| [1] |
李鹏, 任晔, 陈学峰. 中国石化催化裂化装置运行状况分析[J]. 石油炼制与化工, 2022, 53(1): 53-59.
|
|
LI Peng, REN Ye, CHEN Xuefeng. Analysis of operation status of catalytic cracking unit in sinopec[J]. Petroleum Processing and Petrochemicals, 2022, 53(1): 53-59.
|
| [2] |
CHEW Jia Wei, LAMARCHE W Casey Q, COCCO Ray A. 100 years of scaling up fluidized bed and circulating fluidized bed reactors[J]. Powder Technology, 2022, 409: 117813.
|
| [3] |
陈俊武, 许友好. 催化裂化工艺与工程[M]. 3版. 北京: 中国石化出版社, 2015.
|
|
CHEN Junwu, XU Youhao. Catalytic cracking process and engineering[M]. 3rd ed. Beijing: China Petrochemical Press, 2015.
|
| [4] |
刘新林, 许友好, 崔守业. 催化剂粒径分布对催化裂化产物选择性的影响[J]. 石油炼制与化工, 2011, 42(2): 42-46.
|
|
LIU Xinlin, XU Youhao, CUI Shouye. Effects of catalyst particle size distribution on the selectivity of catalytic cracking products[J]. Petroleum Processing and Petrochemicals, 2011, 42(2): 42-46.
|
| [5] |
王斌, 沈聪, 王佳音, 等. 旋风分离器内细颗粒浓度分布及运动分析[J]. 化工学报, 2020, 71(S2): 201-209.
|
|
WANG Bin, SHEN Cong, WANG Jiayin, et al. Analysis on concentration distribution and trajectory of fine particles in cyclone separator[J]. CIESC Journal, 2020, 71(S2): 201-209.
|
| [6] |
伍林, 于化龙, 胡霞, 等. 鼓泡流化床稀相空间颗粒粒度分布的时变特性[J]. 中国粉体技术, 2023, 29(3): 12-20.
|
|
WU Lin, YU Hualong, HU Xia, et al. Time-varying characteristics of particle size distribution in dilute phase space in bubbling fluidized bed[J]. China Powder Science and Technology, 2023, 29(3): 12-20.
|
| [7] |
陈文武, 王建军, 张伟亚, 等. 催化裂化装置关键设备故障分析及对策[J]. 石油化工设备技术, 2022, 43(5): 23-27.
|
|
CHEN Wenwu, WANG Jianjun, ZHANG Weiya, et al. Failure analysis of the key equipment in FCC unit and countermeasures[J]. Petrochemical Equipment Technology, 2022, 43(5): 23-27.
|
| [8] |
马明亮, 卢朝鹏, 赵静. 催化裂化装置旋风分离器运行情况分析及对策[J]. 石油与天然气化工, 2020, 49(6): 34-39.
|
|
MA Mingliang, LU Zhaopeng, ZHAO Jing. Operation situation analysis and countermeasures of the cyclone separator for catalytic cracking unit[J]. Chemical Engineering of Oil & Gas, 2020, 49(6): 34-39.
|
| [9] |
孙博, 王珏, 赵佳一, 等. 重油催化裂化装置结焦部位分析[J]. 化学工程与装备, 2021(12): 159-161.
|
|
SUN Bo, WANG Jue, ZHAO Jiayi, et al. Analysis of coking position in heavy oil catalytic cracking unit[J]. Chemical Engineering & Equipment, 2021(12): 159-161.
|
| [10] |
何涛, 何立柱, 郑云锋, 等. 催化裂化装置油浆固体质量浓度升高原因分析及对策[J]. 石化技术与应用, 2022, 40(2): 126-131.
|
|
HE Tao, HE Lizhu, ZHENG Yunfeng, et al. Cause analysis and countermeasures of slurry solid mass concentration increase in fluid catalytic cracking unit[J]. Petrochemical Technology & Application, 2022, 40(2): 126-131.
|
| [11] |
费达, 侯峰, 陈辉, 等. 催化裂化装置烟气轮机积垢及其增厚机理[J]. 化工学报, 2015, 66(1): 79-85.
|
|
FEI Da, HOU Feng, CHEN Hui, et al. Analysis of mechanism of fouling increase on blades of FCCU power recovery expander[J]. CIESC Journal, 2015, 66(1): 79-85.
|
| [12] |
李宁, 彭芳, 崔守业. 催化裂化装置烟机结垢原因分析及应对措施[J]. 石油炼制与化工, 2018, 49(2): 29-34.
|
|
LI Ning, PENG Fang, CUI Shouye. Causes of FCCU flue gas turbine fouling and countermeasures[J]. Petroleum Processing and Petrochemicals, 2018, 49(2): 29-34.
|
| [13] |
宋健斐, 王迪, 孙立强, 等. 基于颗粒谱的FCC旋风分离器故障诊断技术的初步探索[J]. 石油学报(石油加工), 2017, 33(3): 588-594.
|
|
SONG Jianfei, WANG Di, SUN Liqiang, et al. Preliminary analysis of FCC cyclone fault diagnosis technology based on particles information[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(3): 588-594.
|
| [14] |
王迪, 孙立强, 严超宇, 等. 基于催化剂粒度分布分析催化裂化装置催化剂跑损的原因[J]. 石油炼制与化工, 2019, 50(7): 47-51.
|
|
WANG Di, SUN Liqiang, YAN Chaoyu, et al. Analysis of catalyst loss in FCCU based on particle size distribution[J]. Petroleum Processing and Petrochemicals, 2019, 50(7): 47-51.
|
| [15] |
陈铎. 催化裂化装置催化剂跑损的原因及对策分析[J]. 中国石油和化工标准与质量, 2020, 40(4): 42-43.
|
|
CHEN Duo. Causes and countermeasures of catalyst loss in catalytic cracking unit[J]. China Petroleum and Chemical Standard and Quality, 2020, 40(4): 42-43.
|
| [16] |
刘仁桓, 魏耀东. 催化裂化装置跑损催化剂的颗粒粒度分析[J]. 石油化工设备, 2006, 35(2): 9-11.
|
|
LIU Renhuan, WEI Yaodong. Analysis of the particle size distributions of the loss catalyst in FCC[J]. Petro-Chemical Equipment, 2006, 35(2): 9-11.
|
| [17] |
罗辉, 常增明, 陈文龙, 等. 催化裂化跑损催化剂的激光粒度及SEM分析[J]. 炼油技术与工程, 2009, 39(10): 53-56.
|
|
LUO Hui, CHANG Zengming, CHEN Wenlong, et al. Study on catalyst loss in FCC by laser particle size and SEM analysis[J]. Petroleum Refinery Engineering, 2009, 39(10): 53-56.
|
| [18] |
刘璞生, 张忠东, 付满平, 等. 细粉粒度分布变化在FCCU催化剂跑损分析中的应用[J]. 炼油技术与工程, 2016, 46(7): 43-46.
|
|
LIU Pusheng, ZHANG Zhongdong, FU Manping, et al. Application of particle size distribution variation of fine particles in analysis of FCCU catalyst loss[J]. Petroleum Refinery Engineering, 2016, 46(7): 43-46.
|
| [19] |
周复昌, 刘存柱, 郭毅葳, 等. 建立催化剂显微图库诊断催化裂化操作[J]. 石油炼制与化工, 2002, 33(7): 10-14.
|
|
ZHOU Fuchang, LIU Cunzhu, GUO Yiwei, et al. Establishment of catalyst micrograph atlas for diagnosing FCC operation[J]. Petroleum Processing and Petrochemicals, 2002, 33(7): 10-14.
|
| [20] |
王迪, 孙立强, 严超宇, 等. 流化催化裂化(FCC)催化剂跑损机制及故障树分析[J]. 化工进展, 2019, 38(8): 3534-3539.
|
|
WANG Di, SUN Liqiang, YAN Chaoyu, et al. Mechanisms and fault tree analysis of catalyst loss in fluid catalytic cracking (FCC) unit[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3534-3539.
|