化工进展 ›› 2025, Vol. 44 ›› Issue (5): 2598-2624.DOI: 10.16085/j.issn.1000-6613.2024-1826
• 可再生能源利用 • 上一篇
李白茹1(
), 方志敏1, 王爱丽1, 罗龙2, 张罗正1(
), 李绿洲1, 丁建宁1(
)
收稿日期:2024-11-10
修回日期:2025-01-28
出版日期:2025-05-25
发布日期:2025-05-20
通讯作者:
张罗正,丁建宁
作者简介:李白茹(1989—),女,博士,讲师,硕士生导师,研究方向为大面积钙钛矿太阳能电池及其叠层电池、组件。E-mail:libairu@yzu.edu.cn。
基金资助:
LI Bairu1(
), FANG Zhimin1, WANG Aili1, LUO Long2, ZHANG Luozheng1(
), LI Lvzhou1, DING Jianning1(
)
Received:2024-11-10
Revised:2025-01-28
Online:2025-05-25
Published:2025-05-20
Contact:
ZHANG Luozheng, DING Jianning
摘要:
作为第三代新兴太阳能电池的代表,钙钛矿太阳能电池自诞生起就发展迅速,其小面积器件效率已经达到26.7%的高水平。本文系统性地回顾了钙钛矿太阳能电池的最新研究进展,涵盖了单结和叠层结构的最新发展,以及其产业化和空间应用潜力。首先,介绍了单结钙钛矿太阳能电池的不同带隙特性,包括常规带隙、宽带隙和窄带隙钙钛矿材料,分析了它们在光吸收和能量转换效率方面的优势与挑战。其次,探讨了钙钛矿基叠层太阳能电池的多种设计,包括钙钛矿-晶硅叠层电池和全钙钛矿叠层电池,强调了叠层结构在提高光电转换效率和拓宽应用范围方面的潜力。在产业化方面,本文分析了大面积钙钛矿太阳能模组的光伏性能和制备技术的发展,展示了这一领域的商业化进程及其面临的技术和市场挑战。同时,本文还关注了钙钛矿太阳能电池在空间应用中的前景,强调其在极端环境条件下的可靠性和效率。最后,总结了钙钛矿太阳能电池的当前成就和未来展望,提出了持续研发和技术突破对推动这一领域发展的重要性。随着技术的不断进步,钙钛矿太阳能电池有望在可再生能源领域发挥更大作用,为全球能源转型贡献力量。
中图分类号:
李白茹, 方志敏, 王爱丽, 罗龙, 张罗正, 李绿洲, 丁建宁. 钙钛矿太阳能电池研究进展[J]. 化工进展, 2025, 44(5): 2598-2624.
LI Bairu, FANG Zhimin, WANG Aili, LUO Long, ZHANG Luozheng, LI Lvzhou, DING Jianning. Research progress in perovskite solar cells[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2598-2624.
| 55 | RAZA Ehsan, AHMAD Zubair. Review on two-terminal and four-terminal crystalline-silicon/perovskite tandem solar cells; progress, challenges, and future perspectives[J]. Energy Reports, 2022, 8: 5820-5851. |
| 56 | Jin Hyuck HEO, Sang Hyuk IM. CH3NH3PbBr3-CH3NH3PbI3 perovskite-perovskite tandem solar cells with exceeding 2.2 V open circuit voltage[J]. Advanced Materials, 2015, 28(25): 5121-5125. |
| 57 | Jaekeun LIM, PARK Nam-Gyu, SEOK Sang Il, et al. All-perovskite tandem solar cells: From fundamentals to technological progress[J]. Energy & Environmental Science, 2024, 17(13): 4390-4425. |
| 58 | YUAN Jin, JIANG Yuanzhi, HE Tingwei, et al. Two-dimensional perovskite capping layer for stable and efficient tin-lead perovskite solar cells[J]. Science China Chemistry, 2019, 62(5): 629-636. |
| 59 | ZHANG Jiawei, YIN Xingtian, IQBAL Shoaib, et al. All-perovskite tandem solar cells: Rapid development of thin film photovoltaic technology[J]. Advanced Sustainable Systems, 2023, 7(10): 2300188. |
| 60 | YU Zhenhua, YANG Zhibin, NI Zhenyi, et al. Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells[J]. Nature Energy, 2020, 5: 657-665. |
| 61 | WANG Yurui, ZHANG Mei, XIAO Ke, et al. Recent progress in developing efficient monolithic all-perovskite tandem solar cells[J]. Journal of Semiconductors, 2020, 41(5): 051201. |
| 62 | CHEN Chunchao, Sang-Hoon BAE, CHANG Wei-Hsuan, et al. Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process[J]. Materials Horizons, 2015, 2(2): 203-211. |
| 63 | YUAN Jun, ZHANG Yunqiang, ZHOU Liuyang, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core[J]. Joule, 2019, 3(4): 1140-1151. |
| 64 | CHEN Xu, JIA Ziyan, CHEN Zeng, et al. Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers[J]. Joule, 2020, 4(7): 1594-1606. |
| 65 | BRINKMANN K O, BECKER T, ZIMMERMANN F, et al. Perovskite-organic tandem solar cells with indium oxide interconnect[J]. Nature, 2022, 604(7905): 280-286. |
| 66 | JIANG Xin, QIN Shucheng, MENG Lei, et al. Isomeric diammonium passivation for perovskite-organic tandem solar cells[J]. Nature, 2024, 635(8040): 860-866. |
| 67 | LANG Felix, Marko JOŠT, FROHNA Kyle, et al. Proton radiation hardness of perovskite tandem photovoltaics[J]. Joule, 2020, 4(5): 1054-1069. |
| 68 | TODOROV Teodor, GERSHON Talia, GUNAWAN Oki, et al. Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering[J]. Advanced Energy Materials, 2015, 5(23): 1500799. |
| 69 | BAILIE Colin D, Greyson CHRISTOFORO M, MAILOA Jonathan P, et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS[J]. Energy & Environmental Science, 2015, 8(3): 956-963. |
| 70 | TANG Liting, ZENG Li, LUO Jun, et al. All-round passivation strategy yield flexible perovskite/CuInGaSe2 tandem solar cells with efficiency exceeding 26.5%[J]. Advanced Materials, 2024, 36(28): 2402480. |
| 71 | ZHU Pengchen, CHEN Chuanlu, DAI Jiaqi, et al. Toward the commercialization of perovskite solar modules[J]. Advanced Materials, 2024, 36(15): 2307357. |
| 72 | KHORASANI Azam, MOHAMADKHANI Fateme, MARANDI Maziar, et al. Opportunities, challenges, and strategies for scalable deposition of metal halide perovskite solar cells and modules[J]. Advanced Energy and Sustainability Research, 2024, 5(7): 2470017. |
| 73 | DENG Yehao, XU Shuang, CHEN Shangshang, et al. Defect compensation in formamidinium-caesium perovskites for highly efficient solar mini-modules with improved photostability[J]. Nature Energy, 2021, 6: 633-641. |
| 74 | BU Tongle, LI Jing, LI Hengyi, et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules[J]. Science, 2021, 372(6548): 1327-1332. |
| 75 | DING Yong, DING Bin, KANDA Hiroyuki, et al. Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules[J]. Nature Nanotechnology, 2022, 17: 598-605. |
| 76 | DING Bin, DING Yong, PENG Jun, et al. Dopant-additive synergism enhances perovskite solar modules[J]. Nature, 2024, 628(8007): 299-305. |
| 77 | XU Yibo, ZHOU Chenguang, LI Xinzhu, et al. Equally efficient perovskite solar cells and modules fabricated via n‐ethyl‐2‐pyrrolidone optimized vacuum‐flash[J]. Small Methods, 2024, 8(12): 2400428. |
| 78 | REN Ningyu, TAN Liguo, LI Minghao, et al. 25%-Efficiency flexible perovskite solar cells via controllable growth of SnO2 [J]. Energy, 2024, 3(1): 39-45. |
| 79 | TIAN Ruijia, ZHOU Shujing, MENG Yuanyuan, et al. Material and device design of flexible perovskite solar cells for next-generation power supplies[J]. Advanced Material, 2024, 36(37): 2470297. |
| 80 | TAHERI Babak, DE ROSSI Francesca, LUCARELLI Giulia, et al. Laser-scribing optimization for sprayed SnO2-based perovskite solar modules on flexible plastic substrates[J]. ACS Applied Energy Materials, 2021, 4(5): 4507-4518. |
| 81 | YANG Xia, YANG Hanjun, SU Meng, et al. Scalable flexible perovskite solar cells based on a crystalline and printable template with intelligent temperature sensitivity[J]. Solar RRL, 2022, 6(4): 2100991. |
| 82 | XU Yibo, FEI Fei, DONG Xu, et al. Uniform coverage functional layers enable high‐efficient flexible perovskite solar modules with an outstanding fill factor[J]. Solar RRL, 2023, 7(16): 2300283. |
| 83 | XU Wenzhan, CHEN Bo, ZHANG Zhao, et al. Multifunctional entinostat enhances the mechanical robustness and efficiency of flexible perovskite solar cells and minimodules[J]. Nature Photonics, 2024, 18: 379-387. |
| 84 | AGRESTI Antonio, DI GIACOMO Francesco, PESCETELLI Sara, et al. Scalable deposition techniques for large-area perovskite photovoltaic technology: A multi-perspective review[J]. Nano Energy, 2024, 122: 109317. |
| 85 | DENG Yehao, ZHENG Xiaopeng, BAI Yang, et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules[J]. Nature Energy, 2018, 3: 560-566. |
| 86 | YANG Zhichun, ZHANG Wenjun, WU Shaohang, et al. Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module[J]. Science Advances, 2021, 7(18): eabg3749. |
| 87 | KIM Young Yun, YANG Tae-Youl, SUHONEN Riikka, et al. Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window[J]. Nature Communications, 2020, 11(1): 5146. |
| 88 | LIU Jiale, CHEN Xiayan, CHEN Kaizhong, et al. Electron injection and defect passivation for high-efficiency mesoporous perovskite solar cells[J]. Science, 2024, 383(6688): 1198-1204. |
| 89 | LUO Long, ZHANG Yulong, CHAI Nianyao, et al. Large-area perovskite solar cells with Cs x FA1- x PbI3- y Br y thin films deposited by a vapor-solid reaction method[J]. Journal of Materials Chemistry A, 2018, 6(42): 21143-21148. |
| 90 | LUO Long, KU Zhiliang, LI Weixi, et al. 19.59% Efficiency from Rb0.04-Cs0.14FA0.86Pb(Br y I1- y )3 perovskite solar cells made by vapor-solid reaction technique[J]. Science Bulletin, 2021, 66(10): 962-964. |
| 91 | KOSASIH Felix Utama, ERDENEBILEG Enkhtur, MATHEWS Nripan, et al. Thermal evaporation and hybrid deposition of perovskite solar cells and mini-modules[J]. Joule, 2022, 6(12): 2692-2734. |
| 92 | LI Xiong, BI Dongqin, YI Chenyi, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science, 2016, 353(6294): 58-62. |
| 93 | BU Tongle, LIU Xueping, LI Jing, et al. Dynamic antisolvent engineering for spin coating of 10 x 10cm2 perovskite solar module approaching 18%[J]. Solar RRL, 2020, 4(2): 1900263. |
| 94 | ZHANG Zongbao, JI Ran, JIA Xiangkun, et al. Semitransparent perovskite solar cells with an evaporated ultra—Thin perovskite absorber [J]. Advanced Functional Materials, 2024, 34(50): 2307471. |
| 95 | TANG Shi, DENG Yehao, ZHENG Xiaopeng, et al. Composition engineering in doctor-blading of perovskite solar cells [J]. Advanced Energy Materials, 2017, 7(18): 1700302. |
| 96 | CHEN Changshun, CHEN Jianxin, HAN Huchen, et al. Perovskite solar cells based on screen-printed thin films[J]. Nature, 2022, 612(7939): 266-271. |
| 97 | WU Congcong, WANG Kai, JIANG Yuanyuan, et al. All electrospray printing of carbon‐based cost‐effective perovskite solar cells[J]. Advanced Functional Materials, 2021, 31(6): 2006803. |
| 98 | THIRSK Robert, KUIPERS Andre, MUKAI Chiaki, et al. The space-flight environment: The international space station and beyond[J]. Canadian Medical Association Journal, 2009, 180(12): 1216-1220. |
| 99 | TU Yongguang, WU Jiang, XU Guoning, et al. Perovskite solar cells for space applications: Progress and challenges[J]. Advanced Materials, 2021, 33(21): 2006545. |
| 100 | MIYAZAWA Yu, IKEGAMI Masashi, MIYASAKA Tsutomu, et al. Evaluation of radiation tolerance of perovskite solar cell for use in space[C].//2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC), 2015 |
| 101 | HUANG Jingshun, KELZENBERG Michael D, ESPINET González Pilar, et al. Effects of electron and proton radiation on perovskite solar cells for space power application[c]. 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC), 2017. |
| 102 | MIYAZAWA Yu, IKEGAMI Masahi, CHEN Hsin Wei, et al. Tolerance of perovskite solar cell to high-energy particle irradiations in space environment[J]. Science, 2018, 2: 148-155. |
| 103 | RAN Junhui, DYCK Ondrej, WANG Xiaozheng, et al. Electron-beam-related studies of halide perovskites: Challenges and opportunities[J]. Advanced Energy Materials, 2020, 10(26): 1903191. |
| 104 | LANG Felix, NICKEL Norbert H, Jürgen BUNDESMANN, et al. Radiation hardness and self-healing of perovskite solar cells[J]. Advanced Materials, 2016, 28(39): 8726-8731. |
| 105 | KANAYA Shusaku, KIM Gyu Min, IKEGAMI Masashi, et al. Proton irradiation tolerance of high-efficiency perovskite absorbers for space applications[J]. Journal of Physical Chemistry Letters, 2019, 10(22): 6990-6995. |
| 106 | Hee-Suk ROH, HAN Gill Sang, LEE Seongha, et al. New down-converter for UV-stable perovskite solar cells: Phosphor-in-glass[J]. Journal of Power Sources, 2018, 389: 135-139. |
| 107 | CHEN Cong, LI Hao, JIN Junjie, et al. Long-lasting nanophosphors applied to UV-resistant and energy storage perovskite solar cells [J]. Advanced Energy Materials, 2017, 7(20): 1700758. |
| 108 | EPERON Giles E, LEIJTENS Tomas, BUSH Kevin A, et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps[J]. Science, 2016, 354(6314): 861-865. |
| 109 | LEIJTENS Tomas, PRASANNA Rohit, BUSH Kevin A, et al. Tin-lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells[J]. Sustainable Energy & Fuels, 2018, 2(11): 2450-2459. |
| 110 | YANG Zhibin, YU Zhenhua, WEI Haotong, et al. Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells[J]. Nature Communications, 2019, 10(1): 4498. |
| 111 | ZHAO Dewei, CHEN Cong, WANG Changlei, et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers[J]. Nature Energy, 2018, 3: 1093-1100. |
| 112 | ZHANG Zhichao, CHEN Weijie, JIANG Xingxing, et al. Suppression of phase segregation in wide-bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency[J]. Nature Energy, 2024, 9: 592-601. |
| 113 | CHANG Chi-Yu, TSAI Bo-Chou, HSIAO Yu-Cheng, et al. Solution-processed conductive interconnecting layer for highly-efficient and long-term stable monolithic perovskite tandem solar cells[J]. Nano Energy, 2019, 55, 354-367. |
| 114 | DAI Xuezeng, CHEN Shangshang, JIAO Haoyang, et al. Efficient monolithic all-perovskite tandem solar modules with small cell-to- module derate[J]. Nature Energy, 2022,7(10): 923-931. |
| 1 | KIM Jin Young, LEE Jin-Wook, JUNG Hyun Suk, et al. High-efficiency perovskite solar cells[J]. Chemical Reviews, 2020, 120(15): 7867-7918. |
| 2 | KOJIMA Akihiro, TESHIMA Kenjiro, SHIRAI Yasuo, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. |
| 3 | KIM Hui-Seon, LEE Chang-Ryul, Jeong-Hyeok IM, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2: 591. |
| 4 | LIU Mingzhen, JOHNSTON Michael B, SNAITH Henry J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398. |
| 5 | Best research cell efficiencies[EB/OL]. . |
| 6 | TIAN Jingjing, XUE Qifan, YAO Qin, et al. Inorganic halide perovskite solar cells: Progress and challenges[J]. Advanced Energy Materials, 2020, 10(23): 2000183. |
| 7 | RAN Chenxin, XU Jiantie, GAO Weiyin, et al. Defects in metal triiodide perovskite materials towards high-performance solar cells: Origin, impact, characterization, and engineering[J]. Chemical Society Reviews, 2018, 47(12): 4581-4610. |
| 8 | NOEL Nakita K, ABATE Antonio, STRANKS Samuel D, et al. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites[J]. ACS Nano, 2014, 8(10): 9815-9821. |
| 9 | LI Xiong, IBRAHIM DAR M, YI Chenyi, et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides[J]. Nature Chemistry, 2015, 7(9): 703-711. |
| 10 | JIANG Qi, ZHAO Yang, ZHANG Xingwang, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13: 460-466. |
| 11 | Mojtaba ABDI-JALEBI, Zahra ANDAJI-GARMAROUDI, CACOVICH Stefania, et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation[J]. Nature, 2018, 555(7697): 497-501. |
| 12 | WANG Zhiping, LIN Qianqian, CHMIEL Francis P, et al. Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites[J]. Nature Energy, 2017, 2(9): 17135. |
| 13 | ZHENG Xiaopeng, HOU Yi, BAO Chunxiong, et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells[J]. Nature Energy, 2020, 5(2): 131-140. |
| 14 | MA Chunqing, EICKEMEYER Felix T, LEE Sun-Ho, et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells[J]. Science, 2023, 379(6628): 173-178. |
| 15 | ZHAO Wenjing, WU Meizi, LIU Zhike, et al. Orientation engineering via 2D seeding for stable 24.83% efficiency perovskite solar cells[J]. Advanced Energy Materials, 2023, 13(14): 2204260. |
| 16 | Amran AL-ASHOURI, MAGOMEDOV Artiom, Marcel ROß, et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells[J]. Energy & Environmental Science, 2019, 12(11): 3356-3369. |
| 17 | MAO Lin, YANG Tian, ZHANG Hao, et al. Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency[J]. Advanced Materials, 2022, 34(40): 2206193. |
| 18 | ZHANG Kai, DING Bin, WANG Chenyue, et al. Highly efficient and stable FAPBI3 perovskite solar cells and modules based on exposure of the (011) facet[J]. Nano-Micro Letters, 2023, 15(1): 138. |
| 19 | WANG Rui, LIU Xiaoyu, YAN Shan, et al. Efficient wide-bandgap perovskite photovoltaics with homogeneous halogen-phase distribution[J]. Nature Communications, 2024, 15(1): 8899. |
| 20 | ZHANG Shuo, YE Fangyuan, WANG Xiaoyu, et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells[J]. Science, 2023, 380(6643): 404-409. |
| 21 | LIU Xixia, CHENG Yuanhang, LIU Chao, et al. 20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis[J]. Energy & Environmental Science, 2019, 12(5): 1622-1633. |
| 22 | DAI Runying, MENG Xiangchuan, ZHANG Jiaqi, et al. Pre-buried interface strategy for stable inverted perovskite solar cells based on ordered nucleation crystallization[J]. Advanced Functional Materials, 2023, 33(45): 2305013. |
| 23 | WU Meizi, WANG Hongyan, LI Yong, et al. Crystallization regulation by self-assembling liquid crystal template enables efficient and stable perovskite solar cells[J]. Angewandte Chemie International Edition, 2023, 62(52): e202313472. |
| 24 | XU Fan, ZHANG Meng, LI Zikun, et al. Challenges and perspectives toward future wide-bandgap mixed-halide perovskite photovoltaics[J]. Advanced Energy Materials, 2023, 13(13): 2203911. |
| 25 | NIE Ting, FANG Zhimin, REN Xiaodong, et al. Recent advances in wide-bandgap organic-inorganic halide perovskite solar cells and tandem application[J]. Nano-Micro Letters, 2023, 15(1): 70. |
| 26 | FANG Zhimin, NIE Ting, LIU Shengzhong, et al. Overcoming phase segregation in wide-bandgap perovskites: From progress to perspective[J]. Advanced Functional Materials, 2024, 34(42): 2404402. |
| 27 | XU Jixian, BOYD Caleb C, YU Zhengshan J, et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems[J]. Science, 2020, 367(6482): 1097-1104. |
| 28 | KIM Dong Hoe, MUZZILLO Christopher P., TONG Jinhui, et al. Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS[J]. Joule, 2019, 3(7): 1734-1745. |
| 29 | JIANG Yuanzhi, YUAN Jin, NI Youxuan, et al. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics[J]. Joule, 2018, 2(7): 1356-1368. |
| 30 | WANG Lina, SONG Qizhen, PEI Fengtao, et al. Strain modulation for light-stable n-i-p perovskite/silicon tandem solar cells[J]. Advanced Materials, 2022, 34(26): 2201315. |
| 31 | ZHENG Yiting, WU Xueyun, LIANG Jianghu, et al. Downward homogenized crystallization for inverted wide-bandgap mixed-halide perovskite solar cells with 21% efficiency and suppressed photo-induced halide segregation[J]. Advanced Functional Materials, 2022, 32(29): 2200431. |
| 32 | JI Su Geun, PARK Ik Jae, CHANG Hogeun, et al. Stable pure-iodide wide-band-gap perovskites for efficient Si tandem cells via kinetically controlled phase evolution[J]. Joule, 2022, 6(10): 2390-2405. |
| 33 | SHAO Zhipeng, MENG Hongguang, DU Xiaofan, et al. Cs4PbI6-mediated synthesis of thermodynamically stable FA0.15Cs0.85PbI3 perovskite solar cells[J]. Advanced Materials, 2020, 32(30): 2001054. |
| 34 | WANG Xingtao, CHEN Yuetian, ZHANG Taiyang, et al. Stable cesium-rich formamidinium/cesium pure-iodide perovskites for efficient photovoltaics[J]. ACS Energy Letters, 2021, 6(8): 2735-2741. |
| 35 | NIE Ting, FANG Zhimin, YANG Tinghuan, et al. Anti-solvent-free preparation for efficient and photostable pure-iodide wide-bandgap perovskite solar cells[J]. Angewandte Chemie International Edition, 2024, 63(17): e202400205. |
| 36 | HU Shuaifeng, THIESBRUMMEL Jarla, PASCUAL Jorge, et al. Narrow bandgap metal halide perovskites for all-perovskite tandem photovoltaics[J]. Chemical Reviews, 2024, 124(7): 4079-4123. |
| 37 | LIN Renxing, XIAO Ke, QIN Zhengyuan, et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(Ⅱ) oxidation in precursor ink[J]. Nature Energy, 2019, 4: 864-873. |
| 38 | CAO Jiupeng, Hok-Leung LOI, XU Yang, et al. High-performance tin-lead mixed-perovskite solar cells with vertical compositional gradient[J]. Advanced Materials, 2022, 34(6): 2107729. |
| 39 | ZHANG Yao, LI Chunyan, ZHAO Haiyan, et al. Synchronized crystallization in tin-lead perovskite solar cells[J]. Nature Communications, 2024, 15(1): 6887. |
| 40 | YU Danni, WEI Qi, LI Hansheng, et al. Quasi-2D bilayer surface passivation for high efficiency narrow bandgap perovskite solar cells[J]. Angewandte Chemie International Edition, 2022, 61(20): e202202346. |
| 41 | PAN Yongyan, WANG Jianan, SUN Zhenxing, et al. Surface chemical polishing and passivation minimize non-radiative recombination for all-perovskite tandem solar cells[J]. Nature Communications, 2024, 15(1): 7335. |
| 42 | LIN Renxing, XU Jian, WEI Mingyang, et al. All-perovskite tandem solar cells with improved grain surface passivation[J]. Nature, 2022, 603(7899): 73-78. |
| 43 | GAO Han, XIAO Ke, LIN Renxing, et al. Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules[J]. Science, 2024, 383(6685): 855-859. |
| 44 | ZHANG Zhanfei, LIANG Jianghu, WANG Jianli, et al. DMSO-free solvent strategy for stable and efficient methylammonium-free Sn-Pb alloyed perovskite solar cells[J]. Advanced Energy Materials, 2023, 13(17): 2300181. |
| 45 | BRINKMANN Kai O, WANG Pang, LANG Felix, et al. Perovskite–organic tandem solar cells[J]. Nature Reviews Materials, 2024, 9: 202-217. |
| 46 | ZHANG Zhanfei, LIANG Jianghu, WANG Jianli, et al. DMSO-free solvent strategy for stable and efficient methylammonium-free Sn-Pb alloyed perovskite solar cells[J]. Advanced Energy Materials, 2023, 13(17): 2300181. |
| 47 | YING Zhiqin, YANG Xi, WANG Xuezhen, et al. Towards the 10-year milestone of monolithic perovskite/silicon tandem solar cells[J]. Advanced Materials, 2024, 36(37): 2311501. |
| 48 | GREEN Martin A, DUNLOP Ewan D, YOSHITA Masahiro, et al. Solar cell efficiency tables (version 64) [J]. Progress In Photovoltaics: Research And Applications, 2024, 32(7): 425-441. |
| 49 | FANG Zhimin, ZENG Qiang, ZUO Chuantian, et al. Perovskite-based tandem solar cells[J]. Science Bulletin, 2021, 66(6): 621-636. |
| 50 | MAILOA Jonathan P, BAILIE Colin D, JOHLIN Eric C, et al. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction[J]. Applied Physics Letters, 2015, 106(12): 121105. |
| 51 | SHI Yating, BERRY Joseph J, ZHANG Fei. Perovskite/silicon tandem solar cells: Insights and outlooks[J]. ACS Energy Letters, 2024, 9(3): 1305-1330. |
| 52 | ALBRECHT Steve, SALIBA Michael, CORREA BAENA Juan Pablo, et al. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature[J]. Energy & Environmental Science, 2016, 9(1): 81-88. |
| 53 | WERNER Jérémie, WENG Ching-Hsun, WALTER Arnaud, et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area >1cm2 [J]. The Journal of Physical Chemistry Letters, 2016, 7(1): 161-166. |
| 54 | LIANG Haoming, FENG Jiangang, RODRÍGUEZ-GALLEGOS Carlos D, et al. 29.9%-efficient, commercially viable perovskite/CuInSe2 thin-film tandem solar cells[J]. Joule, 2023, 7(12): 2859-2872. |
| [1] | 乔凯, 张震宇, 马会霞, 傅杰, 周峰. 生物基呋喃二甲酸关键技术路线和产业发展现状[J]. 化工进展, 2025, 44(5): 2577-2586. |
| [2] | 郭沛, 崔灿灿, 孔德洁, 黄晟. “双碳”背景下固态锂电池用硫化物固态电解质的发展趋势[J]. 化工进展, 2024, 43(9): 5193-5206. |
| [3] | 韩丽, 李望良, 李艳香, 安高军, 鲁长波. 纤维状钙钛矿太阳能电池研究进展[J]. 化工进展, 2023, 42(10): 5135-5146. |
| [4] | 刘东国, 吴云青, 段学辉. 联合生物加工产纤维素乙醇中真菌的开发与应用[J]. 化工进展, 2018, 37(09): 3568-3576. |
| [5] | 刘博洋, 周华兰, 夏峰峰, 宋金文, 禹耕之, 王鸣. 废塑料制油技术研究及产业化进展[J]. 化工进展, 2017, 36(S1): 416-427. |
| [6] | 郑建勇,钟明强,冯 杰. 基于超疏水原理的自清洁表面研究进展及产业化状况 [J]. 化工进展, 2010, 29(2): 281-. |
| [7] | 王辅臣,于广锁,龚 欣,刘海峰,王亦飞,梁钦峰. 大型煤气化技术的研究与发展 [J]. 化工进展, 2009, 28(2): 173-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |