化工进展 ›› 2025, Vol. 44 ›› Issue (5): 2642-2654.DOI: 10.16085/j.issn.1000-6613.2024-1657
• 可再生能源利用 • 上一篇
许镇浩1(
), 易子骁1, 曾晨1, 王宇辰1, 严凯1,2(
)
收稿日期:2024-10-13
修回日期:2024-12-12
出版日期:2025-05-25
发布日期:2025-05-20
通讯作者:
严凯
作者简介:许镇浩(1998—),男,硕士研究生,研究方向为生物质资源化利用。E-mail:xuzhh23@mail2.sysu.edu.cn。
基金资助:
XU Zhenhao1(
), YI Zixiao1, ZENG Chen1, WANG Yuchen1, YAN Kai1,2(
)
Received:2024-10-13
Revised:2024-12-12
Online:2025-05-25
Published:2025-05-20
Contact:
YAN Kai
摘要:
生物质基平台分子的转化升级在实现生物质原料高值化过程中具有重要意义,已成为生物质领域的研究重点之一。本文首先介绍了生物质的组成成分以及多种预处理技术,同时阐述了生物质基平台分子催化转化的研究进展,特别是均相催化、非均相催化转化体系以及不同溶剂催化体系的应用与优势,涵盖了它们在提高转化率和目标产物选择性方面的贡献。其次,总结了几种典型的生物质基平台分子的性质、生成途径和转化升级的研究进展,并对其在燃料及化学品等高附加值产品中的应用潜力做了简要评估。最后,通过对当前研究现状的总结,指出生物质基平台分子转化升级过程中面临的若干挑战(如催化反应机理不清晰、催化剂的选择性和稳定性不足以及催化剂成本高昂等),并对未来发展进行了展望。
中图分类号:
许镇浩, 易子骁, 曾晨, 王宇辰, 严凯. 生物质基平台分子转化升级的研究进展[J]. 化工进展, 2025, 44(5): 2642-2654.
XU Zhenhao, YI Zixiao, ZENG Chen, WANG Yuchen, YAN Kai. Recent advance on the conversion and upgrading of biomass-derived platform molecules[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2642-2654.
| 木质纤维素材料 | 纤维素 | 半纤维素 | 木质素 |
|---|---|---|---|
| 硬木茎 | 40~55 | 24~40 | 18~25 |
| 软木茎 | 45~50 | 25~35 | 25~35 |
| 坚果壳 | 25~30 | 25~30 | 30~40 |
| 玉米芯 | 45 | 35 | 15 |
| 草 | 25~40 | 35~50 | 10~30 |
| 纸 | 85~99 | — | 0~15 |
| 麦秸 | 30 | 50 | 15 |
| 分类废弃物 | 60 | 20 | 20 |
| 叶 | 15~20 | 80~85 | — |
| 棉籽毛 | 80~95 | 5~20 | — |
| 报纸 | 40~55 | 25~40 | 18~30 |
| 化学纸浆产生的废纸 | 60~70 | 10~20 | 5~10 |
| 原生废水固体 | 8~15 | — | — |
| 固体牛粪 | 1.6~4.7 | 1.4~3.3 | 2.7~5.7 |
| 柳枝 | 45 | 31.4 | 12 |
| 猪粪便 | 6.0 | 28 | — |
表1 常见木质纤维素材料的组分含量[4](质量分数,%)
| 木质纤维素材料 | 纤维素 | 半纤维素 | 木质素 |
|---|---|---|---|
| 硬木茎 | 40~55 | 24~40 | 18~25 |
| 软木茎 | 45~50 | 25~35 | 25~35 |
| 坚果壳 | 25~30 | 25~30 | 30~40 |
| 玉米芯 | 45 | 35 | 15 |
| 草 | 25~40 | 35~50 | 10~30 |
| 纸 | 85~99 | — | 0~15 |
| 麦秸 | 30 | 50 | 15 |
| 分类废弃物 | 60 | 20 | 20 |
| 叶 | 15~20 | 80~85 | — |
| 棉籽毛 | 80~95 | 5~20 | — |
| 报纸 | 40~55 | 25~40 | 18~30 |
| 化学纸浆产生的废纸 | 60~70 | 10~20 | 5~10 |
| 原生废水固体 | 8~15 | — | — |
| 固体牛粪 | 1.6~4.7 | 1.4~3.3 | 2.7~5.7 |
| 柳枝 | 45 | 31.4 | 12 |
| 猪粪便 | 6.0 | 28 | — |
| 预处理方式 | 优点 | 缺点 |
|---|---|---|
| 物理预处理 | 1. 不使用化学试剂,无二次污染 2. 操作简单,适用于大规模工业化 3. 增加比表面积,改善后续工艺效率 | 1. 能耗高,尤其是机械粉碎和超声波处理 2. 对木质素和纤维素的去除效果有限 |
| 化学预处理 | 1. 可以有效去除木质素和半纤维素,增加纤维素的可及性 2. 反应速度快,适合短时间内处理大量生物质 3. 某些化学方法对特定生物质具有高效选择性 | 1. 可能需要昂贵或腐蚀性的化学试剂 2. 处理过程中可能生成抑制发酵的副产物 3. 需要额外的废液处理步骤,增加成本和复杂性 |
| 物理化学预处理 | 1. 综合了物理预处理和化学预处理方法的优势,处理效果显著 2. 对木质素和纤维素的破坏更全面 3. 可显著提高生物质的转化效率 | 1. 工艺复杂,设备投入和运行成本高 2. 部分方法需要特定试剂或介质,经济性受限 3. 可能生成抑制性物质,需要进一步中和处理 |
表2 预处理方式对比
| 预处理方式 | 优点 | 缺点 |
|---|---|---|
| 物理预处理 | 1. 不使用化学试剂,无二次污染 2. 操作简单,适用于大规模工业化 3. 增加比表面积,改善后续工艺效率 | 1. 能耗高,尤其是机械粉碎和超声波处理 2. 对木质素和纤维素的去除效果有限 |
| 化学预处理 | 1. 可以有效去除木质素和半纤维素,增加纤维素的可及性 2. 反应速度快,适合短时间内处理大量生物质 3. 某些化学方法对特定生物质具有高效选择性 | 1. 可能需要昂贵或腐蚀性的化学试剂 2. 处理过程中可能生成抑制发酵的副产物 3. 需要额外的废液处理步骤,增加成本和复杂性 |
| 物理化学预处理 | 1. 综合了物理预处理和化学预处理方法的优势,处理效果显著 2. 对木质素和纤维素的破坏更全面 3. 可显著提高生物质的转化效率 | 1. 工艺复杂,设备投入和运行成本高 2. 部分方法需要特定试剂或介质,经济性受限 3. 可能生成抑制性物质,需要进一步中和处理 |
| 物理性质 | 糠醛 | 物理性质 | 糠醛 |
|---|---|---|---|
| 分子式 | C5H4O | 最大紫外吸收波/nm | 276 |
| 摩尔质量/g·mol-1 | 96.08 | 折射率 | 1.527 |
| 密度/g·cm-3 | 1.16 | 在水中的溶解性 | 微溶 |
| 熔点/℃ | -36 | 在乙醚中的溶解性 | 易溶 |
| 沸点/℃ | 162 | 在苯中的溶解性 | 易溶 |
| 闪点/℃ | 53.88 | 在氯仿中的溶解性 | 微溶 |
| 颜色、气味 | 无色、杏仁味 | 在石油醚中的溶解性 | 难溶 |
表3 糠醛的物理性质[52]
| 物理性质 | 糠醛 | 物理性质 | 糠醛 |
|---|---|---|---|
| 分子式 | C5H4O | 最大紫外吸收波/nm | 276 |
| 摩尔质量/g·mol-1 | 96.08 | 折射率 | 1.527 |
| 密度/g·cm-3 | 1.16 | 在水中的溶解性 | 微溶 |
| 熔点/℃ | -36 | 在乙醚中的溶解性 | 易溶 |
| 沸点/℃ | 162 | 在苯中的溶解性 | 易溶 |
| 闪点/℃ | 53.88 | 在氯仿中的溶解性 | 微溶 |
| 颜色、气味 | 无色、杏仁味 | 在石油醚中的溶解性 | 难溶 |
| 物理性质 | 5-羟甲基 糠醛 | 物理性质 | 5-羟甲基 糠醛 |
|---|---|---|---|
| 分子式 | C6H6O3 | 最大紫外吸收波/nm | 283 |
| 摩尔质量/g·mol-1 | 126.11 | 折射率 | 1.562 |
| 密度/g·cm-3 | 1.243 | 在水中的溶解性 | 易溶 |
| 熔点/℃ | 31 | 在乙醚中的溶解性 | 易溶 |
| 沸点/℃ | 115 | 在苯中的溶解性 | 易溶 |
| 闪点/℃ | 79.44 | 在氯仿中的溶解性 | 微溶 |
| 颜色、气味 | 黄色、甘菊花味 | 在石油醚中的溶解性 | 难溶 |
表4 5-羟甲基糠醛的物理性质[64]
| 物理性质 | 5-羟甲基 糠醛 | 物理性质 | 5-羟甲基 糠醛 |
|---|---|---|---|
| 分子式 | C6H6O3 | 最大紫外吸收波/nm | 283 |
| 摩尔质量/g·mol-1 | 126.11 | 折射率 | 1.562 |
| 密度/g·cm-3 | 1.243 | 在水中的溶解性 | 易溶 |
| 熔点/℃ | 31 | 在乙醚中的溶解性 | 易溶 |
| 沸点/℃ | 115 | 在苯中的溶解性 | 易溶 |
| 闪点/℃ | 79.44 | 在氯仿中的溶解性 | 微溶 |
| 颜色、气味 | 黄色、甘菊花味 | 在石油醚中的溶解性 | 难溶 |
| 物理性质 | 乙酰丙酸 | 物理性质 | 乙酰丙酸 |
|---|---|---|---|
| 分子式 | C5H8O3 | 折射率 | 1.439 |
| 摩尔质量/g·mol-1 | 116.12 | 在水中的溶解性 | 易溶 |
| 密度/g·cm-3 | 1.134 | 在乙醚中的溶解性 | 易溶 |
| 熔点/℃ | 37 | 在苯中的溶解性 | 难溶 |
| 沸点/℃ | 246 | 在氯仿中的溶解性 | 易溶 |
| 闪点/℃ | 137.78 | 在石油醚中的溶解性 | 难溶 |
| 颜色、气味 | 白色、焦糖味 |
表5 乙酰丙酸的物理性质[74]
| 物理性质 | 乙酰丙酸 | 物理性质 | 乙酰丙酸 |
|---|---|---|---|
| 分子式 | C5H8O3 | 折射率 | 1.439 |
| 摩尔质量/g·mol-1 | 116.12 | 在水中的溶解性 | 易溶 |
| 密度/g·cm-3 | 1.134 | 在乙醚中的溶解性 | 易溶 |
| 熔点/℃ | 37 | 在苯中的溶解性 | 难溶 |
| 沸点/℃ | 246 | 在氯仿中的溶解性 | 易溶 |
| 闪点/℃ | 137.78 | 在石油醚中的溶解性 | 难溶 |
| 颜色、气味 | 白色、焦糖味 |
| 物理性质 | 乙醇 | γ-戊内酯 |
|---|---|---|
| 摩尔质量/g·mol-1 | 46.07 | 100.12 |
| 密度/g·cm-3 | 0.789 | 1.05 |
| 熔点/℃ | -114 | -31 |
| 沸点/℃ | 78 | 207 |
| 闪点/℃ | 12.2 | 35.56 |
| 在水中的溶解性 | 易溶 | 易溶 |
| 辛烷值 | 108.6 | — |
| 十六烷值 | 5 | — |
表6 γ-戊内酯和乙醇的主要物理性质对比[86]
| 物理性质 | 乙醇 | γ-戊内酯 |
|---|---|---|
| 摩尔质量/g·mol-1 | 46.07 | 100.12 |
| 密度/g·cm-3 | 0.789 | 1.05 |
| 熔点/℃ | -114 | -31 |
| 沸点/℃ | 78 | 207 |
| 闪点/℃ | 12.2 | 35.56 |
| 在水中的溶解性 | 易溶 | 易溶 |
| 辛烷值 | 108.6 | — |
| 十六烷值 | 5 | — |
| 1 | MOUSTAKAS K, LOIZIDOU M, REHAN M, et al. A review of recent developments in renewable and sustainable energy systems: Key challenges and future perspective[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109418. |
| 2 | HALLOCK John L, THARAKAN Pradeep J, HALL Charles A S, et al. Forecasting the limits to the availability and diversity of global conventional oil supply[J]. Energy, 2004, 29(11): 1673-1696. |
| 3 | 赵志月, 蒋志伟, 曾永健, 等. 农林生物质热解制富酚生物油研究进展[J]. 能源环境保护, 2023, 37(2): 134-146. |
| ZHAO Zhiyue, JIANG Zhiwei, ZENG Yongjian, et al. Advances in the pyrolytic transformation of lignocellulosic biomass to phenol-enriched bio-oil[J]. Energy Environmental Protection, 2023, 37(2): 134-146. | |
| 4 | KUMAR Parveen, BARRETT Diane M, DELWICHE Michael J, et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 3713-3729. |
| 5 | WANG Fei, LIU Baojie, CAO Wenqing, et al. Novel dual-action vanillic acid pretreatment for efficient hemicellulose separation with simultaneous inhibition of lignin condensation[J]. Bioresource Technology, 2023, 385: 129416. |
| 6 | TIAN Dong, SHEN Feiyue, HU Jinguang, et al. Complete conversion of lignocellulosic biomass into three high-value nanomaterials through a versatile integrated technical platform[J]. Chemical Engineering Journal, 2022, 428: 131373. |
| 7 | KARIMI Keikhosro, TAHERZADEH Mohammad J. A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity[J]. Bioresource Technology, 2016, 200: 1008-1018. |
| 8 | 谢国平, 谭雪松, 刘鹏, 等. 基于生物基衍生有机溶剂的木质纤维素预处理研究进展[J]. 化工进展, 2024, 43(6): 3347-3358. |
| XIE Guoping, TAN Xuesong, LIU Peng, et al. Research progress of lignocellulosic pretreatment based on bio-based derived organic solvents[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3347-3358. | |
| 9 | CHENG Banggui, ZHANG Xiao, LIN Qixuan, et al. A new approach to recycle oxalic acid during lignocellulose pretreatment for xylose production[J]. Biotechnology for Biofuels, 2018, 11: 324. |
| 10 | ZHOU Min, TIAN Xingjun. Development of different pretreatments and related technologies for efficient biomass conversion of lignocellulose[J]. International Journal of Biological Macromolecules, 2022, 202: 256-268. |
| 11 | HUBER George W, IBORRA Sara, CORMA Avelino. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. ChemInform, 2006, 37(52): 4044-4098. |
| 12 | JIANG Chunxia, DI Junhua, SU Chun, et al. One-pot co-catalysis of corncob with dilute hydrochloric acid and tin-based solid acid for the enhancement of furfural production[J]. Bioresource Technology, 2018, 268: 315-322. |
| 13 | LI Xiaoyun, LIU Qingling, LUO Chunhui, et al. Kinetics of furfural production from corn cob in γ-valerolactone using dilute sulfuric acid as catalyst[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8587-8593. |
| 14 | WANG Qiong, ZHUANG Xinshu, WANG Wen, et al. Rapid and simultaneous production of furfural and cellulose-rich residue from sugarcane bagasse using a pressurized phosphoric acid-acetone-water system[J]. Chemical Engineering Journal, 2018, 334: 698-706. |
| 15 | DENG Aojie, REN Junli, WANG Wenju, et al. Production of xylo-sugars from corncob by oxalic acid-assisted ball milling and microwave-induced hydrothermal treatments[J]. Industrial Crops and Products, 2016, 79: 137-145. |
| 16 | ZHANG Luxin, YU Hongbing, WANG Pan, et al. Conversion of xylan, D-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid[J]. Bioresource Technology, 2013, 130: 110-116. |
| 17 | MOUSTANI Chrysavgi, ANAGNOSTOPOULOU Eleni, KROMMYDA Kalliopi, et al. Novel aqueous-phase hydrogenation reaction of the key biorefinery platform chemical levulinic acid into γ-valerolactone employing highly active, selective and stable water-soluble ruthenium catalysts modified with nitrogen-containing ligands[J]. Applied Catalysis B: Environmental, 2018, 238: 82-92. |
| 18 | YANG Wenjing, CHENG Haiyang, ZHANG Bin, et al. Hydrogenation of levulinic acid by RuCl2(PPh3)3 in supercritical CO2: The significance of structural changes of Ru complexes via interaction with CO2 [J]. Green Chemistry, 2016, 18(11): 3370-3377. |
| 19 | XU Zhiping, LI Wenzhi, DU Zhijie, et al. Conversion of corn stalk into furfural using a novel heterogeneous strong acid catalyst in γ-valerolactone[J]. Bioresource Technology, 2015, 198: 764-771. |
| 20 | ONDA Ayumu, OCHI Takafumi, YANAGISAWA Kazumichi. Selective hydrolysis of cellulose into glucose over solid acid catalysts[J]. Green Chemistry, 2008, 10(10): 1033-1037. |
| 21 | ZHANG Luxin, TIAN Lu, SUN Ruijun, et al. Transformation of corncob into furfural by a bifunctional solid acid catalyst[J]. Bioresource Technology, 2019, 276: 60-64. |
| 22 | CUI Jinglei, TAN Jingjing, ZHU Yulei, et al. Aqueous hydrogenation of levulinic acid to 1,4-pentanediol over Mo-modified Ru/activated carbon catalyst[J]. ChemSusChem, 2018, 11(8): 1316-1320. |
| 23 | LIU Shanshan, FAN Guoli, YANG Lan, et al. Highly efficient transformation of γ-valerolactone to valerate esters over structure-controlled copper/zirconia catalysts prepared via a reduction-oxidation route[J]. Applied Catalysis A: General, 2017, 543: 180-188. |
| 24 | GONG Wanbing, CHEN Chun, FAN Ruoyu, et al. Transfer-hydrogenation of furfural and levulinic acid over supported copper catalyst[J]. Fuel, 2018, 231: 165-171. |
| 25 | 王彤, 安华良, 李芳, 等. 非均相催化剂催化5-羟甲基糠醛氢解制备2,5-二甲基呋喃研究进展[J]. 化工进展, 2021, 40(2): 824-834. |
| WANG Tong, AN Hualiang, LI Fang, et al. Research progress of the heterogeneous catalysts for 2,5-dimethylfuran synthesis via hydrogenolysis of 5-hydroxymethylfufural[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 824-834. | |
| 26 | WEI Weiqi, WU Shubin. Experimental and kinetic study of glucose conversion to levulinic acid in aqueous medium over Cr/HZSM-5 catalyst[J]. Fuel, 2018, 225: 311-321. |
| 27 | SU Hui, BI Zhihao, NI Yong, et al. One-pot degradation of cellulose into carbon dots and organic acids in its homogeneous aqueous solution[J]. Green Energy & Environment, 2019, 4(4): 391-399. |
| 28 | ABDELRAHMAN Omar ALI, HEYDEN Andreas, BOND Jesse Q. Analysis of kinetics and reaction pathways in the aqueous-phase hydrogenation of levulinic acid to form γ-valerolactone over Ru/C[J]. ACS Catalysis, 2014, 4(4): 1171-1181. |
| 29 | HU Di, XU Hong, ZENG Yongjian, et al. Selective hydrogenation of benzoic acid over bimetallic NiCo embedded in N-doped carbon[J]. AIChE Journal, 2024, 70(1): e18276. |
| 30 | PATANKAR Saurabh C, YADAV Ganapati D. Cascade engineered synthesis of γ-valerolactone, 1,4-pentanediol, and 2-methyltetrahydrofuran from levulinic acid using Pd-Cu/ZrO2 Catalyst in water as solvent[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(11): 2619-2630. |
| 31 | 蒋志伟, 刘鹏昊, 赵峻, 等. 微波热解木质生物质的研究进展[J]. 能源环境保护, 2024, 38(2): 57-66. |
| JIANG Zhiwei, LIU Penghao, ZHAO Jun, et al. Recent advances in the microwave pyrolysis of lignocellulosic biomass[J]. Energy Environmental Protection, 2024, 38(2): 57-66. | |
| 32 | ZHANG Ke, PEI Zhijian, WANG Donghai. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review[J]. Bioresource Technology, 2016, 199: 21-33. |
| 33 | PAN Hui. Synthesis of polymers from organic solvent liquefied biomass: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(7): 3454-3463. |
| 34 | ZHANG Jun, CHEN Jinzhu. Selective transfer hydrogenation of biomass-based furfural and 5-hydroxymethylfurfural over hydrotalcite-derived copper catalysts using methanol as a hydrogen donor[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 5982-5993. |
| 35 | HU Xun, WESTERHOF Roel J M, WU Liping, et al. Upgrading biomass-derived furans via acid-catalysis/hydrogenation: The remarkable difference between water and methanol as the solvent[J]. Green Chemistry, 2015, 17(1): 219-224. |
| 36 | CHANG Chun, XU Guizhuan, JIANG Xiaoxian. Production of ethyl levulinate by direct conversion of wheat straw in ethanol media[J]. Bioresource Technology, 2012, 121: 93-99. |
| 37 | 李月, 李一鸣, 张雪艳, 等. 多金属氧酸盐纳米纤维催化O2氧化5-HMF[J]. 科学通报, 2020, 65(10): 940-947. |
| LI Yue, LI Yiming, ZHANG Xueyan, et al. POMs nanofibers for the oxidation of 5-HMF with O2 [J]. Chinese Science Bulletin, 2020, 65(10): 940-947. | |
| 38 | ZHANG Yunlei, XIONG Qingang, CHEN Yao, et al. Synthesis of ceria and sulfated zirconia catalysts supported on mesoporous SBA-15 toward glucose conversion to 5-hydroxymethylfurfural in a green isopropanol-mediated system[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 1968-1979. |
| 39 | MA Yubo, WANG Lei, LI Hongyi, et al. Selective dehydration of glucose into 5-hydroxymethylfurfural by ionic liquid-ZrOCl2 in isopropanol[J]. Catalysts, 2018, 8(10): 467. |
| 40 | SHI Xian, XING Xinyi, RUAN Mengya, et al. Efficient conversion of cellulose into 5-hydroxymethylfurfural by inexpensive SO4 2-/HfO2 catalyst in a green water-tetrahydrofuran monophasic system[J]. Chemical Engineering Journal, 2023, 472: 145001. |
| 41 | Oscar OYOLA-RIVERA, HE Jiayue, HUBER George W, et al. Catalytic dehydration of levoglucosan to levoglucosenone using Brønsted solid acid catalysts in tetrahydrofuran[J]. Green Chemistry, 2019, 21(18): 4988-4999. |
| 42 | XU Hong, HU Di, YI Zixiao, et al. Solvent tuning the selective hydrogenation of levulinic acid into biofuels over Ni-metal organic framework-derived catalyst[J]. ACS Applied Energy Materials, 2019, 2(10): 6979-6983. |
| 43 | YI Zixiao, HU Di, XU Hong, et al. Metal regulating the highly selective synthesis of gamma-valerolactone and valeric biofuels from biomass-derived levulinic acid[J]. Fuel, 2020, 259: 116208. |
| 44 | BAI Yuanyuan, XIAO Lingping, SUN Runcang. Efficient hydrolyzation of cellulose in ionic liquid by novel sulfonated biomass-based catalysts[J]. Cellulose, 2014, 21(4): 2327-2336. |
| 45 | TULAPHOL Sarttrawut, HOSSAIN Md Anwar, RAHAMAN Mohammad Shahinur, et al. Direct production of levulinic acid in one pot from hemp hurd by dilute acid in ionic liquids[J]. Energy & Fuels, 2020, 34(2): 1764-1772. |
| 46 | ZHAO Haibo, HOLLADAY Johnathan E, BROWN Heather, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science, 2007, 316(5831): 1597-1600. |
| 47 | Katarína FULAJTÁROVA, Tomáš SOTÁK, HRONEC Milan, et al. Aqueous phase hydrogenation of furfural to furfuryl alcohol over Pd–Cu catalysts[J]. Applied Catalysis A: General, 2015, 502: 78-85. |
| 48 | JIANG Kun, SHENG Dong, ZHANG Zihao, et al. Hydrogenation of levulinic acid to γ-valerolactone in dioxane over mixed MgO–Al2O3 supported Ni catalyst[J]. Catalysis Today, 2016, 274: 55-59. |
| 49 | JIANG Zhicheng, Javier REMÓN, LI Tianzong, et al. A one-pot microwave-assisted NaCl-H2O/GVL solvent system for cellulose conversion to 5-hydroxymethylfurfural and saccharides with in situ separation of the products[J]. Cellulose, 2019, 26(15): 8383-8400. |
| 50 | SELVA Maurizio, GOTTARDO Marina, PEROSA Alvise. Upgrade of biomass-derived levulinic acid via Ru/C-catalyzed hydrogenation to γ-valerolactone in aqueous-organic-ionic liquids multiphase systems[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(1): 180-189. |
| 51 | LI Xiaoyun, XU Rui, YANG Jiaxin, et al. Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation[J]. Industrial Crops and Products, 2019, 130: 184-197. |
| 52 | YAN Kai, WU Guosheng, LAFLEUR Todd, et al. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 663-676. |
| 53 | LI Xiaodan, JIA Pei, WANG Tiefeng. Furfural: A promising platform compound for sustainable production of C4 and C5 chemicals[J]. ACS Catalysis, 2016, 6(11): 7621-7640. |
| 54 | 张曼, 郑智铿, 王宇辰, 等. 水滑石纳米片用于生物质衍生物电催化氧化的研究进展[J]. 科学通报, 2024, 69(16): 2203-2220. |
| ZHANG Man, ZHENG Zhikeng, WANG Yuchen, et al. Recent progress on electrocatalytic oxidation of biomass-derived chemicals over layered double hydroxides nanosheets[J]. Chinese Science Bulletin, 2024, 69(16): 2203-2220. | |
| 55 | Oktay YEMIŞ, MAZZA Giuseppe. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction[J]. Bioresource Technology, 2011, 102(15): 7371-7378. |
| 56 | LI Huiling, DENG Aojie, REN Junli, et al. A modified biphasic system for the dehydration of D-xylose into furfural using SO4 2-/TiO2-ZrO2/La3+ as a solid catalyst[J]. Catalysis Today, 2014, 234: 251-256. |
| 57 | XU Siquan, PAN Donghui, WU Yuanfeng, et al. Efficient production of furfural from xylose and wheat straw by bifunctional chromium phosphate catalyst in biphasic systems[J]. Fuel Processing Technology, 2018, 175: 90-96. |
| 58 | ZHANG Jun, LI Chengyu, HU Sheng, et al. Mechanistic insights into copper oxides catalyzed bio-based furfural hydrogenation using methanol as in situ hydrogen donor[J]. Renewable Energy, 2022, 200: 88-97. |
| 59 | ZHOU Qiaoqiao, DING Ajing, ZHANG Lei, et al. Furfural production from the lignocellulosic agro-forestry waste by solvolysis method-A technical review[J]. Fuel Processing Technology, 2024, 255: 108063. |
| 60 | HU Di, XU Hong, YI Zixiao, et al. Green CO2-assisted synthesis of mono- and bimetallic Pd/Pt nanoparticles on porous carbon fabricated from sorghum for highly selective hydrogenation of furfural[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15339-15345. |
| 61 | WEN Huiming, ZHANG Wenjun, FAN Ziyi, et al. Recent advances in furfural reduction via electro- and photocatalysis: From mechanism to catalyst design[J]. ACS Catalysis, 2023, 13(23): 15263-15289. |
| 62 | CHEN Yuanyuan, LU Tianliang, YANG Xiaomei, et al. Regulation of acid/basic properties of Zr-Beta zeolite for efficient conversion of furfural to furfuryl alcohol[J]. Molecular Catalysis, 2024, 559: 114093. |
| 63 | LI Tiefu, LIU Jiaming, LI Zipeng, et al. Continuous conversion of furfural to furfuryl alcohol by transfer hydrogenation catalyzed by copper deposited in a monolith reactor[J]. Reaction Chemistry & Engineering, 2023, 8(2): 377-388. |
| 64 | VAN PUTTEN Robert-Jan, VAN DER WAAL Jan C, DE JONG Ed, et al. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources[J]. Chemical Reviews, 2013, 113(3): 1499-1597. |
| 65 | ZHANG Jiang, WANG Zijian, CHEN Mugeng, et al. N-doped carbon layer-coated Au nanocatalyst for H2-free conversion of 5-hydroxymethylfurfural to 5-methylfurfural[J]. Chinese Journal of Catalysis, 2022, 43(8): 2212-2222. |
| 66 | YU Iris K M, TSANG Daniel C W. Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms[J]. Bioresource Technology, 2017, 238: 716-732. |
| 67 | WANG Yuchen, ZHANG Man, LIU Yaoyu, et al. Recent advances on transition-metal-based layered double hydroxides nanosheets for electrocatalytic energy conversion[J]. Advanced Science, 2023, 10(13): e2207519. |
| 68 | GUO Ruichao, ZENG Yongjian, LIN Lu, et al. CO2-assisted controllable synthesis of PdNi nanoalloys for highly selective hydrogenation of biomass-derived 5-hydroxymethylfurfural[J]. Angewandte Chemie International Edition, 2024: e202418234. |
| 69 | 徐静, 范维刚, 波波维奇·弗洛伦斯, 等. 多组分反应: 丰富生物质基平台分子高值化转化路线的新策略[J]. 有机化学, 2019, 39(8): 2131-2138. |
| XU Jing, FAN Weigang, POPOWYCZ Florence, et al. Multicomponent reactions: A new strategy for enriching the routes of value-added conversions of bio-platform molecules[J]. Chinese Journal of Organic Chemistry, 2019, 39(8): 2131-2138. | |
| 70 | ZHANG Weijie, QIAN Hengli, HOU Qidong, et al. The functional and synergetic optimization of the thermal-catalytic system for the selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran: A review[J]. Green Chemistry, 2023, 25(3): 893-914. |
| 71 | NIE Yifan, HOU Qidong, QIAN Hengli, et al. Synthesis of mesoporous sulfonated carbon from chicken bones to boost rapid conversion of 5-hydroxymethylfurfural and carbohydrates to 5-ethoxymethylfurfural[J]. Renewable Energy, 2022, 192: 279-288. |
| 72 | LIN Lu, ZENG Yongjian, ZHANG Suyu, et al. Tuning ligand-vacancies in Pd-UiO-66 to boost biofuel production from 5-hydroxymethylfurfural hydrodeoxygenation[J]. Applied Catalysis B: Environment and Energy, 2025, 361: 124592. |
| 73 | WANG Yuchen, XU Zhenhao, YAN Kai. Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules[J]. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418. |
| 74 | YAN Kai, JARVIS Cody, GU Jing, et al. Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 986-997. |
| 75 | ZHAO Rong, Jong Wook BAE. Catalytic conversion of biomass-derived levulinic acid to γ-valerolactone over phosphate modified ZrO2/SBA-15[J]. Catalysis Today, 2024, 435: 114718. |
| 76 | YE Chenlu, HU Kang, NIU Zhijuan, et al. Controllable synthesis of rhombohedral α-Fe2O3 efficient for photocatalytic degradation of bisphenol A[J]. Journal of Water Process Engineering, 2019, 27: 205-210. |
| 77 | LICURSI Domenico, ANTONETTI Claudia, FULIGNATI Sara, et al. Cascade strategy for the tunable catalytic valorization of levulinic acid and γ-valerolactone to 2-methyltetrahydrofuran and alcohols[J]. Catalysts, 2018, 8(7): 277. |
| 78 | 庄雨婷, 王建华, 向智艳, 等. 半纤维素及其衍生物转化为γ-戊内酯及其动力学研究进展[J]. 化工进展, 2022, 41(7): 3519-3533. |
| ZHUANG Yuting, WANG Jianhua, XIANG Zhiyan, et al. Research progress in preparation and kinetics of γ-valerolactone synthesis from hemicellulose and its derivatives[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3519-3533. | |
| 79 | CORMA Avelino, IBORRA Sara, VELTY Alexandra. Chemical routes for the transformation of biomass into chemicals[J]. ChemInform, 2007, 38(36): 2411-2502. |
| 80 | HAYES Daniel J. An examination of biorefining processes, catalysts and challenges[J]. Catalysis Today, 2009, 145(1/2): 138-151. |
| 81 | YAN Kai, WU Guosheng, WEN Jiali, et al. One-step synthesis of mesoporous H4SiW12O40-SiO2 catalysts for the production of methyl and ethyl levulinate biodiesel[J]. Catalysis Communications, 2013, 34: 58-63. |
| 82 | NANDIWALE Kakasaheb Y, PANDE Ashwini M, BOKADE Vijay V. One step synthesis of ethyl levulinate biofuel by ethanolysis of renewable furfuryl alcohol over hierarchical zeolite catalyst[J]. RSC Advances, 2015, 5(97): 79224-79231. |
| 83 | YAN Long, YAO Qian, FU Yao. Conversion of levulinic acid and alkyl levulinates into biofuels and high-value chemicals[J]. Green Chemistry, 2017, 19(23): 5527-5547. |
| 84 | ALSALIM Mahdi, NAJAFI CHERMAHINI Alireza, DINARI Mohammad, et al. Synthesis of carrageenan/DFNS composite and its application in the esterification of levulinic acid with alcohols[J]. Inorganic Chemistry Communications, 2024, 169: 113054. |
| 85 | YAN Kai, YANG Yiyi, CHAI Jiajue, et al. Catalytic reactions of gamma-valerolactone: A platform to fuels and value-added chemicals[J]. Applied Catalysis B: Environmental, 2015, 179: 292-304. |
| 86 | HORVÁTH István T, MEHDI Hasan, Viktória FÁBOS, et al. γ-Valerolactone—A sustainable liquid for energy and carbon-based chemicals[J]. Green Chemistry, 2008, 10(2): 238-242. |
| 87 | ZHANG Liangqing, ZHOU Ben, HONG Yonglin, et al. Efficient transformation of levulinic acid/esters to γ-valerolactone via a durable catalyst with simply tunable acid-base sites[J]. Renewable Energy, 2024, 236: 121453. |
| 88 | XU Hong, HU Di, LIN Lu, et al. MOF-derived bimetallic NiCo nanoalloys for the hydrogenation of biomass-derived levulinic acid to γ-valerolactone[J]. AIChE Journal, 2023, 69(2): e17973. |
| 89 | YU Iris K M, TSANG Daniel C W, Alex C K YIP, et al. Propylene carbonate and γ-valerolactone as green solvents enhance Sn(iv)-catalysed hydroxymethylfurfural (HMF) production from bread waste[J]. Green Chemistry, 2018, 20(9): 2064-2074. |
| 90 | SUN Peng, GAO Guang, ZHAO Zelun, et al. Stabilization of cobalt catalysts by embedment for efficient production of valeric biofuel[J]. ACS Catalysis, 2014, 4(11): 4136-4142. |
| 91 | GEBRESILLASE Mahlet N, HONG Dae Ho, LEE Jun-Hyeok, et al. Direct solvent-free selective hydrogenation of levulinic acid to valeric acid over multi-metal[Ni x Co y Mn z Al w ]-doped mesoporous silica catalysts[J]. Chemical Engineering Journal, 2023, 472: 144591. |
| 92 | LANGE Jean-Paul, PRICE Richard, AYOUB Paul M, et al. Valeric biofuels: A platform of cellulosic transportation fuels[J]. Angewandte Chemie International Edition, 2010, 122(26): 4581-4585. |
| 93 | SUN Peng, GAO Guang, ZHAO Zelun, et al. Acidity-regulation for enhancing the stability of Ni/HZSM-5 catalyst for valeric biofuel production[J]. Applied Catalysis B: Environmental, 2016, 189: 19-25. |
| 94 | WANG Hongtao, WANG Qi, WU Yushan, et al. Dual-oriented selectivity switching for highly efficient biomass upgrading via selective C-O bond activation[J]. ACS Catalysis, 2022, 12(19): 12027-12035. |
| 95 | CONTINO Francesco, DAGAUT Philippe, DAYMA Guillaume, et al. Combustion and emissions characteristics of valeric biofuels in a compression ignition engine[J]. Journal of Energy Engineering, 2014, 140(3): A4014013. |
| 96 | CHAN-THAW Carine E, MARELLI Marcello, PSARO Rinaldo, et al. New generation biofuels: γ-valerolactone into valeric esters in one pot[J]. RSC Advances, 2013, 3(5): 1302-1306. |
| [1] | 王水众, 宋国勇. 木质素选择性氢解制备高功能化单酚及其高值利用[J]. 化工进展, 2025, 44(5): 2535-2540. |
| [2] | 王嘉, 孙丹卉, 乔一凡, 范秀方, 赵立东, 贺雷, 陆安慧. 乙醇催化转化制高值化学品研究进展[J]. 化工进展, 2025, 44(5): 2587-2597. |
| [3] | 刘威, 侯雪兰, 杨贵东. 氢-氨绿色循环研究进展与展望[J]. 化工进展, 2025, 44(5): 2625-2641. |
| [4] | 宋坤莉, 肖雷, 马丹丹, 肖朋, 杨莎莎, 石建稳. 超低温氨气选择性脱硝催化剂的研究进展[J]. 化工进展, 2025, 44(4): 2028-2035. |
| [5] | 王淑媛, 尹玲玲, 高志华, 黄伟. 插层Cu比例对CuZnAl-LDHs催化剂结构及催化性能的影响[J]. 化工进展, 2025, 44(4): 2036-2044. |
| [6] | 张佩, 高莉宁, 丁思晴, 李立, 祝锡爇, 何锐. g-C3N4/TiO2异质结光催化剂的制备及其对NO的降解性能[J]. 化工进展, 2025, 44(4): 2045-2056. |
| [7] | 张绎如, 韩东梅, 马伟芳. 铁基复合卤氧化铋磁性材料强化可见光催化处理难降解有机废水研究进展[J]. 化工进展, 2025, 44(4): 2258-2273. |
| [8] | 苏晓洁, 严群, 李欣城, 薛文慧, 陈奕浩. NiCo2O4@纤蛇纹石活化过硫酸钾降解甲基橙[J]. 化工进展, 2025, 44(4): 2352-2364. |
| [9] | 陶金泉, 贾亦静, 白天瑜, 姚荣鹏, 黄文斌, 崔岩, 周亚松, 魏强. Silicalite-1分子筛的低成本合成及其MTP催化性能[J]. 化工进展, 2025, 44(3): 1550-1558. |
| [10] | 邱泽刚, 石亚斐, 李志勤. 生物质衍生芳香族含氧化合物中C—O键断裂研究进展[J]. 化工进展, 2025, 44(3): 1183-1193. |
| [11] | 佘永璐, 徐强, 罗欣怡, 聂腾飞, 郭烈锦. 反应温度对光电极表面气泡动力学及传质特性的影响[J]. 化工进展, 2025, 44(3): 1243-1252. |
| [12] | 刘江涛, 彭冲, 张永春. Zn调控Fe基催化剂催化CO2加氢制低碳烯烃[J]. 化工进展, 2025, 44(3): 1396-1405. |
| [13] | 马晓宇, 张岩, 周阿武, 李涵冰, 杨飞华, 李建荣. MOF-on-MOF复合材料制备与光催化性能的研究进展[J]. 化工进展, 2025, 44(3): 1417-1431. |
| [14] | 陈宇航, 李巧艳, 梁美生, 宋天远, 汪玥, 李思萌, 周宇璇. Sn掺杂Cu/CeZrO2/γ-Al2O3对三效催化(TWC)反应的作用:提高低温活性和抗硫性[J]. 化工进展, 2025, 44(3): 1368-1377. |
| [15] | 张馨儿, 裴刘军, 周雨蝶, 靳凯丽, 王际平. 基于TiO2的光催化剂利用太阳能裂解水制氢研究进展[J]. 化工进展, 2025, 44(3): 1298-1308. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |