化工进展 ›› 2025, Vol. 44 ›› Issue (7): 3869-3878.DOI: 10.16085/j.issn.1000-6613.2024-0799
• 能源加工与技术 • 上一篇
杨岚梅1(
), 徐彬2(
), 刘华财2, 杨文申2, 阴秀丽2, 吴创之2
收稿日期:2024-05-13
修回日期:2024-06-30
出版日期:2025-07-25
发布日期:2025-08-04
通讯作者:
徐彬
作者简介:杨岚梅(1997—),女,硕士研究生,研究方向为生物质焦油脱除。E-mail:ylm3509@163.com。
基金资助:
YANG Lanmei1(
), XU Bin2(
), LIU Huacai2, YANG Wenshen2, YIN Xiuli2, WU Chuangzhi2
Received:2024-05-13
Revised:2024-06-30
Online:2025-07-25
Published:2025-08-04
Contact:
XU Bin
摘要:
以典型焦油组分甲苯与苯的混合物为模型化合物,于介质阻挡放电反应器上开展等离子体部分氧化焦油研究。考察O2添加量、放电功率、焦油混合物组成对甲苯与苯转化特性的影响。结果表明,介质阻挡放电部分氧化可高效转化甲苯与苯的混合物,300℃下可取得最高100.0%的甲苯转化率和98.2%的苯转化率,相应的总能量效率达34.2g/kWh,产物中CO与CO2选择性之和可达74.8%。提高O2添加量与放电功率可提高甲苯与苯混合物的转化率,并促进气相产物生成。焦油混合物中甲苯与苯比例的变化对气相产物生成和甲苯脱除影响不大,但苯脱除率随其中苯比例的降低而下降。苯基和苄基自由基是甲苯和苯转化过程中的重要中间产物,可与分子碎片反应生成液相产物,与含氧活性物质反应生成气相产物。
中图分类号:
杨岚梅, 徐彬, 刘华财, 杨文申, 阴秀丽, 吴创之. 介质阻挡放电部分氧化典型焦油组分混合物的转化特性[J]. 化工进展, 2025, 44(7): 3869-3878.
YANG Lanmei, XU Bin, LIU Huacai, YANG Wenshen, YIN Xiuli, WU Chuangzhi. Characterization of tar partial oxidative reforming by dielectric barrier discharge using mixed toluene and benzene as model compounds[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3869-3878.
| 项目 | M1 | M2 | M3 | M4 | M5 |
|---|---|---|---|---|---|
| 反应物 | C6H6∶C7H8 | C6H6∶C7H8 | C6H6∶C7H8 | C6H6∶C7H8 | C6H6∶C7H8 |
| 比例 | 1∶0 | 0.75∶0.25 | 0.5∶0.5 | 0.25∶0.75 | 0∶1 |
表1 不同混合物中苯与甲苯的质量比
| 项目 | M1 | M2 | M3 | M4 | M5 |
|---|---|---|---|---|---|
| 反应物 | C6H6∶C7H8 | C6H6∶C7H8 | C6H6∶C7H8 | C6H6∶C7H8 | C6H6∶C7H8 |
| 比例 | 1∶0 | 0.75∶0.25 | 0.5∶0.5 | 0.25∶0.75 | 0∶1 |
| 等离子体 | 焦油 | 焦油浓度/g·m-3 | 载气 | 温度/℃ | 转化率/% | 能量效率/g·kW-1·h-1 | 参考文献 |
|---|---|---|---|---|---|---|---|
| DBD | C7H8 | 33.0 | H2 | 400 | 99.2 | 2.0 | [ |
| GAD | C7H8 | 14.0 | N2 | — | 83.2 | 16.6 | [ |
| DBD | C7H8 | 27.3 | 气化燃气+O2/N2+O2 | 300 | 100.0 | 25.7 | [ |
| GAD | C10H8 | 1.7 | N2+H2O | — | 85.0 | 5.7 | [ |
| DBD+Ni/Al2O3 | C7H8 | 17.7 | N2+H2O | < 200 | 52.0 | 2.6 | [ |
| RGAD+Ni/Al2O3 | C7H8 | 20.0 | N2+H2O | — | 93.5 | 20.4 | [ |
| DBD+Ni-HAP | C6H6 | 130.0 | N2+H2O | 400 | 92.1 | 8.5 | [ |
| DBD+Ni1Al3 | C7H8 | 180.0 | N2+H2O | 300 | 96.0 | 25.0 | [ |
| DBD | C6H6/C7H8 | 23.0 | N2+O2 | 300 | 98.2/100.0 | 34.2 | 本文 |
表2 不同等离子体转化焦油性能对比
| 等离子体 | 焦油 | 焦油浓度/g·m-3 | 载气 | 温度/℃ | 转化率/% | 能量效率/g·kW-1·h-1 | 参考文献 |
|---|---|---|---|---|---|---|---|
| DBD | C7H8 | 33.0 | H2 | 400 | 99.2 | 2.0 | [ |
| GAD | C7H8 | 14.0 | N2 | — | 83.2 | 16.6 | [ |
| DBD | C7H8 | 27.3 | 气化燃气+O2/N2+O2 | 300 | 100.0 | 25.7 | [ |
| GAD | C10H8 | 1.7 | N2+H2O | — | 85.0 | 5.7 | [ |
| DBD+Ni/Al2O3 | C7H8 | 17.7 | N2+H2O | < 200 | 52.0 | 2.6 | [ |
| RGAD+Ni/Al2O3 | C7H8 | 20.0 | N2+H2O | — | 93.5 | 20.4 | [ |
| DBD+Ni-HAP | C6H6 | 130.0 | N2+H2O | 400 | 92.1 | 8.5 | [ |
| DBD+Ni1Al3 | C7H8 | 180.0 | N2+H2O | 300 | 96.0 | 25.0 | [ |
| DBD | C6H6/C7H8 | 23.0 | N2+O2 | 300 | 98.2/100.0 | 34.2 | 本文 |
| M1 | M3 | M5 | ||
|---|---|---|---|---|
| 2.82 | 苯 | 63.1 | 39.2 | 10.1 |
| 4.35 | 1.2 | 20.9 | 42.1 | |
| 6.03 | 乙苯 | — | — | 0.8 |
| 7.88 | 0.4 | 5.1 | 10.6 | |
| 7.92 | 苯乙醚 | 0.5 | 0.6 | 0.5 |
| 8.09 | 28.2 | 22.7 | 17.8 | |
| 8.26 | 苯甲腈 | 3.5 | 3.9 | 4.0 |
| 9.06 | 3-甲基苯酚 | — | 0.8 | 1.8 |
| 9.28 | 2-羟基苯甲醛 | 0.2 | 0.4 | 0.6 |
| 9.31 | 2-甲基苯酚 | 0.2 | 1.9 | 3.4 |
| 9.67 | 4-甲基苯酚 | — | 2.5 | 4.4 |
| 9.910 | 2-甲氧基苯酚 | 0.1 | 0.1 | 0.1 |
| 10.01 | 3-甲基苄腈 | — | — | 0.5 |
| 10.24 | 2-甲基苯腈 | — | — | 0.4 |
| 11.08 | 苯甲酸 | — | — | 0.5 |
| 14.30 | 联苯 | 0.2 | 0.2 | 0.2 |
| — | 其他 | 2.4 | 1.7 | 2.2 |
表3 不同工况下主要液相产物
| M1 | M3 | M5 | ||
|---|---|---|---|---|
| 2.82 | 苯 | 63.1 | 39.2 | 10.1 |
| 4.35 | 1.2 | 20.9 | 42.1 | |
| 6.03 | 乙苯 | — | — | 0.8 |
| 7.88 | 0.4 | 5.1 | 10.6 | |
| 7.92 | 苯乙醚 | 0.5 | 0.6 | 0.5 |
| 8.09 | 28.2 | 22.7 | 17.8 | |
| 8.26 | 苯甲腈 | 3.5 | 3.9 | 4.0 |
| 9.06 | 3-甲基苯酚 | — | 0.8 | 1.8 |
| 9.28 | 2-羟基苯甲醛 | 0.2 | 0.4 | 0.6 |
| 9.31 | 2-甲基苯酚 | 0.2 | 1.9 | 3.4 |
| 9.67 | 4-甲基苯酚 | — | 2.5 | 4.4 |
| 9.910 | 2-甲氧基苯酚 | 0.1 | 0.1 | 0.1 |
| 10.01 | 3-甲基苄腈 | — | — | 0.5 |
| 10.24 | 2-甲基苯腈 | — | — | 0.4 |
| 11.08 | 苯甲酸 | — | — | 0.5 |
| 14.30 | 联苯 | 0.2 | 0.2 | 0.2 |
| — | 其他 | 2.4 | 1.7 | 2.2 |
| [1] | MAGAGULA Saneliswa, HAN Jiangze, LIU Xinying, et al. Targeting efficient biomass gasification[J]. Chinese Journal of Chemical Engineering, 2021, 33: 268-278. |
| [2] | LEIBBRANDT Nadia H, ABOYADE Akinwale O, KNOETZE Johannes H, et al. Process efficiency of biofuel production via gasification and Fischer-Tropsch synthesis[J]. Fuel, 2013, 109: 484-492. |
| [3] | 徐彬, 李嘉卿, 谢建军, 等. 等离子体耦合催化焦油脱除同时生物质燃气甲烷化性能研究[J]. 燃料化学学报, 2021, 49(7): 967-977. |
| XU Bin, LI Jiaqing, XIE Jianjun, et al. Performance study on simultaneous tar removal and bio-syngas methanation by combining catalysis with nonthermal plasma[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 967-977. | |
| [4] | ZHU Fengsen, ZHANG Hao, YANG Haiping, et al. Plasma reforming of tar model compound in a rotating gliding arc reactor: Understanding the effects of CO2 and H2O addition[J]. Fuel, 2020, 259: 116271. |
| [5] | JAYANARASIMHAN Ananthanarasimhan, PATHAK Ram Mohan, SHIVAPUJI Anand M, et al. Tar formation in gasification systems: A holistic review of remediation approaches and removal methods[J]. ACS Omega, 2024, 9(2): 2060-2079. |
| [6] | 徐彬, 谢建军, 袁洪友, 等. 填充床介质阻挡放电脱除气化燃气中苯的研究[J]. 燃料化学学报, 2019, 47(4): 493-503. |
| XU Bin, XIE Jianjun, YUAN Hongyou, et al. Experimental study on benzene removal of fuel gas in a packed-bed dielectric barrier discharge reactor[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 493-503. | |
| [7] | 郭亚逢, 程世业, 鲁娜, 等. 电场局域增强介质阻挡放电对CO2氧化生物质焦油制合成气的影响[J]. 石油学报(石油加工), 2023, 39(5): 1124-1132. |
| GUO Yafeng, CHENG Shiye, LU Na, et al. Effect of local electric field enhanced dielectric barrier discharge on reforming biomass gasification tar and CO2 to syngas[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(5): 1124-1132. | |
| [8] | GUO Qizhi, QIN Yuhong, WANG Yuefeng, et al. Numerical study on kinetics of tar production and mechanism of benzene formation during corn straw gasification[J]. Journal of the Energy Institute, 2024, 114: 101635. |
| [9] | 卢岩, 李学琴, 李艳玲, 等. 生物质气化副产有机污染物脱除及防控技术现状[J]. 太阳能学报, 2023, 44(11): 399-405. |
| LU Yan, LI Xueqin, LI Yanling, et al. Current status of removal and control technologies for organic pollutants from biomass gasification by-products[J]. Acta Energiae Solaris Sinica, 2023, 44(11): 399-405. | |
| [10] | LIU S Y, MEI D H, NAHIL M A, et al. Hybrid plasma-catalytic steam reforming of toluene as a biomass tar model compound over Ni/Al2O3 catalysts[J]. Fuel Processing Technology, 2017, 166: 269-275. |
| [11] | 董冰岩, 李贞栋, 王佩祥, 等. DBD等离子体耦合BiOI催化材料降解苯甲羟肟酸的特性与机制[J]. 化工进展, 2024, 43(3): 1565-1575. |
| DONG Bingyan, LI Zhendong, WANG Peixiang, et al. Performance and mechanism of the degradation of benzohydroxamic acid by DBD plasma-coupled BiOI catalytic materials[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1565-1575. | |
| [12] | TATAROVA E, BUNDALESKA N, Ph SARRETTE J, et al. Plasmas for environmental issues: From hydrogen production to 2D materials assembly[J]. Plasma Sources Science and Technology, 2014, 23(6): 063002. |
| [13] | 李超. 介质阻挡放电技术处理挥发性有机物的研究进展[J]. 化工进展, 2020, 39(5): 1964-1973. |
| LI Chao. Research progress on VOCs degradation using dielectric barrier discharge plasma.[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1964-1973. | |
| [14] | 代辉祥, 陆文静, YAWAR Abbas, 等. 双介质阻挡放电低温等离子体对模拟堆肥气体中氨气的去除[J]. 化工进展, 2020, 39(9): 3801-3809. |
| DAI Huixiang, LU Wenjing, YAWAR Abbas, et al. Removal of ammonia from simulated composting gas by double dielectric barrier discharge plasma[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3801-3809. | |
| [15] | LI Shijie, DANG Xiaoqing, YU Xin, et al. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: A review[J]. Chemical Engineering Journal, 2020, 388: 124275. |
| [16] | XU Bin, XIE Jianjun, WANG Nantao, et al. Plasma-enabled catalytic steam reforming of toluene as a biomass tar surrogate: Understanding the synergistic effect of plasma catalysis[J]. Chemical Engineering Journal, 2023, 464: 142696. |
| [17] | HE Wenyu, XU Bin, LANG Lin, et al. Exploring simultaneous upgrading and purification of biomass-gasified gases using plasma catalysis[J]. Catalysts, 2023, 13(4): 686. |
| [18] | SALEEM Faisal, KHOJA Asif Hussain, UMER Jamal, et al. Removal of benzene as a tar model compound from a gas mixture using non-thermal plasma dielectric barrier discharge reactor[J]. Journal of the Energy Institute, 2021, 96: 97-105. |
| [19] | WANG Yaoling, YANG Haiping, TU Xin. Plasma reforming of naphthalene as a tar model compound of biomass gasification[J]. Energy Conversion and Management, 2019, 187: 593-604. |
| [20] | ZHU Fengsen, LI Xiaodong, ZHANG Hao, et al. Destruction of toluene by rotating gliding arc discharge[J]. Fuel, 2016, 176: 78-85. |
| [21] | 王群, 臧鑫芝, 孙慧慧, 等. Mn基金属有机骨架(MOFs)催化剂制备及介质阻挡放电(DBD)等离子体协同催化降解甲苯[J]. 环境化学, 2023, 42(11): 3767-3778. |
| WANG Qun, ZANG Xinzhi, SUN Huihui, et al. Preparation of Mn-based metal-organic frameworks (MOFs) catalysts and its synergistic catalysis on toluene degradation with dielectric barrier discharge (DBD) plasma[J]. Environmental Chemistry, 2023, 42(11): 3767-3778. | |
| [22] | XU Bin, XIE Jianjun, LIU Huacai, et al. Experimental and kinetic modeling study of tar partial oxidative reforming by dielectric barrier discharge plasma using toluene as a model compound[J]. Chemical Engineering Journal, 2024, 479: 147533. |
| [23] | COLL Roberto, Joan SALVADÓ, FARRIOL Xavier, et al. Steam reforming model compounds of biomass gasification tars: Conversion at different operating conditions and tendency towards coke formation[J]. Fuel Processing Technology, 2001, 74(1): 19-31. |
| [24] | MEI Danhua, WANG Yaolin, LIU Shiyun, et al. Plasma reforming of biomass gasification tars using mixed naphthalene and toluene as model compounds[J]. Energy Conversion and Management, 2019, 195: 409-419. |
| [25] | LIU Lina, ZHANG Zhikun, Sonali DAS, et al. Reforming of tar from biomass gasification in a hybrid catalysis-plasma system: A review[J]. Applied Catalysis B: Environmental, 2019, 250: 250-272. |
| [26] | LIU Shiyun, MEI Danhua, WANG Li, et al. Steam reforming of toluene as biomass tar model compound in a gliding arc discharge reactor[J]. Chemical Engineering Journal, 2017, 307: 793-802. |
| [27] | 李嘉卿, 徐彬, 王文博, 等. 等离子体催化甲烷干重整实验研究[J]. 燃料化学学报, 2021, 49(8): 1161-1172. |
| LI Jiaqing, XU Bin, WANG Wenbo, et al. Experimental study on dry reforming of methane by a plasma catalytic hybrid system[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1161-1172. | |
| [28] | KORTSHAGEN Uwe. Nonthermal plasma synthesis of nanocrystals: Fundamentals, applications, and future research needs[J]. Plasma Chemistry and Plasma Processing, 2016, 36(1): 73-84. |
| [29] | WU Junliang, XIA Qibin, WANG Haihui, et al. Catalytic performance of plasma catalysis system with nickel oxide catalysts on different supports for toluene removal: Effect of water vapor[J]. Applied Catalysis B: Environmental, 2014, 156: 265-272. |
| [30] | Gaithersburg, Maryland: National Institute of Standards and Technology. NIST Chemical Kinetics Database[EB/OL]. (2015-09) [2024-06]. . |
| [31] | SU Yi, LUO Yonghao, CHEN Yi, et al. Experimental and numerical investigation of tar destruction under partial oxidation environment[J]. Fuel Processing Technology, 2011, 92(8): 1513-1524. |
| [32] | TRUSHKIN A N, KOCHETOV I V. Simulation of toluene decomposition in a pulse-periodic discharge operating in a mixture of molecular nitrogen and oxygen[J]. Plasma Physics Reports, 2012, 38(5): 407-431. |
| [33] | ITIKAWA Yukikazu. Cross sections for electron collisions with oxygen molecules[J]. Journal of Physical and Chemical Reference Data, 2009, 38(1): 1-20. |
| [34] | GORDILLO-VÁZQUEZ F J. Air plasma kinetics under the influence of sprites[J]. Journal of Physics D: Applied Physics, 2008, 41(23): 234016. |
| [35] | XU Shaojun, KHALAF Pericles I, MARTIN Philip A, et al. CO2 dissociation in a packed-bed plasma reactor: Effects of operating conditions[J]. Plasma Sources Science and Technology, 2018, 27(7): 075009. |
| [36] | WANG Baowei, CHI Chunmei, XU Meng, et al. Plasma-catalytic removal of toluene over CeO2-MnO x catalysts in an atmosphere dielectric barrier discharge[J]. Chemical Engineering Journal, 2017, 322: 679-692. |
| [37] | SALEEM Faisal, ZHANG Kui, HARVEY Adam. Temperature dependence of non-thermal plasma assisted hydrocracking of toluene to lower hydrocarbons in a dielectric barrier discharge reactor[J]. Chemical Engineering Journal, 2019, 356: 1062-1069. |
| [38] | XU Ruiyang, KONG Xiangzhi, ZHANG Hao, et al. Destruction of gasification tar over Ni catalysts in a modified rotating gliding arc plasma reactor: Effect of catalyst position and nickel loading[J]. Fuel, 2021, 289: 119742. |
| [39] | PAN Wei, MENG Junguang, GU Tingting, et al. Plasma-catalytic steam reforming of benzene as a tar model compound over Ni-HAP and Ni-γAl2O3 catalysts: Insights into the importance of steam and catalyst support[J]. Fuel, 2023, 339: 127327. |
| [40] | LIU Lina, WANG Qiang, AHMAD Shakeel, et al. Steam reforming of toluene as model biomass tar to H2-rich syngas in a DBD plasma-catalytic system[J]. Journal of the Energy Institute, 2018, 91(6): 927-939. |
| [41] | LIU Lina, WANG Qiang, SONG Jianwei, et al. Dry reforming of model biomass pyrolysis products to syngas by dielectric barrier discharge plasma[J]. International Journal of Hydrogen Energy, 2018, 43(22): 10281-10293. |
| [42] | YU Liang, LI Xiaodong, TU Xin, et al. Decomposition of naphthalene by DC gliding arc gas discharge[J]. The Journal of Physical Chemistry A, 2010, 114(1): 360-368. |
| [43] | 张鹏, 梅丹华, 孙闵杰, 等. 水蒸气添加下介质阻挡放电CO2重整CH4反应研究[J]. 石油学报(石油加工), 2023, 39(5): 977-986. |
| ZHANG Peng, MEI Danhua, SUN Minjie, et al. Investigation on CH4 reforming with CO2 in dielectric barrier discharge in the presence of steam.[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(5): 977-986. | |
| [44] | SUN Jing, WANG Qing, WANG Wenlong, et al. Plasma catalytic steam reforming of a model tar compound by microwave-metal discharges[J]. Fuel, 2018, 234: 1278-1284. |
| [1] | 陈少伟, 陈奕, 牛江奇, 刘天奇, 黄建国, 陈焕浩, 范晓雷. 介质阻挡放电等离子体催化反应器研究进展及应用展望[J]. 化工进展, 2025, 44(6): 3175-3189. |
| [2] | 许志成, 高宁博, 全翠, 宋庆彬. 低温等离子体协同催化转化生物质气化焦油研究进展[J]. 化工进展, 2025, 44(6): 3432-3442. |
| [3] | 胡兴, 刘易, 杜泽学. 3-氯丙烯直接合成环氧氯丙烷催化剂研究进展[J]. 化工进展, 2024, 43(S1): 325-334. |
| [4] | 胡婷霞, 赵立欣, 姚宗路, 霍丽丽, 贾吉秀, 谢腾. 双金属催化剂在生物质焦油催化蒸汽重整领域的研究进展[J]. 化工进展, 2024, 43(8): 4354-4365. |
| [5] | 靳立军, 刘铮铮, 李扬, 杨赫, 胡浩权. 耦合富氢小分子催化活化的煤热解提高焦油产率策略与实践[J]. 化工进展, 2024, 43(7): 3613-3619. |
| [6] | 王欣宇, 王超, 张梦娟, 刘方正, 李晗旸, 王正林, 贾鑫, 宋兴飞, 许光文, 韩振南. 松木颗粒流态化两段气化制备清洁燃气的工艺稳定性验证[J]. 化工进展, 2024, 43(5): 2576-2586. |
| [7] | 冯勇强, 王洁茹, 王超娴, 李芳, 苏婉婷, 孙宇, 赵彬然. γ-Al2O3 负载的Ni、Fe、Cu对介质阻挡放电等离子体转化CO2/CH4的影响[J]. 化工进展, 2024, 43(5): 2705-2713. |
| [8] | 董冰岩, 李贞栋, 王佩祥, 涂文娟, 谭艳雯, 张芹. DBD等离子体耦合BiOI催化材料降解苯甲羟肟酸的特性与机制[J]. 化工进展, 2024, 43(3): 1565-1575. |
| [9] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
| [10] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
| [11] | 徐贤, 崔楼伟, 刘杰, 施俊合, 朱永红, 刘姣姣, 刘涛, 郑化安, 李冬. 原料组成对半焦中间相结构发展的影响[J]. 化工进展, 2023, 42(5): 2343-2352. |
| [12] | 张乐乐, 钱运东, 朱华曈, 冯思龙, 杨秀娜, 于颖, 杨强, 卢浩. 加氢原料煤焦油脱水除盐预处理工艺优化限值[J]. 化工进展, 2023, 42(5): 2298-2305. |
| [13] | 阮鹏, 杨润农, 林梓荣, 孙永明. 甲烷催化部分氧化制合成气催化剂的研究进展[J]. 化工进展, 2023, 42(4): 1832-1846. |
| [14] | 宋叶, 陈玉卓, 宋云彩, 冯杰. 有机固废合成气原位净化催化剂设计及反应器分析[J]. 化工进展, 2023, 42(3): 1383-1396. |
| [15] | 王思怡, 李月慧, 葛玉洁, 王焕然, 赵璐璐, 李先春. NTP-DBD气化城市污泥及其模型化合物: 气氛对产物分布及特性的影响[J]. 化工进展, 2022, 41(4): 2150-2160. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |