化工进展 ›› 2025, Vol. 44 ›› Issue (5): 2972-2983.DOI: 10.16085/j.issn.1000-6613.2024-1761
• 化工过程减排 • 上一篇
收稿日期:2024-10-31
修回日期:2025-01-03
出版日期:2025-05-25
发布日期:2025-05-20
通讯作者:
杨哲
作者简介:于安峰(1982—),男,博士,教授级高级工程师,研究方向为石化行业风险评估、氢安全、燃爆安全与防控。E-mail:yuaf.qday@sinopec.com。
基金资助:
YU Anfeng(
), WU Qian, YANG Zhe(
), LUO Yun, WANG Yuchen, LIU Huan
Received:2024-10-31
Revised:2025-01-03
Online:2025-05-25
Published:2025-05-20
Contact:
YANG Zhe
摘要:
加速能源转型和“碳达峰、碳中和”进程逐渐成为全球共识,氢能产业进入快速发展阶段,绿氢已成为开发重点。发展大规模绿氢产业是推动我国能源结构转型和实现“双碳”目标的战略选择之一,当前我国绿氢产业尚处于示范应用和商业模式探索阶段,绿氢储运、基础设施、关键设备及安全等系列问题都有待解决,安全、高效、低成本的氢能储运体系是推动绿氢产业发展的关键。本文通过分析绿氢储输过程的安全风险,聚焦关键临氢设施的材料失效问题,系统阐述了典型氢脆机理,重点总结了隔膜式氢气压缩机膜片、储氢容器、输氢管道、加氢软管等关键临氢设施的材料氢脆失效机理及其研究进展,并提出了相应的风险控制措施,为筑牢大规模绿氢利用安全基础、保障绿氢产业安全高质量发展提供了支撑。
中图分类号:
于安峰, 吴倩, 杨哲, 罗云, 王宇辰, 刘欢. 绿氢储输过程安全及材料失效机理研究进展[J]. 化工进展, 2025, 44(5): 2972-2983.
YU Anfeng, WU Qian, YANG Zhe, LUO Yun, WANG Yuchen, LIU Huan. Research progress on safety of green hydrogen storage and transportation process and material failure mechanism[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2972-2983.
| 标准名称 | 等级 |
|---|---|
| ASTM | A53,A106,A135,A139,A333,A381 |
| API 5L | A,B,X42,X52,X56,X60,X65,X70,X80 |
表1 氢气长输管道材料分类汇总
| 标准名称 | 等级 |
|---|---|
| ASTM | A53,A106,A135,A139,A333,A381 |
| API 5L | A,B,X42,X52,X56,X60,X65,X70,X80 |
| 1 | 杜忠明, 郑津洋, 戴剑锋, 等. 我国绿氢供应体系建设思考与建议[J]. 中国工程科学, 2022, 24(6): 64-71. |
| DU Zhongming, ZHENG Jinyang, DAI Jianfeng, et al. Construction of green-hydrogen supply system in China: Reflections and suggestions[J]. Strategic Study of CAE, 2022, 24(6): 64-71. | |
| 2 | 国家能源局. 氢能产业发展中长期规划(2021—2035年)[EB/OL]. (2022-03-23) [2022-08-15]. . |
| National Energy Administration. Medium and long term plan for the development of hydrogen energy industry (2021—2035) [EB/OL]. (2022-03-23) [2022-08-15]. . | |
| 3 | 蒲亮, 余海帅, 代明昊, 等. 氢的高压与液化储运研究及应用进展[J]. 科学通报, 2022, 67(19): 2172-2191. |
| PU Liang, YU Haishuai, DAI Minghao, et al. Research progress and application of high-pressure hydrogen and liquid hydrogen in storage and transportation[J]. Chinese Science Bulletin, 2022, 67(19): 2172-2191. | |
| 4 | 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20. |
| ZOU Caineng, LI Jianming, ZHANG Xi, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural Gas Industry, 2022, 42(4): 1-20. | |
| 5 | 王琴, 李文昊, 伍奕, 等. X80钢组织状态对CO抑制氢脆作用的影响[J]. 油气储运, 2022, 41(3): 302-310. |
| WANG Qin, LI Wenhao, WU Yi, et al. The effect of X80 steel microstructure on CO inhibition of hydrogen embrittlement[J]. Oil & Gas Storage and Transportation, 2022, 41(3): 302-310. | |
| 6 | ZHAO Weimin, WANG Wenchen, LI Shouying, et al. Insights into the role of CO in inhibiting hydrogen embrittlement of X80 steel weld at different hydrogen blending ratios[J]. International Journal of Hydrogen Energy, 2024, 50: 292-302. |
| 7 | STAYKOV Aleksandar, KOMODA Ryosuke, KUBOTA Masanobu, et al. Coadsorption of CO and H2 on an iron surface and its implication on the hydrogen embrittlement of iron[J]. The Journal of Physical Chemistry C, 2019, 123(50): 30265-30273. |
| 8 | 李守英. 临氢管线X80钢氢吸附扩散机理及控制研究[D]. 青岛: 中国石油大学(华东), 2020. |
| LI Shouying. Study on hydrogen adsorption/diffusion mechanism and control of X80 steel hydrogen pipeline[D]. Qingdao: China University of Petroleum (East China), 2020. | |
| 9 | 杨哲, 吴倩, 马梦白, 等. 绿氢产业链安全风险与防控技术研究进展[J]. 石油炼制与化工, 2024, 55(1): 82-88. |
| YANG Zhe, WU Qian, MA Mengbai, et al. Research progress of safety risk analysis and prevention and control technology in green hydrogen industry chain[J]. Petroleum Processing and Petrochemicals, 2024, 55(1): 82-88. | |
| 10 | ROBERTSON I M, BIRNBAUM H K, SOFRONIS P. Chapter 91 hydrogen effects on plasticity[M]//Dislocations in solids. Amsterdam: Elsevier, 2009: 249-293. |
| 11 | LOUTHAN M R. Strain localization and hydrogen embrittlement[J]. Scripta Metallurgica, 1983, 17(4): 451-454. |
| 12 | PFEIL L B. The effect of occluded hydrogen on the tensile strength of iron[J]. Proceedings of the Royal Society of London.Series A, Containing Papers of a Mathematical and Physical Character, 1926, 11(760): 182-195. |
| 13 | TROIANO Alexander R. The role of hydrogen and other interstitials in the mechanical behavior of metals[J]. Metallography, Microstructure, and Analysis, 2016, 5(6): 557-569. |
| 14 | ORIANI R A. A mechanistic theory of hydrogen embrittlement of steels[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1972, 76(8): 848-857. |
| 15 | LYNCH S P. Hydrogen embrittlement (HE) phenomena and mechanisms[M]//Stress corrosion cracking. Amsterdam: Elsevier, 2011: 90-130. |
| 16 | NAGUMO Michihiko, TAKAI Kenichi. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview[J]. Acta Materialia, 2019, 165: 722-733. |
| 17 | DJUKIC Milos B, BAKIC Gordana M, SIJACKI ZERAVCIC Vera, et al. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion[J]. Engineering Fracture Mechanics, 2019, 216: 106528. |
| 18 | 彭志贤. 管线钢中夹杂物与氢作用机理及其对HIC敏感性的影响[D]. 武汉: 武汉科技大学, 2021. |
| PENG Zhixian. Interaction between inclusions and hydrogen in pipeline steel and its effect on HIC sensitivity[D]. Wuhan: Wuhan University of Science and Technology, 2021. | |
| 19 | 郑秀芳, 刘继雄, 刘吉斌, 等. 焊接接头氢陷阱性质及捕获氢能力[J]. 钢铁研究, 1998, 26(5): 40-42. |
| ZHENG Xiufang, LIU Jixiong, LIU Jibin, et al. Nature of hydrogen trap at weld joints and hydrogen catching[J]. Research on Iron and Steel, 1998, 26(5): 40-42. | |
| 20 | 周池楼, 刘先晖, 张永君, 等. 钢中夹杂物对氢扩散行为的影响规律[J]. 天然气工业, 2022, 42(9): 135-144. |
| ZHOU Chilou, LIU Xianhui, ZHANG Yongjun, et al. Influence of inclusions in steel on hydrogen diffusion behavior[J]. Natural Gas Industry, 2022, 42(9): 135-144. | |
| 21 | XIAO Hu, HUANG Feng, PENG Zhixian, et al. Sequential kinetic analysis of the influences of non-metallic inclusions on hydrogen diffusion and trapping in high-strength pipeline steel with Al-Ti deoxidisation and Mg treatment[J]. Corrosion Science, 2022, 195: 110006. |
| 22 | HUANG F, LI X G, LIU J, et al. Effects of alloying elements, microstructure, and inclusions on hydrogen induced cracking of X120 pipeline steel in wet H2S sour environment[J]. Materials and Corrosion, 2012, 63(1): 59-66. |
| 23 | 周池楼, 何默涵, 郭晋, 等. 高压氢环境奥氏体不锈钢焊件氢脆研究进展[J]. 化工进展, 2022, 41(2): 519-536. |
| ZHOU Chilou, HE Mohan, GUO Jin, et al. Review on hydrogen embrittlement of austenitic stainless steel weldments in high pressure hydrogen atmosphere[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 519-536. | |
| 24 | SUN Binhan, ZHAO Huan, DONG Xizhen, et al. Current challenges in the utilization of hydrogen energy—A focused review on the issue of hydrogen-induced damage and embrittlement[J]. Advances in Applied Energy, 2024, 14: 100168. |
| 25 | 曹田田. 加氢站隔膜式氢气压缩机膜片破裂原因分析及发展建议[J]. 石油石化绿色低碳, 2024, 9(4): 14-20. |
| CAO Tiantian. Cause analysis and development suggestion of the diaphragm rupture of hydrogen compressor in hydrogen refueling stations[J]. Green Petroleum & Petrochemicals, 2024, 9(4): 14-20. | |
| 26 | 龙瑶妹, 钟涌, 康祥, 等. 超高压隔膜压缩机工作过程瞬态仿真及膜片应力分析[J]. 西安交通大学学报, 2024, 58(11): 137-146. |
| LONG Yaomei, ZHONG Yong, KANG Xiang, et al. Transient simulation and diaphragm stress analysis of ultra-high-pressure diaphragm compressors[J]. Journal of Xi’an Jiaotong University, 2024, 58(11): 137-146. | |
| 27 | JIA Xiaohan, CHEN Jiahao, WU Han, et al. Study on the diaphragm fracture in a diaphragm compressor for a hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2016, 41(15): 6412-6421. |
| 28 | 郝莉, 巴鹏. MD2.5隔膜压缩机膜片的有限元分析[J]. 压缩机技术, 2022(2): 21-25. |
| HAO Li, BA Peng. Finite element analysis of MD2.5 diaphragm compressor diaphragm[J]. Compressor Technology, 2022(2): 21-25. | |
| 29 | LEE Sung-Jun, SOHN Yoonchul, SEGU Dawit Zenebe, et al. An evaluation of the tribological characteristics of diaphragm plates for high-pressure hydrogen gas compressor applications[J]. Lubricants, 2023, 11(9): 411. |
| 30 | 中国工业气体工业协会. 加氢站用隔膜压缩机安全使用技术规范: T/CC [S]. |
| China Industrial Gases Industry Association. Technical regulations for safety use of diaphragm compressor for hydrogen refueling station: T/CC [S]. | |
| 31 | 毛超鹏. 高压氢气隔膜压缩机膜片力学分析与氢脆敏感性试验研究[D]. 北京: 北京化工大学, 2024. |
| MAO Chaopeng. Study on mechanical analysis and hydrogen embrittlement sensitivity test of diaphragm of high-pressure hydrogen diaphragm compressor[D]. Beijing: Beijing University of Chemical Technology, 2024. | |
| 32 | WANG Ting, JIA Xiaohan, LI Xueying, et al. Thermal-structural coupled analysis and improvement of the diaphragm compressor cylinder head for a hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2020, 45(1): 809-821. |
| 33 | CHOI Myounggeun, HOU Jixin, Kristián MÁTHIS, et al. Tensile behavior of hydrogen-charged 316L stainless steel at elevated temperatures[J]. Materials Science and Engineering: A, 2014, 595: 165-172. |
| 34 | 张忠政, 巩建鸣. 高温高压条件下不锈钢的氢损伤[J]. 化工机械, 2009, 36(6): 644-648. |
| ZHANG Zhongzheng, GONG Jianming. Hydrogen-induced damage of stainless steel under the conditions of high temperature and high pressure[J]. Chemical Engineering & Machinery, 2009, 36(6): 644-648. | |
| 35 | FENG Lanxi, TANG Wenxuan, CHEN Zhuochen, et al. Atomistic insights into hydrogen-enhanced strain-induced vacancy in α-iron across varied strain rates[J]. Scripta Materialia, 2024, 252: 116246. |
| 36 | LI W X, ZHAO S W, HE P F, et al. Experimental and numerical study on high-cycle fatigue performance of austenitic stainless steel with pre-charged hydrogen[J]. International Journal of Fatigue, 2024, 185: 108359. |
| 37 | 贾海平, 王雅仪, 葛丽莎, 等. 储氢装备关键技术研究进展[J]. 西安工业大学学报, 2024, 44(4): 441-462. |
| JIA Haiping, WANG Yayi, GE Lisha, et al. Review on key technologies of hydrogen storage equipment[J]. Journal of Xi’an Technological University, 2024, 44(4): 441-462. | |
| 38 | 郑津洋, 胡军, 韩武林, 等. 中国氢能承压设备风险分析和对策的几点思考[J]. 压力容器, 2020, 37(6): 39-47. |
| ZHENG Jinyang, HU Jun, HAN Wulin, et al. Risk analysis and some countermeasures of pressure equipment for hydrogen energy in China[J]. Pressure Vessel Technology, 2020, 37(6): 39-47. | |
| 39 | 郑津洋, 马凯, 周伟明, 等. 加氢站用高压储氢容器[J]. 压力容器, 2018, 35(9): 35-42, 54. |
| ZHENG Jinyang, MA Kai, ZHOU Weiming, et al. High-pressure gaseous hydrogen storage vessel for hydrogen refueling station[J]. Pressure Vessel Technology, 2018, 35(9): 35-42, 54. | |
| 40 | ZHOU Chilou, LI Zhiyuan, ZHAO Yongzhi, et al. Effect of inside diameter on design fatigue life of stationary hydrogen storage vessel based on fracture mechanics[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13634-13642. |
| 41 | HUA Zhengli, ZHANG Xin, ZHENG Jinyang, et al. Hydrogen-enhanced fatigue life analysis of Cr-Mo steel high-pressure vessels[J]. International Journal of Hydrogen Energy, 2017, 42(16): 12005-12014. |
| 42 | DE MIGUEL Nerea, ACOSTA Beatriz, MORETTO P, et al. Hydrogen enhanced fatigue in full scale metallic vessel tests-Results from the MATHRYCE project[J]. International Journal of Hydrogen Energy, 2017, 42(19): 13777-13788. |
| 43 | MATSUNAGA Hisao, YOSHIKAWA Michio, KONDO Ryota, et al. Slow strain rate tensile and fatigue properties of Cr-Mo and carbon steels in a 115 MPa hydrogen gas atmosphere[J]. International Journal of Hydrogen Energy, 2015, 40(16): 5739-5748. |
| 44 | HAGIHARA Akiyoshi, Yasuji ODA, NOGUCHI Hiroshi. Influence of testing frequency on fatigue crack growth of 6061-T6 aluminum alloy in hydrogen gas environment[J]. Key Engineering Materials, 2007, 353/354/355/356/357/358: 174-177. |
| 45 | TAMURA Motonori, SHIBATA Koji. Evaluation of mechanical properties of metals at 45 MPa hydrogen[J]. Journal of the Japan Institute of Metals, 2005, 69(12): 1039-1048. |
| 46 | BARTHÉLÉMY H. Effects of pressure and purity on the hydrogen embrittlement of steels[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2750-2758. |
| 47 | WADA Yoru, TAKASAWA Kouichi, ISHIGAKI Ryoji, et al. Measurement of fatigue crack growth rates for steels in hydrogen storage[C]//Proceedings of the ASME 2009 Pressure Vessels and Piping Conference. Volume 6: Materials and Fabrication, Parts A and B. Prague, Czech Republic. July 26-30, 2009: 215-224. |
| 48 | CLARK W G. Effect of temperature and pressure on hydrogen cracking in high strength type 4340 steel[J]. Journal of Materials for Energy Systems, 1979, 1(1): 33-40. |
| 49 | WILLIAMS Dell P, NELSON Howard G. Embrittlement of 4130 steel by low-pressure gaseous hydrogen[J]. Metallurgical Transactions, 1970, 1(1): 63-68. |
| 50 | 郑津洋, 王振宇, 陆群杰, 等. 奥氏体不锈钢深冷容器疲劳设计曲线探讨[J]. 压力容器, 2021, 38(5): 26-34. |
| ZHENG Jinyang, WANG Zhenyu, LU Qunjie, et al. Discussion on design fatigue curves of austenitic stainless steels for cryogenic pressure vessels[J]. Pressure Vessel Technology, 2021, 38(5): 26-34. | |
| 51 | LIVNE T, CHEN X, GERBERICH W W. Temperature effects on hydrogen assisted crack growth in internally charged AISI 4340 steel[J]. Scripta Metallurgica, 1986, 20(5): 659-662. |
| 52 | GANGLOFF R P, WEI R P. Gaseous hydrogen embrittlement of high strength steels[J]. Metallurgical Transactions A, 1977, 8(7): 1043-1053. |
| 53 | FRITZEMEIER Leslie C, CHANDLER Willis T. Hydrogen embrittlement—Rocket engine applications[M]//Superalloys supercomposites superceramics. Amsterdam: Elsevier, 1989: 491-524. |
| 54 | MELAINA M W, ANTONIA O, PENEV M. Blending hydrogen into natural gas pipeline networks: A review of key issues[R]. Office of Scientific and Technical Information (OSTI), 2013. |
| 55 | The American Society of Mechanical Engineers. Hydrogen piping and pipelines: [S]. |
| 56 | 程玉峰. 高压氢气管道氢脆问题明晰[J]. 油气储运, 2023, 42(1): 1-8. |
| CHENG Yufeng. Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments[J]. Oil & Gas Storage and Transportation, 2023, 42(1): 1-8. | |
| 57 | ZHANG Binglu, ZHU Qisi, XU Chi, et al. Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels[J]. Nature Communications, 2022, 13(1): 3858. |
| 58 | 宋雨霖, 李玉星. 氢气在管线钢表面的解离吸附机制及影响因素研究进展[J]. 油气储运, 2024, 43(11): 1212-1223. |
| SONG Yulin, LI Yuxing. Research review of the mechanism and influencing factors in dissociative adsorption of hydrogen on pipeline steel surface[J]. Oil & Gas Storage and Transportation, 2024, 43(11): 1212-1223. | |
| 59 | KIRCHHEIM Reiner. Changing the interfacial composition of carbide precipitates in metals and its effect on hydrogen trapping[J]. Scripta Materialia, 2019, 160: 62-65. |
| 60 | WAN Liang, GENG Wentong, ISHII Akio, et al. Hydrogen embrittlement controlled by reaction of dislocation with grain boundary in alpha-iron[J]. International Journal of Plasticity, 2019, 112: 206-219. |
| 61 | XIE Degang, LI Suzhi, LI Meng, et al. Hydrogenated vacancies lock dislocations in aluminium[J]. Nature Communications, 2016, 7: 13341. |
| 62 | LEE Dongsun, Yasuji ODA, NOGUCHI Hiroshi. Observation of small fatigue crack growth behavior in the extremely low growth rate region of low carbon steel in a hydrogen gas environment[J]. International Journal of Fracture, 2013, 183(2): 223-240. |
| 63 | WANG L W, LIU Z Y, CUI Z Y, et al. In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel[J]. Corrosion Science, 2014, 85: 401-410. |
| 64 | ZHU Zhixiong, HAN Jian, LI Huijun, et al. High temperature processed high Nb X80 steel with excellent heat-affected zone toughness[J]. Materials Letters, 2016, 163: 171-174. |
| 65 | KHALAJ Gholamreza, KHALAJ Mohammad-Javad. Investigating the corrosion of the Heat-Affected Zones (HAZs) of API-X70 pipeline steels in aerated carbonate solution by electrochemical methods[J]. International Journal of Pressure Vessels and Piping, 2016, 145: 1-12. |
| 66 | YANG Fuyuan, WANG Tianze, DENG Xintao, et al. Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process[J]. International Journal of Hydrogen Energy, 2021, 46(61): 31467-31488. |
| 67 | MORADI Ramin, GROTH Katrina M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis[J]. International Journal of Hydrogen Energy, 2019, 44(23): 12254-12269. |
| 68 | ZHAO Xiaowen, YE Lin. Structure and properties of highly oriented polyoxymethylene produced by hot stretching[J]. Materials Science and Engineering: A, 2011, 528(13/14): 4585-4591. |
| 69 | KEVIN HARRISONS OS. 700-bar hydrogen dispenser hose reliability improvement[R]. America: America National Renewable Energy Laboratory, 2018. |
| 70 | SPRIK S, KURTZ J, AINSCOUGH C, et al. Next generation hydrogen station composite data products—Data through quarter 4 of 2016[R]. America: America National Renewable Energy Laboratory, 2017. |
| 71 | H2Tools. Lessons learned database[EB/OL].(2012-06-14)[2023-06-11]. . |
| 72 | NAYLOR Tim deV. Permeation properties[M]//Comprehensive polymer science and supplements. Amsterdam: Elsevier, 1989: 643-668. |
| 73 | ADAMS P, BENGAOUER A, CARITEAU B, et al. Allowable hydrogen permeation rate from road vehicles[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2742-2749. |
| 74 | DUNCAN B, URQUHART J, ROBERTS S. Review of measurement and modelling of permeation and diffusion in polymers[R]. United Kingdom: National Physical Laboratory, 2005. |
| 75 | Jens HUMPENÖDER. Gas permeation of fibre reinforced plastics[J]. Cryogenics, 1998, 38(1): 143-147. |
| 76 | SIMMONS Kevin. Compatibility of low cost, high pressure, polymer H2 dispensing hoses[R]. America: Pacific Northwest National Laboratory, 2019. |
| [1] | 苏俊杰, 刘苏, 周海波, 刘畅, 张琳, 王仰东, 谢在库. 用于CO2加氢直接制低碳烯烃的InZr/SAPO-34双功能催化剂[J]. 化工进展, 2025, 44(5): 2870-2878. |
| [2] | 孙彬涵, 张显程, 涂善东. 面向氢能本质安全利用——氢致损伤研究进展与挑战[J]. 化工进展, 2025, 44(5): 2898-2906. |
| [3] | 金少青, 范雪研, 唐智谋, 王衍力, 王达锐, 孙洪敏, 杨为民. 基于钛硅分子筛催化的绿色氧化技术进展[J]. 化工进展, 2025, 44(5): 2907-2918. |
| [4] | 马梓轩, 施瑞晨, 刘明杰, 杨莹杰, 宋子瑜, 梅晓鹏, 高晓峰, 洪龙城, 姚思宇, 张治国, 任其龙. 环烷烃催化制氢反应器的设计与性能优化: 前沿进展与挑战[J]. 化工进展, 2025, 44(5): 2919-2937. |
| [5] | 孟凡志, 孙冰, 杨哲. 原料替代对化工生产过程新工艺安全的影响与风险评估[J]. 化工进展, 2025, 44(5): 2955-2971. |
| [6] | 谢静雯, 孟仪方, 叶文杰, 王华磊, 魏东芝. 半理性设计提高短链醇脱氢酶在(S)-1-(4-氟苯基)乙醇合成中的应用[J]. 化工进展, 2025, 44(5): 2515-2523. |
| [7] | 聂红, 习远兵, 葛泮珠, 丁石, 张登前. 可持续航空燃料生产路线与展望——以中石化石科院为例[J]. 化工进展, 2025, 44(5): 2529-2534. |
| [8] | 王水众, 宋国勇. 木质素选择性氢解制备高功能化单酚及其高值利用[J]. 化工进展, 2025, 44(5): 2535-2540. |
| [9] | 刘威, 侯雪兰, 杨贵东. 氢-氨绿色循环研究进展与展望[J]. 化工进展, 2025, 44(5): 2625-2641. |
| [10] | 孙仲顺, 刘根, 程春昱, 李美昕, 杨宪坛, 吴志强, 杨伯伦. 生物质热化学转化制备绿氢研究进展[J]. 化工进展, 2025, 44(5): 2667-2682. |
| [11] | 何志勇. 分步脱羟/脱碳催化剂实现高效裂解甲醇制氢[J]. 化工进展, 2025, 44(5): 2724-2732. |
| [12] | 高建刚, 姜亚鹏, 包宝青, 王书琦, 崔书明. 绿氢转化制绿色甲醇与绿氨[J]. 化工进展, 2025, 44(4): 1987-1997. |
| [13] | 程崇律, 单聪慧, 张孟凡, WEN X Jennifer, 徐宝鹏. 氢安全建模研究进展[J]. 化工进展, 2025, 44(3): 1285-1297. |
| [14] | 毕文涛, 王学林, 曲炜, 王从新, 田志坚. Mg改性对低铂载量Pt/ZSM-22烷烃加氢异构性能的影响[J]. 化工进展, 2025, 44(3): 1355-1367. |
| [15] | 韩媛迪, 邹昀, 梁志超, 童张法, 陈小鹏, 廖丹葵. 高温型碳酸氢钾发泡剂制备及其在聚丙烯微发泡材料中的应用[J]. 化工进展, 2025, 44(3): 1599-1606. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |