6780-6791. |
| [20] | ZHENG Wei, CHEN Jialing, GUO Li, et al. Research progress of hydrothermal stability of metal-based zeolite catalysts in NH3-SCR reaction[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1193-1210. |
| [21] | ZHAO Zhenchao, YU Rui, ZHAO Rongrong, et al. Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: Effects of Na+ ions on the activity and hydrothermal stability[J]. Applied Catalysis B: Environmental, 2017, 217: 421-428. |
| [22] | CUI Yanran, WANG Yilin, WALTER Eric D, et al. Influences of Na+ co-cation on the structure and performance of Cu/SSZ-13 selective catalytic reduction catalysts[J]. Catalysis Today, 2020, 339: 233-240. |
| [23] | WANG Chen, WANG Jun, WANG Jianqiang, et al. The role of impregnated sodium ions in Cu/SSZ-13 NH3-SCR catalysts[J]. Catalysts, 2018, 8(12): 593. |
| [24] | GUAN Bin, CHEN Junyan, GUO Jiangfeng, et al. Study on effect and mechanism of alkaline earth metal poisoning on Cu/SSZ-13 catalysts for selective catalytic reduction of NO x with NH3 [J]. Industrial & Engineering Chemistry Research, 2023, 62(25): 9662-9672. |
| [25] | HASHIMOTO Takuya, NIWA Eiki, UEMATSU Chie, et al. Chemical state of Fe in LaNi1- x Fe x O3 and its effect on electrical conduction property[J]. Hyperfine Interactions, 2012, 206(1): 47-50. |
| [26] | 张巍, 谢康, 汤云灏, 等. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650. |
| ZHANG Wei, XIE Kang, TANG Yunhao, et al. Application of transition metal based MOF materials in selective catalytic reduction of nitrogen oxides[J]. Progress in Chemistry, 2022, 34(12): 2638-2650. | |
| [27] | ZHANG Ranran, LI Yonghong, ZHEN Tieli. Ammonia selective catalytic reduction of NO over Fe/Cu-SSZ-13[J]. RSC Advances, 2014, 4(94): 52130-52139. |
| [28] | WANG Xiaoying, SUN Yimin, HAN Fengyun, et al. Effect of Fe addition on the structure and SCR reactivity of one-pot synthesized Cu-SSZ-13[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107888. |
| [29] | SULTANA Asima, SASAKI Motoi, HAMADA Hideaki. Influence of support on the activity of Mn supported catalysts for SCR of NO with ammonia[J]. Catalysis Today, 2012, 185(1): 284-289. |
| [30] | WANG Zhiheng, XU Xi, ZHU Yvxiao, et al. One-pot synthesis of hierarchical MnCu-SSZ-13 catalyst with excellent NH3-SCR activity at low temperatures[J]. Microporous and Mesoporous Materials, 2022, 333: 111720. |
| [31] | SONG Chaoming, ZHANG Lihong, LI Zhenguo, et al. Co-exchange of Mn: A simple method to improve both the hydrothermal stability and activity of Cu-SSZ-13 NH3-SCR catalysts[J]. Catalysts, 2019, 9(5): 455. |
| [32] | XIE Mengjie, XIAO Xin, WANG Jiajie, et al. Mechanistic insights into the cobalt promotion on low-temperature NH3-SCR reactivity of Cu/SSZ-13[J]. Separation and Purification Technology, 2023, 315: 123617. |
| [33] | LEE Hwangho, SONG Inhak, JEON Se Won, et al. Control of the Cu ion species in Cu-SSZ-13 via the introduction of Co2+ co-cations to improve the NH3-SCR activity[J]. Catalysis Science & Technology, 2021, 11(14): 4838-4848. |
| [34] | ZHANG Shoute, PANG Lei, CHEN Zhen, et al. Cu/SSZ-13 and Cu/SAPO-34 catalysts for deNO x in diesel exhaust: Current status, challenges, and future perspectives[J]. Applied Catalysis A: General, 2020, 607: 117855. |
| [35] | Olga GUERRERO-PÉREZ M. The fascinating effect of niobium as catalytic promoting agent[J]. Catalysis Today, 2020, 354: 19-25. |
| [36] | YE Dong, QU Ruiyang, ZHENG Chenghang, et al. Mechanistic investigation of enhanced reactivity of NH4HSO4 and NO on Nb-and Sb-doped VW/Ti SCR catalysts[J]. Applied Catalysis A: General, 2018, 549: 310-319. |
| [37] | WANG Jingang, LIU Jinzhou, TANG Xuejiao, et al. The promotion effect of niobium on the low-temperature activity of Al-rich Cu-SSZ-13 for selective catalytic reduction of NO x with NH3 [J]. Chemical Engineering Journal, 2021, 418: 129433. |
| [38] | SHAN Yulong, SUN Yu, DU Jinpeng, et al. Hydrothermal aging alleviates the inhibition effects of NO2 on Cu-SSZ-13 for NH3-SCR[J]. Applied Catalysis B: Environmental, 2020, 275: 119105. |
| [39] | ZHU Na, SHAN Yulong, SHAN Wenpo, et al. Distinct NO2 effects on Cu-SSZ-13 and Cu-SSZ-39 in the selective catalytic reduction of NO x with NH3 [J]. Environmental Science & Technology, 2020, 54(23): 15499-15506. |
| [40] | LIU Jinzhou, TANG Xuejiao, XING Cheng, et al. Niobium modification for improving the high-temperature performance of Cu-SSZ-13 in selective catalytic reduction of NO by NH3 [J]. Journal of Solid State Chemistry, 2021, 296: 122028. |
| [77] | 王晋刚, 张剑波, 唐雪娇, 等. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
| WANG Jingang, ZHANG Jianbo, TANG Xuejiao, et al. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. | |
| [78] | WANG Yan, LI Zhaoqiang, DING Zhiyong, et al. Effect of ion-exchange sequences on catalytic performance of cerium-modified Cu-SSZ-13 catalysts for NH3-SCR[J]. Catalysts, 2021, 11(8): 997. |
| [1] | 徐景东, 刘奔, 汪雪琴, 董鹏, 席志祥, 徐人威, 岳源源. FeCu-ZSM-5分子筛的绿色合成及其NH3-SCR性能[J]. 化工进展, 2025, 44(6): 3017-3030. |
| [2] | 石秀顶, 王永全, 曾静, 苏畅, 洪俊明. 纳米管状Co-N-C活化过碳酸盐降解四环素[J]. 化工进展, 2025, 44(6): 3041-3052. |
| [3] | 谢武强, 张岭, 贺杠, 蒋里锋, 郑晰瑞, 张和鹏. CoTBrPP-PTAB-Cu电催化还原CO2制甲烷[J]. 化工进展, 2025, 44(6): 3093-3100. |
| [4] | 姚如伟, 宋乐音, 牛琴琴, 李聪明. Na-S双助剂修饰铁基催化剂催化CO2加氢制C2+醇[J]. 化工进展, 2025, 44(6): 3154-3162. |
| [5] | 陈少伟, 陈奕, 牛江奇, 刘天奇, 黄建国, 陈焕浩, 范晓雷. 介质阻挡放电等离子体催化反应器研究进展及应用展望[J]. 化工进展, 2025, 44(6): 3175-3189. |
| [6] | 王家慧, 李培雅, 杨福胜, 王斌, 方涛. 有机液态储氢载体甲基环己烷脱氢研究进展[J]. 化工进展, 2025, 44(6): 3208-3223. |
| [7] | 张莹, 郑雪梅, 马爱元, 田时泓. 聚乙烯常规及微波催化热解产物分布特征的研究进展[J]. 化工进展, 2025, 44(6): 3224-3237. |
| [8] | 李红伟, 许涵侨, 赵燕, 刘耀宗, 滕志君, 季东, 李贵贤. 铂基催化剂电催化甲醇氧化研究进展与展望[J]. 化工进展, 2025, 44(6): 3443-3456. |
| [9] | 孔肖阳, 刘振涛, 邹予桐, 王丹丹, 段爱军, 徐春明, 王喜龙. 多环芳烃加氢裂化制BTX催化剂研究进展[J]. 化工进展, 2025, 44(6): 3468-3485. |
| [10] | 刘诗哲. 甲基环己烷脱氢催化体系的研究进展[J]. 化工进展, 2025, 44(6): 3486-3496. |
| [11] | 范晓娅, 赵镇, 彭强. 电催化二氧化碳和硝酸根共还原合成尿素研究进展[J]. 化工进展, 2025, 44(5): 2856-2869. |
| [12] | 苏俊杰, 刘苏, 周海波, 刘畅, 张琳, 王仰东, 谢在库. 用于CO2加氢直接制低碳烯烃的InZr/SAPO-34双功能催化剂[J]. 化工进展, 2025, 44(5): 2870-2878. |
| [13] | 汪柯, 胡登, 王星博, 孙楠楠, 魏伟. Fe x Co y Ca3Al双功能材料用于CO2捕集-转化一体化制合成气[J]. 化工进展, 2025, 44(5): 2888-2897. |
| [14] | 金少青, 范雪研, 唐智谋, 王衍力, 王达锐, 孙洪敏, 杨为民. 基于钛硅分子筛催化的绿色氧化技术进展[J]. 化工进展, 2025, 44(5): 2907-2918. |
| [15] | 鲍婕, 余攀结, 马永德, 张宏伟, 蔡镇平, 曹彦宁, 黄宽, 江莉龙. Cu-ZrO2催化材料的制备及其棕榈酸甲酯加氢制脂肪醇性能[J]. 化工进展, 2025, 44(5): 2997-3008. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |