化工进展 ›› 2025, Vol. 44 ›› Issue (5): 2625-2641.DOI: 10.16085/j.issn.1000-6613.2024-1744
• 可再生能源利用 • 上一篇
收稿日期:2024-10-26
修回日期:2025-01-08
出版日期:2025-05-25
发布日期:2025-05-20
通讯作者:
杨贵东
作者简介:刘威(1995—),男,博士研究生,研究方向为电催化合成氨。E-mail: LW2020@stu.xjtu.edu.cn。
基金资助:
LIU Wei(
), HOU Xuelan, YANG Guidong(
)
Received:2024-10-26
Revised:2025-01-08
Online:2025-05-25
Published:2025-05-20
Contact:
YANG Guidong
摘要:
氢-氨绿色循环是指利用氢和氨的相互转换来实现能源的存储和运输,这个过程主要包括绿氢制氨(hydrogen to ammonia,H2A)与绿氨制氢(ammonia to hydrogen,A2H)。该循环不仅有望解决传统Haber-Bosch工艺合成氨的高能耗与过量CO2排放问题,还可能为氢能产业链中高压氢气储存与运输的挑战提供可行性方案,成为贯通可再生能源、氢能、氨能和传统产业如钢铁行业的重要环节,促进资源的高效利用。在H2A过程中,当前的研究主要集中在中低温、室温条件下的合成氨工艺以期取代Haber-Bosch法,但这些工艺面临诸多尚待解决的科学挑战。此外,氢-氨绿色循环的顺利运行依赖于氨的有效能量释放,即A2H过程的有效进行,以确保氨分解为氢气和/或直接将氨转化为电力或能量。H2A与A2H互为可逆过程,全面理解氨合成与氨分解反应对于更深入与全面理解氢-氨循环十分重要。因此,本文将立足氢-氨循环,首先简要介绍氢与氨之间的关系,随后着重总结当前利用可再生能源驱动的中低温、室温条件下的H2A和A2H研究的最新进展。最后,总结了目前氢-氨绿色循环的进程及面临的挑战,并对该领域未来的发展方向进行展望。
中图分类号:
刘威, 侯雪兰, 杨贵东. 氢-氨绿色循环研究进展与展望[J]. 化工进展, 2025, 44(5): 2625-2641.
LIU Wei, HOU Xuelan, YANG Guidong. Green hydrogen-ammonia cycle: Current status and perspective[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2625-2641.
| 1 | DILLMAN K J, HEINONEN J. A ‘just’ hydrogen economy: A normative energy justice assessment of the hydrogen economy[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112648. |
| 2 | HASSANPOURYOUZBAND Aliakbar, WILKINSON Mark, Stuart HASZELDINE R. Hydrogen energy futures-foraging or farming?[J]. Chemical Society Reviews, 2024, 53(5): 2258-2263. |
| 3 | ZHANG Tongtong, URATANI Joao, HUANG Yixuan, et al. Hydrogen liquefaction and storage: Recent progress and perspectives[J]. Renewable and Sustainable Energy Reviews, 2023, 176: 113204. |
| 4 | ANDERSSON Joakim, Stefan GRÖNKVIST. Large-scale storage of hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11901-11919. |
| 5 | VALERA-MEDINA A, XIAO H, OWEN-JONES M, et al. Ammonia for power[J]. Progress in Energy and Combustion Science, 2018, 69: 63-102. |
| 6 | ERFANI Navid, BAHARUDIN Luqmanulhakim, WATSON Matthew. Recent advances and intensifications in Haber-Bosch ammonia synthesis process[J]. Chemical Engineering and Processing: Process Intensification, 2024, 204: 109962. |
| 7 | MACFARLANE Douglas R, CHEREPANOV Pavel V, CHOI Jaecheol, et al. A roadmap to the ammonia economy[J]. Joule, 2020, 4(6): 1186-1205. |
| 8 | LUCENTINI Ilaria, Xènia GARCIA, VENDRELL Xavier, et al. Review of the decomposition of ammonia to generate hydrogen[J]. Industrial & Engineering Chemistry Research, 2021, 60(51): 18560-18611. |
| 9 | MASHHADIMOSLEM Hossein, SAFARZADEH KHOSROWSHAHI Mobin, DELPISHEH Mostafa, et al. Green ammonia to Hydrogen: Reduction and oxidation catalytic processes[J]. Chemical Engineering Journal, 2023, 474: 145661. |
| 10 | JIANG Lilong, FU Xianzhi. An ammonia-hydrogen energy roadmap for carbon neutrality: Opportunity and challenges in China[J]. Engineering, 2021, 7(12): 1688-1691. |
| 11 | HOU Xuelan, LI Yiyang, ZHANG Hang, et al. Black titanium oxide: Synthesis, modification, characterization, physiochemical properties, and emerging applications for energy conversion and storage, and environmental sustainability[J]. Chemical Society Reviews, 2024, 53(21): 10660-10708. |
| 12 | ZHANG Shuai, ZHAO Yunxuan, SHI Run, et al. Photocatalytic ammonia synthesis: Recent progress and future[J]. EnergyChem, 2019, 1(2): 100013. |
| 13 | SHI Yonghui, ZHAO Zhanfeng, YANG Dong, et al. Engineering photocatalytic ammonia synthesis[J]. Chemical Society Reviews, 2023, 52(20): 6938-6956. |
| 14 | WANG Miao, KHAN Mohd A, MOHSIN Imtinan, et al. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes?[J]. Energy & Environmental Science, 2021, 14(5): 2535-2548. |
| 15 | Dimitrij JEŠIĆ, POMEROY Brett, KAMAL Khaja Mohaideen, et al. Photo- and photoelectrocatalysis in nitrogen reduction reactions to ammonia: Interfaces, mechanisms, and modeling simulations[J]. Advanced Energy and Sustainability Research, 2024,5(9): 2400083. |
| 16 | VAN DER HAM Cornelis J M, KOPER Marc T M, HETTERSCHEID Dennis G H. Challenges in reduction of dinitrogen by proton and electron transfer[J]. Chemical Society Reviews, 2014, 43(15): 5183-5191. |
| 17 | Egill SKÚLASON, BLIGAARD Thomas, Sigrídur GUDMUNDSDÓTTIR, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Physical Chemistry Chemical Physics, 2012, 14(3): 1235-1245. |
| 18 | LIU Huazhang. Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge[J]. Chinese Journal of Catalysis, 2014, 35(10): 1619-1640. |
| 19 | CHATTERJEE Studipta, PARSAPUR Rajesh Kumar, HUANG Kuowei. Limitations of ammonia as a hydrogen energy carrier for the transportation sector[J]. ACS Energy Letters, 2021, 6(12): 4390-4394. |
| 20 | CAMELI Fabio, KOUROU Afroditi, ROSA Victor, et al. Conceptual process design and technoeconomic analysis of an e-ammonia plant: Green H2 and cryogenic air separation coupled with Haber-Bosch process[J]. International Journal of Hydrogen Energy, 2024, 49: 1416-1425. |
| 21 | LEE Boreum, WINTER Lea R, LEE Hyunjun, et al. Pathways to a green ammonia future[J]. ACS Energy Letters, 2022, 7(9): 3032-3038. |
| 22 | LEE Boreum, Dongjun LIM, LEE Hyunjun, et al. Which water electrolysis technology is appropriate? : Critical insights of potential water electrolysis for green ammonia production[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110963. |
| 23 | SCHRAUZER G N, GUTH T D. Photolysis of water and photoreduction of nitrogen on titanium dioxide[J]. Journal of the American Chemical Society, 1977, 99(22): 7189-7193. |
| 24 | XIE Xiaoying, XIAO Pin, FANG Weihai, et al. Probing photocatalytic nitrogen reduction to ammonia with water on the rutile TiO2 (110) surface by first-principles calculations[J]. ACS Catalysis, 2019, 9(10): 9178-9187. |
| 25 | HIRAKAWA Hiroaki, HASHIMOTO Masaki, SHIRAISHI Yasuhiro, et al. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide[J]. Journal of the American Chemical Society, 2017, 139(31): 10929-10936. |
| 26 | LIU Chuangwei, HAO Derek, YE Jin, et al. Knowledge-driven design and lab-based evaluation of B-doped TiO2 photocatalysts for ammonia synthesis[J]. Advanced Energy Materials, 2023, 13(8): 2204126. |
| 27 | ZHAO Yunxuan, ZHAO Yufei, SHI Run, et al. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm[J]. Advanced Materials, 2019, 31(16): 1806482. |
| 28 | NAIR Radhika V, GAYATHRI P K, GUMMALURI Venkata Siva, et al. Large bandgap narrowing in rutile TiO2 aimed towards visible light applications and its correlation with vacancy-type defects history and transformation[J]. Journal of Physics D: Applied Physics, 2018, 51(4): 045107. |
| 29 | XIA Mengyang, CHONG Ben, GONG Xiangjiao, et al. Ti2+ site-promoted N≡≡N bond activation in LaTiO3– x nanosheets for nitrogen photofixation[J]. ACS Catalysis, 2023, 13(18): 12350-12362. |
| 30 | SONG Qian, SUN Congcong, WANG Zheng, et al. Directed charge transfer in all solid state heterojunction of Fe doped MoS2 and C-TiO2 nanosheet for enhanced nitrogen photofixation[J]. Materials Today Physics, 2021, 21: 100563. |
| 31 | LI Hao, SHANG Jian, AI Zhihui, et al. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets[J]. Journal of the American Chemical Society, 2015, 137(19): 6393-6399. |
| 32 | ZHAO Yunxuan, ZHENG Lirong, SHI Run, et al. Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N2 reduction to NH3 [J]. Advanced Energy Materials, 2020, 10(34): 2002199. |
| 33 | LI Lu, WANG Yichen, VANKA Srinivas, et al. Nitrogen photofixation over Ⅲ-nitride nanowires assisted by ruthenium clusters of low atomicity[J]. Angewandte Chemie International Edition, 2017, 56(30): 8701-8705. |
| 34 | GUAN Yeqin, WEN Hong, CUI Kaixun, et al. Light-driven ammonia synthesis under mild conditions using lithium hydride[J]. Nature Chemistry, 2024, 16(3): 373-379. |
| 35 | REN Yongwen, LI Shaofeng, YU Chang, et al. NH3 electrosynthesis from N2 molecules: Progresses, challenges, and future perspectives[J]. Journal of the American Chemical Society, 2024, 146(10): 6409-6421. |
| 36 | DENG Jiao, IÑIGUEZ Jesus A, LIU Chong. Electrocatalytic nitrogen reduction at low temperature[J]. Joule, 2018, 2(5): 846-856. |
| 37 | LIU Sisi, QIAN Tao, WANG Mengfan, et al. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis[J]. Nature Catalysis, 2021, 4: 322-331. |
| 38 | REN Yongwen, YU Chang, HAN Xiaotong, et al. Methanol-mediated electrosynthesis of ammonia[J]. ACS Energy Letters, 2021, 6(11): 3844-3850. |
| 39 | HU Qikun, YANG Ke, PENG Ouwen, et al. Ammonia electrosynthesis from nitrate using a ruthenium-copper cocatalyst system: A full concentration range study[J]. Journal of the American Chemical Society, 2024, 146(1): 668-676. |
| 40 | CHEN Fengyang, ELGAZZAR Ahmad, PECAUT Stephanie, et al. Electrochemical nitrate reduction to ammonia with cation shuttling in a solid electrolyte reactor[J]. Nature Catalysis, 2024, 7: 1032-1043. |
| 41 | FICHTER Fr, GIRARD Pierre, ERLENMEYER Hans. Elektrolytische bindung von komprimiertem stickstoff bei gewöhnlicher temperatur[J]. Helvetica Chimica Acta, 1930, 13(6): 1228-1236. |
| 42 | MCENANEY Joshua M, SINGH Aayush R, SCHWALBE Jay A, et al. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure[J]. Energy & Environmental Science, 2017, 10(7): 1621-1630. |
| 43 | TSUNETO Akira, KUDO Akihiko, SAKATA Tadayoshi. Efficient electrochemical reduction of N2 to NH3 catalyzed by lithium[J]. Chemistry Letters, 1993, 22(5): 851-854. |
| 44 | DU Hoang-Long, CHATTI Manjunath, HODGETTS Rebecca Y, et al. Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency[J]. Nature, 2022, 609(7928): 722-727. |
| 45 | LI Shaofeng, ZHOU Yuanyuan, LI Katja, et al. Electrosynthesis of ammonia with high selectivity and high rates via engineering of the solid-electrolyte interphase[J]. Joule, 2022, 6(9): 2083-2101. |
| 46 | FU Xianbiao, PEDERSEN Jakob B, ZHOU Yuanyuan, et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation[J]. Science, 2023, 379(6633): 707-712. |
| 47 | LI Shaofeng, ZHOU Yuanyuan, FU Xianbiao, et al. Long-term continuous ammonia electrosynthesis[J]. Nature, 2024, 629(8010): 92-97. |
| 48 | Michael GRÄTZEL. Photoelectrochemical cells[J]. Nature, 2001, 414(6861): 338-344. |
| 49 | Muataz ALI, ZHOU Fengling, CHEN Kun, et al. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon[J]. Nature Communications, 2016, 7: 11335. |
| 50 | ZHENG Jianyun, Yanhong LYU, QIAO Man, et al. Photoelectrochemical synthesis of ammonia on the aerophilic-hydrophilic heterostructure with 37.8% efficiency[J]. Chem, 2019, 5(3): 617-633. |
| 51 | PERAMAIAH Karthik, RAMALINGAM Vinoth, FU Huichun, et al. Optically and electrocatalytically decoupled Si photocathodes with a porous carbon nitride catalyst for nitrogen reduction with over 61.8% faradaic efficiency[J]. Advanced Materials, 2021, 33(18): e2100812. |
| 52 | JANG Youn Jeong, LINDBERG Ann E, LUMLEY Margaret A, et al. Photoelectrochemical nitrogen reduction to ammonia on cupric and cuprous oxide photocathodes[J]. ACS Energy Letters, 2020, 5(6): 1834-1839. |
| 53 | HAN Gaofeng, LI Feng, CHEN Zhiwen, et al. Mechanochemistry for ammonia synthesis under mild conditions[J]. Nature Nanotechnology, 2021, 16(3): 325-330. |
| 54 | KIM Jong-Hoon, DAI Tianyi, YANG Mihyun, et al. Achieving volatile potassium promoted ammonia synthesis via mechanochemistry[J]. Nature Communications, 2023, 14(1): 2319. |
| 55 | WINTER Lea R, CHEN Jingguang G. N2 fixation by plasma-activated processes[J]. Joule, 2021, 5(2): 300-315. |
| 56 | HOLLEVOET Lander, JARDALI Fatme, GORBANEV Yury, et al. Towards green ammonia synthesis through plasma-driven nitrogen oxidation and catalytic reduction[J]. Angewandte Chemie International Edition, 2020, 59(52): 23825-23829. |
| 57 | LIU Wei, XIA Mengyang, ZHAO Chao, et al. Efficient ammonia synthesis from the air using tandem non-thermal plasma and electrocatalysis at ambient conditions[J]. Nature Communications, 2024, 15(1): 3524. |
| 58 | MENG Zhe, YAO Jiaxin, SUN Changning, et al. Efficient ammonia production beginning from enhanced air activation[J]. Advanced Energy Materials, 2022, 12(38): 2202105. |
| 59 | LU Xiuyuan, ZHANG Jing, CHEN Wenkai, et al. Kinetic and mechanistic analysis of NH3 decomposition on Ru(0001), Ru(111) and Ir(111) surfaces[J]. Nanoscale Advances, 2021, 3(6): 1624-1632. |
| 60 | SUN Shangcong, JIANG Qiuqiao, ZHAO Dongyue, et al. Ammonia as hydrogen carrier: Advances in ammonia decomposition catalysts for promising hydrogen production[J]. Renewable and Sustainable Energy Reviews, 2022, 169: 112918. |
| 61 | BRUNAUER Stephen, LOVE Katharinf S, KEENAN Robert G. Adsorption of nitrogen and the mechanism of ammonia decomposition over iron catalysts[J]. Journal of the American Chemical Society, 1942, 64(4): 751-758. |
| 62 | PETERS Stefan, ABDEL-MAGEED Ali M, WOHLRAB Sebastian. Thermocatalytic ammonia decomposition-status and current research demands for a carbon-free hydrogen fuel technology[J]. ChemCatChem, 2023, 15(2): e202201185. |
| 63 | SU Tianxu, GUAN Bin, ZHOU Jiefei, et al. Review on Ru-based and Ni-based catalysts for ammonia decomposition: Research status, reaction mechanism, and perspectives[J]. Energy & Fuels, 2023, 37(12): 8099-8127. |
| 64 | FANG Huihuang, WU Simson, AYVALI Tugce, et al. Dispersed surface Ru ensembles on MgO(111) for catalytic ammonia decomposition[J]. Nature Communications, 2023, 14(1): 647. |
| 65 | GANLEY J C, THOMAS F S, SEEBAUER E G, et al. A priori catalytic activity correlations: The difficult case of hydrogen production from ammonia[J]. Catalysis Letters, 2004, 96(3): 117-122. |
| 66 | YAO Yonggang, LIU Zhenyu, XIE Pengfei, et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts[J]. Science Advances, 2020, 6(11): eaaz0510. |
| 67 | XIE Pengfei, YAO Yonggang, HUANG Zhennan, et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts[J]. Nature Communications, 2019, 10(1): 4011. |
| 68 | QIU Yu, FU Enkang, GONG Feng, et al. Catalyst support effect on ammonia decomposition over Ni/MgAl2O4 towards hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(8): 5044-5052. |
| 69 | NAGAOKA Katsutoshi, EBOSHI Takaaki, TAKEISHI Yuma, et al. Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst[J]. Science Advances, 2017, 3(4): e1602747. |
| 70 | WU Simson, TSANG Shik Chi Edman. Renewable N-cycle catalysis[J]. Trends in Chemistry, 2021, 3(8): 660-673. |
| 71 | 王中华, 郑淞生, 姚育栋, 等. 电催化分解氨制氢研究进展[J]. 化工学报, 2022, 73(3): 1008-1021. |
| WANG Zhonghua, ZHENG Songsheng, YAO Yudong, et al. Research progress on electrocatalytic decomposition of ammonia for hydrogen production[J]. CIESC Journal, 2022, 73(3): 1008-1021. | |
| 72 | LITTLE Daniel J, SMITH III, Milton R, HAMANN Thomas W. Electrolysis of liquid ammonia for hydrogen generation[J]. Energy & Environmental Science, 2015, 8(9): 2775-2781. |
| 73 | HANADA Nobuko, HINO Satoshi, ICHIKAWA Takayuki, et al. Hydrogen generation by electrolysis of liquid ammonia[J]. Chemical Communications, 2010, 46(41): 7775-7777. |
| 74 | GOSHOME Kiyotaka, YAMADA Takahiro, MIYAOKA Hiroki, et al. High compressed hydrogen production via direct electrolysis of liquid ammonia[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14529-14534. |
| 75 | 姚育栋, 王中华, 林志彬, 等. Pt-Ir共沉积电位对电解氨水制氢的性能影响[J]. 化工学报, 2020, 71(8): 3780-3788. |
| YAO Yudong, WANG Zhonghua, LIN Zhibin, et al. Influences of Pt-Ir electro-codeposition potentials on hydrogen production with ammonia electrolysis[J]. CIESC Journal, 2020, 71(8): 3780-3788. | |
| 76 | Dae-Kwang LIM, PLYMILL Austin B, PAIK Haemin, et al. Solid acid electrochemical cell for the production of hydrogen from ammonia[J]. Joule, 2020, 4(11): 2338-2347. |
| 77 | SALEHABADI Ali, ZANGANEH Jafar, MOGHTADERI Behdad. Mixed metal oxides in catalytic ammonia cracking process for green hydrogen production: A review[J]. International Journal of Hydrogen Energy, 2024, 63: 828-843. |
| 78 | ZHANG Shijie, HE Zuoli, LI Xuan, et al. Building heterogeneous nanostructures for photocatalytic ammonia decomposition[J]. Nanoscale Advances, 2020, 2(9): 3610-3623. |
| 79 | YUZAWA Hayato, MORI Takamasa, ITOH Hideaki, et al. Reaction mechanism of ammonia decomposition to nitrogen and hydrogen over metal loaded titanium oxide photocatalyst[J]. The Journal of Physical Chemistry C, 2012, 116(6): 4126-4136. |
| 80 | WANG Bingzheng, KONG Hui, WANG Hongsheng, et al. Kinetic and thermodynamic analyses of mid/low-temperature ammonia decomposition in solar-driven hydrogen permeation membrane reactor[J]. International Journal of Hydrogen Energy, 2019, 44(49): 26874-26887. |
| 81 | OBATA Kazutaka, KISHISHITA Kensuke, OKEMOTO Atsushi, et al. Photocatalytic decomposition of NH3 over TiO2 catalysts doped with Fe[J]. Applied Catalysis B: Environmental, 2014, 160: 200-203. |
| 82 | VIKRANT Kumar, KIM Ki-Hyun, DONG Fan, et al. Photocatalytic platforms for removal of ammonia from gaseous and aqueous matrixes: Status and challenges[J]. ACS Catalysis, 2020, 10(15): 8683-8716. |
| 83 | ABDUL RAZAK Syaahidah, MAHADI Abdul Hanif, THOTAGAMUGE Roshan, et al. Photocatalytic hydrogen gas production from NH3 and alkylamine: Route to zero carbon emission energy[J]. Catalysis Letters, 2023, 153(4): 1013-1023. |
| 84 | LI Yanan, CHEN Zhaoyang, BAO Shujuan, et al. Ultrafine TiO2 encapsulated in nitrogen-doped porous carbon framework for photocatalytic degradation of ammonia gas[J]. Chemical Engineering Journal, 2018, 331: 383-388. |
| 85 | JUNG Sang-Chul, CHUNG Kyong-Hwan, CHOI Jaewook, et al. Photocatalytic hydrogen production using liquid phase plasma from ammonia water over metal ion-doped TiO2 photocatalysts[J]. Catalysis Today, 2022, 397: 165-172. |
| 86 | LIN Jingkai, WANG Yantao, TIAN Wenjie, et al. Macroporous carbon-nitride-supported transition-metal single-atom catalysts for photocatalytic hydrogen production from ammonia splitting[J]. ACS Catalysis, 2023, 13(17): 11711-11722. |
| 87 | LI Fang, SUN Liwen, LIU Yanbiao, et al. A ClO-mediated photoelectrochemical filtration system for highly-efficient and complete ammonia conversion[J]. Journal of Hazardous Materials, 2020, 400: 123246. |
| 88 | NAYA Shin-ichi, TERANISHI Miwako, FUJISHIMA Musashi, et al. Generation of plasmonic and chemical hot spots near the reaction sites in solar-driven photoelectrochemical ammonia splitting[J]. ACS Electrochemistry, 2025, 1(1): 82-92. |
| 89 | ELYSABETH Tiur, MULIA Kamarza, IBADURROHMAN Muhammad, et al. A comparative study of CuO deposition methods on titania nanotube arrays for photoelectrocatalytic ammonia degradation and hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(53): 26873-26885. |
| 90 | XIA Chengkai, LI Yuankai, KIM Heeho, et al. A highly activated iron phosphate over-layer for enhancing photoelectrochemical ammonia decomposition[J]. Journal of Hazardous Materials, 2021, 408: 124900. |
| 91 | LI Jinglin, SHENG Bowen, CHEN Yiqing, et al. Utilizing full-spectrum sunlight for ammonia decomposition to hydrogen over GaN nanowires-supported Ru nanoparticles on silicon[J]. Nature Communications, 2024, 15(1): 7393. |
| 92 | YUAN Yigao, ZHOU Linan, ROBATJAZI Hossein, et al. Earth-abundant photocatalyst for H2 generation from NH3 with light-emitting diode illumination[J]. Science, 2022, 378(6622): 889-893. |
| 93 | YI Yanhui, WANG Li, GUO Yanjun, et al. Plasma-assisted ammonia decomposition over Fe-Ni alloy catalysts for CO x -Free hydrogen[J]. AIChE Journal, 2019, 65(2): 691-701. |
| 94 | SEYFELI Rukan CAN, VARISLI Dilek. Ammonia decomposition reaction to produce CO x -free hydrogen using carbon supported cobalt catalysts in microwave heated reactor system[J]. International Journal of Hydrogen Energy, 2020, 45(60): 34867-34878. |
| [1] | 王婉泽, 丁军, 闫煦, 陈国强. 基于嗜盐底盘的可再生资源利用与生物制造[J]. 化工进展, 2025, 44(5): 2421-2428. |
| [2] | 王水众, 宋国勇. 木质素选择性氢解制备高功能化单酚及其高值利用[J]. 化工进展, 2025, 44(5): 2535-2540. |
| [3] | 王嘉, 孙丹卉, 乔一凡, 范秀方, 赵立东, 贺雷, 陆安慧. 乙醇催化转化制高值化学品研究进展[J]. 化工进展, 2025, 44(5): 2587-2597. |
| [4] | 高建刚, 姜亚鹏, 包宝青, 王书琦, 崔书明. 绿氢转化制绿色甲醇与绿氨[J]. 化工进展, 2025, 44(4): 1987-1997. |
| [5] | 宋坤莉, 肖雷, 马丹丹, 肖朋, 杨莎莎, 石建稳. 超低温氨气选择性脱硝催化剂的研究进展[J]. 化工进展, 2025, 44(4): 2028-2035. |
| [6] | 王淑媛, 尹玲玲, 高志华, 黄伟. 插层Cu比例对CuZnAl-LDHs催化剂结构及催化性能的影响[J]. 化工进展, 2025, 44(4): 2036-2044. |
| [7] | 张佩, 高莉宁, 丁思晴, 李立, 祝锡爇, 何锐. g-C3N4/TiO2异质结光催化剂的制备及其对NO的降解性能[J]. 化工进展, 2025, 44(4): 2045-2056. |
| [8] | 张绎如, 韩东梅, 马伟芳. 铁基复合卤氧化铋磁性材料强化可见光催化处理难降解有机废水研究进展[J]. 化工进展, 2025, 44(4): 2258-2273. |
| [9] | 苏晓洁, 严群, 李欣城, 薛文慧, 陈奕浩. NiCo2O4@纤蛇纹石活化过硫酸钾降解甲基橙[J]. 化工进展, 2025, 44(4): 2352-2364. |
| [10] | 邱泽刚, 石亚斐, 李志勤. 生物质衍生芳香族含氧化合物中C—O键断裂研究进展[J]. 化工进展, 2025, 44(3): 1183-1193. |
| [11] | 佘永璐, 徐强, 罗欣怡, 聂腾飞, 郭烈锦. 反应温度对光电极表面气泡动力学及传质特性的影响[J]. 化工进展, 2025, 44(3): 1243-1252. |
| [12] | 刘江涛, 彭冲, 张永春. Zn调控Fe基催化剂催化CO2加氢制低碳烯烃[J]. 化工进展, 2025, 44(3): 1396-1405. |
| [13] | 马晓宇, 张岩, 周阿武, 李涵冰, 杨飞华, 李建荣. MOF-on-MOF复合材料制备与光催化性能的研究进展[J]. 化工进展, 2025, 44(3): 1417-1431. |
| [14] | 陶金泉, 贾亦静, 白天瑜, 姚荣鹏, 黄文斌, 崔岩, 周亚松, 魏强. Silicalite-1分子筛的低成本合成及其MTP催化性能[J]. 化工进展, 2025, 44(3): 1550-1558. |
| [15] | 陈宇航, 李巧艳, 梁美生, 宋天远, 汪玥, 李思萌, 周宇璇. Sn掺杂Cu/CeZrO2/γ-Al2O3对三效催化(TWC)反应的作用:提高低温活性和抗硫性[J]. 化工进展, 2025, 44(3): 1368-1377. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |