| [1] |
ABUHASEL Khaled, KCHAOU Mohamed, ALQURAISH Mohammed, et al. Oily wastewater treatment: Overview of conventional and modern methods, challenges, and future opportunities[J]. Water, 2021, 13(7): 980.
|
| [2] |
陆耀军. 油水重力分离设备技术及进展[J]. 化工进展, 2001, 20(4): 50-53.
|
|
LU Yaojun. The technology of gravity oil water separation equipments and its progress[J]. Chemical Industry and Engineering Progress, 2001, 20(4): 50-53.
|
| [3] |
SATHTHASIVAM Jayaprakash, LOGANATHAN Kavithaa, SARP Sarper. An overview of oil-water separation using gas flotation systems[J]. Chemosphere, 2016, 144: 671-680.
|
| [4] |
VENTIKOS Nikolaos P, VERGETIS Emmanouil, PSARAFTIS Harilaos N, et al. A high-level synthesis of oil spill response equipment and countermeasures[J]. Journal of Hazardous Materials, 2004, 107(1/2): 51-58.
|
| [5] |
Fatimah AL-OTIBI, AL-ZAHRANI Rasha M, MARRAIKI Najat. The crude oil biodegradation activity of Candida strains isolated from oil-reservoirs soils in Saudi Arabia[J]. Scientific Reports, 2022, 12(1): 10708.
|
| [6] |
LI Bingfan, QI Bo, GUO Ziyuan, et al. Recent developments in the application of membrane separation technology and its challenges in oil-water separation: A review[J]. Chemosphere, 2023, 327: 138528.
|
| [7] |
YONG Jiale, YANG Qing, HOU Xun, et al. Emerging separation applications of surface superwettability[J]. Nanomaterials, 2022, 12(4): 688.
|
| [8] |
FENG Lin, LI Shuhong, LI Yingshun, et al. Super-hydrophobic surfaces: From natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860.
|
| [9] |
何兰, 高助威, 亓欣雨, 等. 三聚氰胺海绵疏水改性及在油水分离领域的研究进展[J]. 化工进展, 2024, 43(2): 984-1000.
|
|
HE Lan, GAO Zhuwei, QI Xinyu, et al. Research progress in hydrophobic modification of melamine sponge and its application in oil-water separation field[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 984-1000.
|
| [10] |
任龙芳, 汤正, 胡艳, 等. 疏水花生壳/聚氨酯复合泡沫的制备与油水分离性能[J]. 精细化工, 2023, 40(2): 263-271.
|
|
REN Longfang, TANG Zheng, HU Yan, et al. Preparation and oil-water separation properties of hydrophobic peanut shell/polyurethane composite foam[J]. Fine Chemicals, 2023, 40(2): 263-271.
|
| [11] |
王百祥, 张惠宁, 彭耀清, 等. 气相吸附制备仿生超疏水棉织物及其油水分离性能[J]. 化工进展, 2023, 42(12): 6490-6497.
|
|
WANG Baixiang, ZHANG Huining, PENG Yaoqing, et al. Preparation of biomimetic superhydrophobic cotton fabric by gas phase adsorption and its oil-water separation performance[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6490-6497.
|
| [12] |
LIU Yucheng, LIU Yan, CHEN Mingyan, et al. Strategies for the construction of special wettability metal organic framework membranes: A review[J]. Journal of Water Process Engineering, 2023, 51: 103374.
|
| [13] |
RASOULI Seyedabbas, REZAEI Nima, HAMEDI Hamideh, et al. Superhydrophobic and superoleophilic membranes for oil-water separation application: A comprehensive review[J]. Materials & Design, 2021, 204: 109599.
|
| [14] |
CHEN Chaolang, WENG Ding, MAHMOOD Awais, et al. Separation mechanism and construction of surfaces with special wettability for oil/water separation[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 11006-11027.
|
| [15] |
LEE Haeshin, DELLATORE Shara M, MILLER William M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430.
|
| [16] |
ZHU Xu, ZHU Lei, LI Hui, et al. Enhancing oil-in-water emulsion separation performance of polyvinyl alcohol hydrogel nanofibrous membrane by squeezing coalescence demulsification[J]. Journal of Membrane Science, 2021, 630: 119324.
|
| [17] |
WU Zhengfei, WANG Yi, DONG Liangliang, et al. PDA controllably-modified Janus membranes with high-permeability for oil/water separation[J]. Composites Communications, 2023, 40: 101574.
|
| [18] |
YU Xiaotian, ZHU Wei, LI Yongqiang, et al. Dual-bioinspired fabrication of Janus Micro/nano PDA-PTFE/ TiO2 membrane for efficient oil-water separation[J]. Separation and Purification Technology, 2024, 330: 125201.
|
| [19] |
LIU Zhuang, WANG Bingbing, DENG Jiewen, et al. One-step facile fabrication of Mg(OH)2/PVA/ZnO membrane with superior stability and oil-water separation[J]. Separation and Purification Technology, 2024, 351: 128105.
|
| [20] |
ZHANG Wanqi, LIU Yiting, TAO Fengbin, et al. An overview of biomass-based oil/water separation materials[J]. Separation and Purification Technology, 2023, 316: 123767.
|
| [21] |
ZHANG Chao, XIANG Li, ZHANG Jiawen, et al. Revisiting the adhesion mechanism of mussel-inspired chemistry[J]. Chemical Science, 2022, 13(6): 1698-1705.
|
| [22] |
KAVITHA C M, ESHWARAPPA K M, SHILPA M P, et al. Tuning the optical and electrical properties by gamma irradiation of silver nanoparticles decorated graphene oxide on glutaraldehyde crosslinked polyvinyl alcohol matrix[J]. Materials Research Bulletin, 2024, 173: 112685.
|
| [23] |
FAMKAR Elnaz, PIRCHERAGHI Gholamreza, NAZOCKDAST Hossein. Effectively exerting the reinforcement of polyvinyl alcohol nanocomposite hydrogel via poly(dopamine) functionalized graphene oxide[J]. Composites Science and Technology, 2022, 217: 109119.
|
| [24] |
LI Ming, ZHOU Shitong, GUAN Qingwen, et al. Robust underwater oil-repellent biomimetic ceramic surfaces: Combining the stability and reproducibility of functional structures[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 46077-46085.
|
| [25] |
NISHIZAWA Nobuaki, KAWAMURA Ayaka, KOHRI Michinari, et al. Polydopamine particle as a particulate emulsifier[J]. Polymers, 2016, 8(3): 62.
|
| [26] |
FIGUEIREDO Katia C S, ALVES Tito L M, BORGES Cristiano P. Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions[J]. Journal of Applied Polymer Science, 2009, 111(6): 3074-3080.
|
| [27] |
XIANG Bin, GONG Jingling, SUN Yuqing, et al. Robust PVA/GO@MOF membrane with fast photothermal self-cleaning property for oily wastewater purification[J]. Journal of Hazardous Materials, 2024, 462: 132803.
|
| [28] |
SHAN Zhihao, HUANG Jiayi, HUANG Yuling, et al. Glutaraldehyde crosslinked ternary carboxymethylcellulose/polyvinyl alcohol/polyethyleneimine film with enhanced mechanical properties, water resistance, antibacterial activity, and UV-shielding ability without any UV absorbents[J]. International Journal of Biological Macromolecules, 2024, 277: 134563.
|
| [29] |
CHOUGALA L S, YATNATTI M S, LINGANAGOUDAR R. K,et al. A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells[J]. Journal of Nano- and Electronic Physics, 2017, 9(4): 4005-1-04005-6.
|
| [30] |
BOUDRICHE Lilya, CALVET Rachel, HAMDI Boualem, et al. Effect of acid treatment on surface properties evolution of attapulgite clay: An application of inverse gas chromatography[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 392(1): 45-54.
|
| [31] |
BAIG Umair, DASTAGEER Mohamed. Fabrication of photo-responsive mesh membrane with surface-engineered wettability for oil-water separation and photocatalytic degradation of organic pollutants[J]. Membranes, 2023, 13(3): 302.
|
| [32] |
WAN IKHSAN Syarifah Nazirah, YUSOF Norhaniza, AZIZ Farhana, et al. Superwetting materials for hydrophilic-oleophobic membrane in oily wastewater treatment[J]. Journal of Environmental Management, 2021, 290: 112565.
|
| [33] |
MIAO Weining, TIAN Ye, JIANG Lei. Bioinspired superspreading surface: From essential mechanism to application[J]. Accounts of Chemical Research, 2022, 55(11): 1467-1479.
|
| [34] |
MAO Hengyang, XU Peng, ZHOU Shouyong, et al. Attapulgite-based nanofiber membrane with oriented channels for high-efficiency oil-water separation[J]. Journal of Membrane Science, 2023, 683: 121811.
|
| [35] |
LIU Xueya, WEI Yingqin, TAO Furong, et al. All-water-based superhydrophobic coating with reversible wettability for oil-water separation and wastewater purification[J]. Progress in Organic Coatings, 2022, 165: 106726.
|
| [36] |
DIMITRIADIS Theodoros, STENDARDO Luca, TAGLIARO Irene, et al. Capillary-driven water transport by contrast wettability-based durable surfaces[J]. ACS Applied Materials & Interfaces, 2023, 15(22): 27206-27213.
|
| [37] |
KIM Byoung-Sik, HARRIOTT Peter. Critical entry pressure for liquids in hydrophobic membranes[J]. Journal of Colloid and Interface Science, 1987, 115(1): 1-8.
|