化工进展 ›› 2025, Vol. 44 ›› Issue (5): 2667-2682.DOI: 10.16085/j.issn.1000-6613.2024-1899
• 可再生能源利用 • 上一篇
孙仲顺1,2(
), 刘根1,2, 程春昱1,2, 李美昕1,2, 杨宪坛1,2, 吴志强1,2, 杨伯伦1,2(
)
收稿日期:2024-11-18
修回日期:2024-12-31
出版日期:2025-05-25
发布日期:2025-05-20
通讯作者:
杨伯伦
作者简介:孙仲顺(1999-),男,博士研究生,研究方向为生物质化学链转化。E-mail:3121316003@stu.xjtu.edu.cn。
基金资助:
SUN Zhongshun1,2(
), LIU Gen1,2, CHENG Chunyu1,2, LI Meixin1,2, YANG Xiantan1,2, WU Zhiqiang1,2, YANG Bolun1,2(
)
Received:2024-11-18
Revised:2024-12-31
Online:2025-05-25
Published:2025-05-20
Contact:
YANG Bolun
摘要:
绿色氢能被视为最具潜力的能源之一,其应用对促进能源转型、助力碳减排、推动可持续发展具有重要意义,而清洁、可再生的生物质资源(约35×108t/a)为绿氢的生产提供了一种可持续的原料选择。本文首先从制氢技术/碳排放角度给出了绿氢的界定,并总结了绿氢制备的途径;其次,概述了生物质热化学转化制备绿氢的研究进展,重点围绕热解、气化、化学链技术制备绿氢的反应机理、影响因素和过程强化策略展开讨论,并从效率和成本等角度对比了不同绿氢生产工艺的性能;此外,还讨论了绿氢的分离与纯化工艺。分析结果表明:生物质热化学转化制绿氢成本为1.25~2.20USD/kg,产氢效率为35%~65%,氢产率约为190g/kg。比较几种制氢技术,热解串联重整制氢技术具有工艺简单、产氢速率快的优势;蒸汽气化技术在提升氢气产量和纯度方面具有优势,而化学链转化在负碳高纯氢气的生产方面具有较大的潜力。通过水气变换、酸性气体去除和氢气纯化步骤可获得高纯绿氢。最后,本文讨论了生物质热化学转化制氢的挑战,并从降低原料成本、提高制氢效率和实现CO2的富集利用三个角度提出了未来发展建议。
中图分类号:
孙仲顺, 刘根, 程春昱, 李美昕, 杨宪坛, 吴志强, 杨伯伦. 生物质热化学转化制备绿氢研究进展[J]. 化工进展, 2025, 44(5): 2667-2682.
SUN Zhongshun, LIU Gen, CHENG Chunyu, LI Meixin, YANG Xiantan, WU Zhiqiang, YANG Bolun. Research progress on thermochemical conversion of biomass to green hydrogen[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2667-2682.
| 国家/地区 | 能量来源 | 二氧化碳当量阈值 | 参考文献 |
|---|---|---|---|
| 印度 | 生物质能等可再生能源 | 2kg CO2/kg H2 | [ |
| 欧盟 | 可再生能源/谷电 | 4.37kg CO2/kg H2 | [ |
| 中国 | 可再生能源 | 4.9kg CO2/kg H2 | [ |
| 美国 | 使用碳捕集、利用和封存技术的化石燃料,氢载体燃料(甲醇、乙醇等), 可再生能源,核能等 | 生产场所:2kg CO2/kg H2 全生命周期:4kg CO2/kg H2 | [ |
| 瑞士 | 可再生能源 | 1kg CO2/kg H2 | [ |
| 日本 | 可再生能源/低碳能源 | 3.4kg CO2/kg H2 | [ |
表1 基于能量输入来源和二氧化碳排放强度的绿氢定义
| 国家/地区 | 能量来源 | 二氧化碳当量阈值 | 参考文献 |
|---|---|---|---|
| 印度 | 生物质能等可再生能源 | 2kg CO2/kg H2 | [ |
| 欧盟 | 可再生能源/谷电 | 4.37kg CO2/kg H2 | [ |
| 中国 | 可再生能源 | 4.9kg CO2/kg H2 | [ |
| 美国 | 使用碳捕集、利用和封存技术的化石燃料,氢载体燃料(甲醇、乙醇等), 可再生能源,核能等 | 生产场所:2kg CO2/kg H2 全生命周期:4kg CO2/kg H2 | [ |
| 瑞士 | 可再生能源 | 1kg CO2/kg H2 | [ |
| 日本 | 可再生能源/低碳能源 | 3.4kg CO2/kg H2 | [ |
| 载氧体类型 | 原料 | 制备方法 | 操作类型 | 反应器类型 | 操作条件 | 循环次数 | 氢气产率/mmol·g-1 |
|---|---|---|---|---|---|---|---|
| NiO/Al2O3[ | CH4 | 湿浸渍 | BCLR | 固定床反应器 | 重整温度650℃ 再生温度:800℃ | 20 | 38.6 |
| NiFe2O4[ | CO、H2、CO2 | 溶胶凝胶 | BCLHP | 固定床反应器 | 重整温度850℃ | 20 | 24.8 |
| Ni/Al2O3[ | 富水生物油馏分 | 湿浸渍 | BCLR | 固定床反应器 | 重整温度700℃ 汽/碳:3.2 | 11 | 67.5 |
| Fe2O3+10%KNO3[ | CO | 湿浸渍 | BCLHP | 流化床反应器 | 重整温度900℃ | 10 | 3.1 |
| 60%Fe2O3/Al2O3[ | CO | 溶胶凝胶 | BCLHP | 固定床反应器 | 重整温度900℃ | 20 | 20.4 |
| Fe2O3@SBA-15[ | C7H8 | 湿浸渍 | BCLR | 固定床反应器 | 重整温度850℃ | 10 | 13.3 |
| Co0.5Fe0.5O2-y[ | CH4 | 共沉淀 | BCLR | 固定床反应器 | 重整温度850℃ | 10 | 5.4 |
表2 化学链技术生产绿氢载氧体研究进展
| 载氧体类型 | 原料 | 制备方法 | 操作类型 | 反应器类型 | 操作条件 | 循环次数 | 氢气产率/mmol·g-1 |
|---|---|---|---|---|---|---|---|
| NiO/Al2O3[ | CH4 | 湿浸渍 | BCLR | 固定床反应器 | 重整温度650℃ 再生温度:800℃ | 20 | 38.6 |
| NiFe2O4[ | CO、H2、CO2 | 溶胶凝胶 | BCLHP | 固定床反应器 | 重整温度850℃ | 20 | 24.8 |
| Ni/Al2O3[ | 富水生物油馏分 | 湿浸渍 | BCLR | 固定床反应器 | 重整温度700℃ 汽/碳:3.2 | 11 | 67.5 |
| Fe2O3+10%KNO3[ | CO | 湿浸渍 | BCLHP | 流化床反应器 | 重整温度900℃ | 10 | 3.1 |
| 60%Fe2O3/Al2O3[ | CO | 溶胶凝胶 | BCLHP | 固定床反应器 | 重整温度900℃ | 20 | 20.4 |
| Fe2O3@SBA-15[ | C7H8 | 湿浸渍 | BCLR | 固定床反应器 | 重整温度850℃ | 10 | 13.3 |
| Co0.5Fe0.5O2-y[ | CH4 | 共沉淀 | BCLR | 固定床反应器 | 重整温度850℃ | 10 | 5.4 |
| 制氢工艺 | 价格/USD·kg-1 | 效率/% | 碳排放/kg CO2·kg-1H2 | 优点 | 挑战 | 文献 |
|---|---|---|---|---|---|---|
| 热解重整 | 1.3~2.2 | 35~65 | 0.25~18.7 | 不需要氧气,工艺简单,产氢速率快 | 形成焦油、制氢效率低 | [ |
| 蒸汽气化 | 1.7 | 35~50 | 0.3~8.6 | 降低合成气中的焦油含量 | 形成焦油、催化剂烧结和失活 | [ |
| 蒸汽重整 | 2.3~4 | 46.2~51.7 | 管道天然气:7.6 液化天然气:9.3 生物甲烷:<6.1 | 技术成熟,可大规模生产氢气 | 制氢效率不高,催化剂易结焦失活 | [ |
| 化学链重整 | 3.5~4.7 | — | 0.9~2.2 | 工艺流程短、设备简单、负碳排放、可生产纯氢 | 载氧体和反应器的匹配;载氧体抗磨损性能、成本和活性的兼顾 | [ |
| 暗发酵 | 1.0~2.7 | 60~80 | 0 | 方法简单,无需光,CO2中性,多种废物均可用作原料 | H2产率低,技术发展水平低,需要巨大体积的反应器,生产密度低,需要对原料进行预处理 | [ |
| 光解 | 2.8 | 1~5 | 0 | 消耗CO2,产生O2作为副产品,在温和条件下工作 | 氢气产量低、需要阳光、需要大型反应器、氧气敏感,材料成本高 | [ |
表3 不同生物质制备绿氢技术对比
| 制氢工艺 | 价格/USD·kg-1 | 效率/% | 碳排放/kg CO2·kg-1H2 | 优点 | 挑战 | 文献 |
|---|---|---|---|---|---|---|
| 热解重整 | 1.3~2.2 | 35~65 | 0.25~18.7 | 不需要氧气,工艺简单,产氢速率快 | 形成焦油、制氢效率低 | [ |
| 蒸汽气化 | 1.7 | 35~50 | 0.3~8.6 | 降低合成气中的焦油含量 | 形成焦油、催化剂烧结和失活 | [ |
| 蒸汽重整 | 2.3~4 | 46.2~51.7 | 管道天然气:7.6 液化天然气:9.3 生物甲烷:<6.1 | 技术成熟,可大规模生产氢气 | 制氢效率不高,催化剂易结焦失活 | [ |
| 化学链重整 | 3.5~4.7 | — | 0.9~2.2 | 工艺流程短、设备简单、负碳排放、可生产纯氢 | 载氧体和反应器的匹配;载氧体抗磨损性能、成本和活性的兼顾 | [ |
| 暗发酵 | 1.0~2.7 | 60~80 | 0 | 方法简单,无需光,CO2中性,多种废物均可用作原料 | H2产率低,技术发展水平低,需要巨大体积的反应器,生产密度低,需要对原料进行预处理 | [ |
| 光解 | 2.8 | 1~5 | 0 | 消耗CO2,产生O2作为副产品,在温和条件下工作 | 氢气产量低、需要阳光、需要大型反应器、氧气敏感,材料成本高 | [ |
| 1 | 黄晟, 杨振丽, 李振宇. 氢产业链发展的路径分析[J]. 化工进展, 2024, 43(2): 882-893. |
| HUANG Sheng, YANG Zhenli, LI Zhenyu. Analysis of optimization path of developing China’s hydrogen industry[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 882-893. | |
| 2 | International Renewable Energy Agency. Green hydrogen: A guide to policy making[R]. Abu Dhabi: IRENA, 2020. |
| 3 | VOIGT Christian C, KAISER Klara, LOOK Samantha, et al. Wind turbines without curtailment produce large numbers of bat fatalities throughout their lifetime: A call against ignorance and neglect[J]. Global Ecology and Conservation, 2022, 37: e02149. |
| 4 | 赵鲁涛, 李丰荣, 李照源, 等. 中国绿色低碳经济政策: 进展与展望[J]. 绿色矿山, 2023(1): 128-137. |
| ZHAO Lutao, LI Fengrong, LI Zhaoyuan, et al. China’s green and low-carbon economic policies: Progress and prospects[J]. Journal of Green Mine, 2023(1): 128-137. | |
| 5 | The Secretary of Energy’s Hydrogen Technical Advisory Panel. The Green Hydrogen Report: The 1995 Progress Report of the Secretary of Energy’s Hydrogen Technical Advisory Panel[R]. Hawaii: National Renewable Energy Laboratory, 1995. |
| 6 | California State Legislature. Senate Bill No. 1505, An act to add Sections 43868 and 43869 to the Health and Safety Code, relating to fuel[R]. Governor: State of California, 2006. |
| 7 | VELAZQUEZ ABAD Anthony, DODDS Paul E. Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges[J]. Energy Policy, 2020, 138: 111300. |
| 8 | SQUADRITO Gaetano, MAGGIO Gaetano, NICITA Agatino. The green hydrogen revolution[J]. Renewable Energy, 2023, 216: 119041. |
| 9 | HASSAN Qusay, ALGBURI Sameer, SAMEEN Aws Zuhair, et al. Saudi Arabia energy transition: Assessing the future of green hydrogen in climate change mitigation[J]. International Journal of Hydrogen Energy, 2024, 55: 124-140. |
| 10 | LI Zheng, GUO Peng, HAN Ruihua, et al. Current status and development trend of wind power generation-based hydrogen production technology[J]. Energy Exploration & Exploitation, 2019, 37(1): 5-25. |
| 11 | HARICHANDAN Sidhartha, KAR Sanjay Kumar, Prashant Kumar RAI. A systematic and critical review of green hydrogen economy in India[J]. International Journal of Hydrogen Energy, 2023, 48(81): 31425-31442. |
| 12 | GENOVESE Matteo, CIGOLOTTI Viviana, JANNELLI Elio, et al. Current standards and configurations for the permitting and operation of hydrogen refueling stations[J]. International Journal of Hydrogen Energy, 2023, 48(51): 19357-19371. |
| 13 | LIU Wei, WAN Yanming, XIONG Yalin, et al. Green hydrogen standard in China: Standard and evaluation of low-carbon hydrogen, clean hydrogen, and renewable hydrogen[J]. International Journal of Hydrogen Energy, 2022, 47(58): 24584-24591. |
| 14 | BADE Shree Om, TOMOMEWO Olusegun Stanley, MEENAKSHISUNDARAM Ajan, et al. Economic, social, and regulatory challenges of green hydrogen production and utilization in the US: A review[J]. International Journal of Hydrogen Energy, 2024, 49: 314-335. |
| 15 | 王月, 张学瑞, 宋玺文, 等. 电解制氢合成氨技术综述与展望[J]. 化工进展, 2024, 43(S1): 180-188. |
| WANG Yue, ZHANG Xuerui, SONG Xiwen, et al. Overview and prospect of ammonia synthesis with hydrogen produced via water electrolysis[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 180-188. | |
| 16 | AGENCY International Energy. Japan 2021 energy policy review[M]. Paris: OECD, 2021. |
| 17 | LOPEZ Gartzen, SANTAMARIA Laura, LEMONIDOU Angeliki, et al. Hydrogen generation from biomass by pyrolysis[J]. Nature Reviews Methods Primers, 2022, 2: 20. |
| 18 | AZIZI Kolsoom, KESHAVARZ MORAVEJI Mostafa, ARREGI Aitor, et al. On the pyrolysis of different microalgae species in a conical spouted bed reactor: Bio-fuel yields and characterization[J]. Bioresource Technology, 2020, 311: 123561. |
| 19 | XIE Qinglong, ADDY Min, LIU Shiyu, et al. Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production[J]. Fuel, 2015, 160: 577-582. |
| 20 | SURIAPPARAO Dadi V, VINU R. Effects of biomass particle size on slow pyrolysis kinetics and fast pyrolysis product distribution[J]. Waste and Biomass Valorization, 2018, 9(3): 465-477. |
| 21 | HOSSAIN Md Arafat, JEWARATNAM J, GANESAN P, et al. Microwave pyrolysis of oil palm fiber (OPF) for hydrogen production: Parametric investigation[J]. Energy Conversion and Management, 2016, 115: 232-243. |
| 22 | DEMIRBAS A. Hydrogen-rich gases from biomass via pyrolysis and air-steam gasification[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2009, 31(19): 1728-1736. |
| 23 | ARREGI A, LOPEZ G, AMUTIO M, et al. Hydrogen production from biomass by continuous fast pyrolysis and in-line steam reforming[J]. RSC Advances, 2016, 6(31): 25975-25985. |
| 24 | SOLAR J, DE MARCO I, CABALLERO B M, et al. Influence of temperature and residence time in the pyrolysis of woody biomass waste in a continuous screw reactor[J]. Biomass and Bioenergy, 2016, 95: 416-423. |
| 25 | DUMAN Gozde, YANIK Jale. Two-step steam pyrolysis of biomass for hydrogen production[J]. International Journal of Hydrogen Energy, 2017, 42(27): 17000-17008. |
| 26 | MOHAMMED M A A, SALMIATON A, WAN AZLINA W A K G, et al. Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor[J]. Energy Conversion and Management, 2011, 52(2): 1555-1561. |
| 27 | SETIABUDI H D, AZIZ M A A, ABDULLAH Sureena, et al. Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: A review[J]. International Journal of Hydrogen Energy, 2020, 45(36): 18376-18397. |
| 28 | NABGAN Walid, TUAN ABDULLAH Tuan Amran, Ramli MAT, et al. Influence of Ni to Co ratio supported on ZrO2 catalysts in phenol steam reforming for hydrogen production[J]. International Journal of Hydrogen Energy, 2016, 41(48): 22922-22931. |
| 29 | ZHANG Zhengdong, HUANG Kai, MAO Chuang, et al. Microwave assisted catalytic pyrolysis of bagasse to produce hydrogen[J]. International Journal of Hydrogen Energy, 2022, 47(84): 35626-35634. |
| 30 | YUE Mingli, CHENG Jingxin, JIANG Qiuhang, et al. Enhanced hydrogen production from straws using microwave-assisted pyrolysis with NiO/C based catalyst/absorbent[J]. International Journal of Hydrogen Energy, 2024, 59: 535-550. |
| 31 | KARAEVA J V, TIMOFEEVA S S, KOVALEV A A, et al. CO-PYROLYSIS of agricultural waste and estimation of the applicability of pyrolysis in the integrated technology of biorenewable hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(23): 11787-11798. |
| 32 | XUE Yuan, KELKAR Atul, BAI Xianglan. Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer[J]. Fuel, 2016, 166: 227-236. |
| 33 | LEE Hyung Won, KIM Young-Min, Jungho JAE, et al. Production of aromatic hydrocarbons via catalytic co-pyrolysis of torrefied cellulose and polypropylene[J]. Energy Conversion and Management, 2016, 129: 81-88. |
| 34 | 张榕江, 张博, 刘根, 等. 化学链制化学品工艺及循环材料研究进展[J]. 化工学报, 2023, 74(10): 3979-3994. |
| ZHANG Rongjiang, ZHANG Bo, LIU Gen, et al. Progress in chemical looping process for chemical production and looping materials research[J]. CIESC Journal, 2023, 74(10): 3979-3994. | |
| 35 | LI Min, SUN Laizhi, CHEN Lei, et al. Syngas production from biomass chemical looping gasification with Fe2O3-CaO oxygen carrier[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(14): 7811-7817. |
| 36 | ZHANG Bo, SUN Zhongshun, LI Yunchang, et al. Chemical looping reforming characteristics of methane and toluene from biomass pyrolysis volatiles based on decoupling strategy: Embedding NiFe2O4 in SBA-15 as an oxygen carrier[J]. Chemical Engineering Journal, 2023, 466: 143228. |
| 37 | SITUMORANG Yohanes Andre, ZHAO Zhongkai, AN Ping, et al. A novel system of biomass-based hydrogen production by combining steam bio-oil reforming and chemical looping process[J]. Applied Energy, 2020, 268: 115122. |
| 38 | 吴志强, 张博, 杨伯伦. 生物质化学链转化技术研究进展[J]. 化工学报, 2019, 70(8): 2835-2853. |
| WU Zhiqiang, ZHANG Bo, YANG Bolun. Research progress on biomass chemical-looping conversion technology[J]. CIESC Journal, 2019, 70(8): 2835-2853. | |
| 39 | ZHANG Huixin, HUANG Zhengqing, BAN Tao, et al. DFT studies of CO reaction behaviors on α-Fe2O3(001) oxygen-vacancy surface in chemical looping reforming[J]. Chinese Journal of Chemical Physics, 2024, 37(1): 116-124. |
| 40 | ZHANG Rongjiang, LIU Gen, HUO Cunbao, et al. Tailoring catalytic and oxygen release capability in LaFe1-xNi x O3 to intensify chemical looping reactions at medium temperatures[J]. ACS Catalysis, 2024, 14(10): 7771-7787. |
| 41 | SILVESTER Lishil, ANTZARA Andy, BOSKOVIC Goran, et al. NiO supported on Al2O3 and ZrO2 oxygen carriers for chemical looping steam methane reforming[J]. International Journal of Hydrogen Energy, 2015, 40(24): 7490-7501. |
| 42 | JOSHI Anuj, JOSHI Rushikesh K, FALASCINO Eric, et al. Thermodynamic evaluation of the cross-current moving-bed chemical looping configuration for efficient conversion of biomass to syngas[J]. Energy & Fuels, 2023, 37(21): 16744-16756. |
| 43 | LIU Shuai, HE Fang, HUANG Zhen, et al. Screening of NiFe2O4 nanoparticles as oxygen carrier in chemical looping hydrogen production[J]. Energy & Fuels, 2016, 30(5): 4251-4262. |
| 44 | WANG Shurong, LI Xinbao, ZHANG Fan, et al. Bio-oil catalytic reforming without steam addition: Application to hydrogen production and studies on its mechanism[J]. International Journal of Hydrogen Energy, 2013, 38(36): 16038-16047. |
| 45 | QIU Yu, ZHANG Shuai, CUI Dongxu, et al. Enhanced hydrogen production performance at intermediate temperatures through the synergistic effects of binary oxygen carriers[J]. Applied Energy, 2019, 252: 113454. |
| 46 | SUN Shangzhe, ZHAO Ming, CAI Liang, et al. Performance of CeO2-modified iron-based oxygen carrier in the chemical looping hydrogen generation process[J]. Energy & Fuels, 2015, 29(11): 7612-7621. |
| 47 | MAO Xiangyang, LIU Ge, YANG Bolun, et al. Chemical looping reforming of toluene via Fe2O3@SBA-15 based on controlling reaction microenvironments[J]. Fuel, 2022, 326: 125024. |
| 48 | ZHU Xing, WEI Yonggang, WANG Hua, et al. Ce-Fe oxygen carriers for chemical-looping steam methane reforming[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4492-4501. |
| 49 | CHEN Xiangxiang, SUN Zhuang, KUO Po-Chih, et al. Synergistic solar energy integration for enhanced biomass chemical looping hydrogen production: Thermodynamics and techno-economic analyses[J]. Chemical Engineering Journal, 2024, 485: 149734. |
| 50 | XU Dequan, WANG Bo, LI Xian, et al. Solar-driven biomass chemical looping gasification using Fe3O4 for syngas and high-purity hydrogen production[J]. Chemical Engineering Journal, 2024, 479: 147901. |
| 51 | WANG Chen, LIU Tong, XIAO Rui, et al. High-purity hydrogen obtained via a plasma-assisted chemical looping process using perovskite-supported iron oxides as oxygen carriers[J]. Energy & Fuels, 2023, 37(18): 14141-14149. |
| 52 | WANG Chen, LIU Tong, QIU Yu, et al. Performance of plasma-assisted chemical looping hydrogen generation at moderate temperature[J]. Sustainable Energy & Fuels, 2023, 7(5): 1204-1212. |
| 53 | UDOMCHOKE Trirat, WONGSAKULPHASATCH Suwimol, KIATKITTIPONG Worapon, et al. Performance evaluation of sorption enhanced chemical-looping reforming for hydrogen production from biomass with modification of catalyst and sorbent regeneration[J]. Chemical Engineering Journal, 2016, 303: 338-347. |
| 54 | WANG Xudong, WANG Sheng, JIN Baosheng, et al. Modelling and optimization of sorption-enhanced biomass chemical looping gasification coupling with hydrogen generation system based on neural network and genetic algorithm[J]. Chemical Engineering Journal, 2023, 473: 145303. |
| 55 | SHAYAN E, ZARE V, MIRZAEE I. Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents[J]. Energy Conversion and Management, 2018, 159: 30-41. |
| 56 | DE LASA Hugo, SALAICES Enrique, MAZUMDER Jahirul, et al. Catalytic steam gasification of biomass: Catalysts, thermodynamics and kinetics[J]. Chemical Reviews, 2011, 111(9): 5404-5433. |
| 57 | HE Maoyun, XIAO Bo, LIU Shiming, et al. Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of steam to MSW ratios and weight hourly space velocity on gas production and composition[J]. International Journal of Hydrogen Energy, 2009, 34(5): 2174-2183. |
| 58 | 亚力昆江·吐尔逊, 潘岳, 别尔德汗·瓦提汗, 等. 基于热解-重整-燃烧解耦三床气化系统的生物质催化制富氢气体[J]. 农业工程学报, 2018, 34(17): 222-228. |
| YALKUNJAN Tursun, PAN Yue, BIEERDEHAN Watihan, et al. Catalytic biomass gasification for hydrogen rich gas production in decoupled-triple-bed gasification system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(17): 222-228. | |
| 59 | LYU P M, XIONG Z H, CHANG J, et al. An experimental study on biomass air-steam gasification in a fluidized bed[J]. Bioresource Technology, 2004, 95(1): 95-101. |
| 60 | HERNÁNDEZ Juan J, Guadalupe ARANDA-ALMANSA, BULA Antonio. Gasification of biomass wastes in an entrained flow gasifier: Effect of the particle size and the residence time[J]. Fuel Processing Technology, 2010, 91(6): 681-692. |
| 61 | FREMAUX Sylvain, BEHESHTI Sayyed-Mohsen, GHASSEMI Hojat, et al. An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed[J]. Energy Conversion and Management, 2015, 91: 427-432. |
| 62 | SHAHBAZ Muhammad, YUSUP Suzana, INAYAT Abrar, et al. The influence of catalysts in biomass steam gasification and catalytic potential of coal bottom ash in biomass steam gasification: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 468-476. |
| 63 | BALAT M. Hydrogen-rich gas production from biomass via pyrolysis and gasification processes and effects of catalyst on hydrogen yield[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2008, 30(6): 552-564. |
| 64 | ZHOU Liang, YANG Zhiyong, WEI Deju, et al. Application of Fe based composite catalyst in biomass steam gasification to produce hydrogen rich gas[J]. Frontiers in Chemistry, 2022, 10: 882787. |
| 65 | JARUNGTHAMMACHOTE Sompop, DUTTA Animesh. Experimental investigation of a multi-stage air-steam gasification process for hydrogen enriched gas production[J]. International Journal of Energy Research, 2012, 36(3): 335-345. |
| 66 | MEDNIKOV A S. A review of technologies for multistage wood biomass gasification[J]. Thermal Engineering, 2018, 65(8): 531-546. |
| 67 | 龚德成, 沈倩, 朱贤青, 等. 微藻超临界水气化制取富氢合成气的研究进展[J]. 化工进展, 2024, 43(7): 3709-3728. |
| GONG Decheng, SHEN Qian, ZHU Xianqing, et al. Recent progress in the production of hydrogen-rich syngas via supercritical water gasification of microalgae[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3709-3728. | |
| 68 | HE Chao, CHEN Chia-Lung, GIANNIS Apostolos, et al. Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 1127-1142. |
| 69 | KHANDELWAL Kapil, NANDA Sonil, BOAHENE Philip, et al. Hydrogen production from supercritical water gasification of canola residues[J]. International Journal of Hydrogen Energy, 2024, 49: 1518-1527. |
| 70 | CHAKINALA Anand G, BRILMAN Derk W F, VAN SWAAIJ Wim P M, et al. Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol[J]. Industrial & Engineering Chemistry Research, 2010, 49(3): 1113-1122. |
| 71 | SUN Zhao, XIANG Wenguo, CHEN Shiyi. Sorption enhanced coal gasification for hydrogen production using a synthesized CaOMgO-molecular sieve sorbent[J]. International Journal of Hydrogen Energy, 2016, 41(39): 17323-17333. |
| 72 | CHEN Shiyi, ZHAO Zhenghao, SOOMRO Ahsanullah, et al. Hydrogen-rich syngas production via sorption-enhanced steam gasification of sewage sludge[J]. Biomass and Bioenergy, 2020, 138: 105607. |
| 73 | MARTAVALTZI Christina S, LEMONIDOU Angeliki A. Hydrogen production via sorption enhanced reforming of methane: Development of a novel hybrid material—Reforming catalyst and CO2 sorbent[J]. Chemical Engineering Science, 2010, 65(14): 4134-4140. |
| 74 | RHODES Colin, PETER WILLIAMS B, KING Frank, et al. Promotion of Fe3O4/Cr2O3 high temperature water gas shift catalyst[J]. Catalysis Communications, 2002, 3(8): 381-384. |
| 75 | ZHANG Lingzhi, WANG Xueqin, MILLET Jean-Marc M, et al. Investigation of highly active Fe-Al-Cu catalysts for water-gas shift reaction[J]. Applied Catalysis A: General, 2008, 351(1): 1-8. |
| 76 | DAMMA Devaiah, SMIRNIOTIS Panagiotis G. Recent advances in iron-based high-temperature water-gas shift catalysis for hydrogen production[J]. Current Opinion in Chemical Engineering, 2018, 21: 103-110. |
| 77 | PARK Joon B, GRACIANI Jesus, EVANS Jaime, et al. Gold, copper, and platinum nanoparticles dispersed on CeO x /TiO2(110) surfaces: High water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level[J]. Journal of the American Chemical Society, 2010, 132(1): 356-363. |
| 78 | CHEN Xiangling, YANG Lei, ZHOU Zhiming, et al. Core-shell structured CaO-Ca9Al6O18@Ca5Al6O14/Ni bifunctional material for sorption-enhanced steam methane reforming[J]. Chemical Engineering Science, 2017, 163: 114-122. |
| 79 | ZHANG Feng, SHEN Benxian, SUN Hui, et al. Rational formulation design and commercial application of a new hybrid solvent for selectively removing H2S and organosulfurs from sour natural gas[J]. Energy & Fuels, 2016, 30(1): 12-19. |
| 80 | BORHANI Tohid Nejad Ghaffar, AFKHAMIPOUR Morteza, AZARPOUR Abbas, et al. Modeling study on CO2 and H2S simultaneous removal using MDEA solution[J]. Journal of Industrial and Engineering Chemistry, 2016, 34: 344-355. |
| 81 | LIU Zhiming, HAO Peixuan, LI Shuang, et al. Simulation and energy consumption comparison of gas purification system based on elevated temperature pressure swing adsorption in ammonia synthetic system[J]. Adsorption, 2020, 26(7): 1239-1252. |
| 82 | LI Baojun, HE Gaohong, JIANG Xiaobin, et al. Pressure swing adsorption/membrane hybrid processes for hydrogen purification with a high recovery[J]. Frontiers of Chemical Science and Engineering, 2016, 10(2): 255-264. |
| 83 | LUBERTI Mauro, Hyungwoong AHN. Review of Polybed pressure swing adsorption for hydrogen purification[J]. International Journal of Hydrogen Energy, 2022, 47(20): 10911-10933. |
| 84 | Claire DUCROT-BOISGONTIER, PARMENTIER Julien, FAOUR Azzam, et al. FAU-type zeolite nanocasted carbon replicas for CO2 adsorption and hydrogen purification[J]. Energy & Fuels, 2010, 24(6): 3595-3602. |
| 85 | AZIZ Muhammad, DARMAWAN Arif, JUANGSA Firman Bagja. Hydrogen production from biomasses and wastes: A technological review[J]. International Journal of Hydrogen Energy, 2021, 46(68): 33756-33781. |
| 86 | NIKOLAIDIS Pavlos, POULLIKKAS Andreas. A comparative overview of hydrogen production processes[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 597-611. |
| 87 | Pengmei LYU, WU Chuangzhi, MA Longlong, et al. A study on the economic efficiency of hydrogen production from biomass residues in China[J]. Renewable Energy, 2008, 33(8): 1874-1879. |
| 88 | 胡婷霞, 赵立欣, 姚宗路, 等. 双金属催化剂在生物质焦油催化蒸汽重整领域的研究进展[J]. 化工进展, 2024, 43(8): 4354-4365. |
| HU Tingxia, ZHAO Lixin, YAO Zonglu, et al. Research progress of bimetallic catalysts in catalytic steam reforming of biomass tar[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4354-4365. | |
| 89 | ANAYA Karina, OLUFEMI ONI Abayomi, KUMAR Amit. Investigating the techno-economic and environmental performance of chemical looping technology for hydrogen production[J]. Sustainable Energy Technologies and Assessments, 2023, 56: 103008. |
| 90 | HAN Wei, LIU Zhixiang, FANG Jun, et al. Techno-economic analysis of dark fermentative hydrogen production from molasses in a continuous mixed immobilized sludge reactor[J]. Journal of Cleaner Production, 2016, 127: 567-572. |
| [1] | 曹湘洪, 周峰, 姜睿, 刘诗哲, 方向晨, 亢万忠, 乔金樑, 聂红. 加快我国生物基材料产业发展的对策[J]. 化工进展, 2025, 44(5): 2385-2393. |
| [2] | 钟家伟, 谭涛, 谢君, 陈勇. 生物质高值能源转换技术[J]. 化工进展, 2025, 44(5): 2524-2528. |
| [3] | 聂红, 习远兵, 葛泮珠, 丁石, 张登前. 可持续航空燃料生产路线与展望——以中石化石科院为例[J]. 化工进展, 2025, 44(5): 2529-2534. |
| [4] | 王水众, 宋国勇. 木质素选择性氢解制备高功能化单酚及其高值利用[J]. 化工进展, 2025, 44(5): 2535-2540. |
| [5] | 陈彦君, 戴杰, 单军强, 张思欣, 计磊, 朱晨杰, 应汉杰. 我国纤维素乙醇的研究进展和发展趋势[J]. 化工进展, 2025, 44(5): 2541-2562. |
| [6] | 乔凯, 张震宇, 马会霞, 傅杰, 周峰. 生物基呋喃二甲酸关键技术路线和产业发展现状[J]. 化工进展, 2025, 44(5): 2577-2586. |
| [7] | 许镇浩, 易子骁, 曾晨, 王宇辰, 严凯. 生物质基平台分子转化升级的研究进展[J]. 化工进展, 2025, 44(5): 2642-2654. |
| [8] | 冯娇, 刘明明, 刘耀, 王昕, 陈可泉. 利用可再生原料生物合成脂肪族短链二元胺与醇的研究进展[J]. 化工进展, 2025, 44(5): 2655-2666. |
| [9] | 高建刚, 姜亚鹏, 包宝青, 王书琦, 崔书明. 绿氢转化制绿色甲醇与绿氨[J]. 化工进展, 2025, 44(4): 1987-1997. |
| [10] | 袁梦丽, 宋云彩, 李文英, 冯杰. 光热驱动褐煤固定床气化过程热质传递规律[J]. 化工进展, 2025, 44(4): 2008-2019. |
| [11] | 周郭宁, 朱昊辰, 贺文智, 李光明. 水热技术用于农业废弃物处理的研究进展Ⅰ:生物原油制备[J]. 化工进展, 2025, 44(4): 2297-2312. |
| [12] | 周郭宁, 朱昊辰, 贺文智, 李光明. 水热技术用于农业废弃物处理的研究进展Ⅱ:水热炭化[J]. 化工进展, 2025, 44(4): 2313-2327. |
| [13] | 毛宇炜, 薛志亮, 洪钦, 付鑫, 金建龙, 周永刚, 黄群星. 废轮胎热解油气喷水急冷特性[J]. 化工进展, 2025, 44(3): 1263-1274. |
| [14] | 孙雅娟, 段思宇, 张宏, 周冬冬, 路广军, 马志斌. 化学外加剂对固废基胶凝材料性能及水化行为的影响[J]. 化工进展, 2025, 44(3): 1739-1748. |
| [15] | 王奇, 张乾, 杨凯, 高晨明, 孙岳鹏, 黄伟. 煤气化渣提炭分质用于橡胶补强填充料[J]. 化工进展, 2025, 44(3): 1749-1757. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |