化工进展 ›› 2025, Vol. 44 ›› Issue (5): 2587-2597.DOI: 10.16085/j.issn.1000-6613.2024-1688
• 可再生能源利用 • 上一篇
王嘉1(
), 孙丹卉1, 乔一凡1, 范秀方1, 赵立东1, 贺雷1, 陆安慧1,2(
)
收稿日期:2024-10-21
修回日期:2024-12-11
出版日期:2025-05-25
发布日期:2025-05-20
通讯作者:
陆安慧
作者简介:王嘉(1997—),女,博士研究生,研究方向为能源催化转化。E-mail:jiajiawang@mail.dlut.edu.cn。
基金资助:
WANG Jia1(
), SUN Danhui1, QIAO Yifan1, FAN Xiufang1, ZHAO Lidong1, HE Lei1, LU Anhui1,2(
)
Received:2024-10-21
Revised:2024-12-11
Online:2025-05-25
Published:2025-05-20
Contact:
LU Anhui
摘要:
生物质乙醇可作为平台分子催化转化制备高附加值化学品,是一条低碳环保的绿色路线。乙醇性质活泼,经催化脱氢、脱水、羟醛缩合、环化等可制备多种高附加值化学品(如乙醛、烯烃、丁醇、高碳醇、芳香醇/醛等)。但乙醇催化转化反应网络复杂,实现乙醇定向转化的核心是催化剂上不同活性中心的高效协同,以及多步基元反应的速率匹配。本文通过对乙醇转化活性中心、反应路径和反应机理的认识,根据反应产物的种类,系统综述了多相催化乙醇制备高值化学品的研究进展。针对乙醇定向转化的催化剂体系及反应机理,概述了多活性中心协同调变机制和催化剂活性中心与乙醇转化性能的构效关系,阐明了乙醇转化产物分布的调控机理。其中,由乙醇出发制备C6+高碳醇和芳香醇/醛等高值含氧化合物可能是未来乙醇转化利用的研究重点,从工程应用角度,亟需发展乙醇转化利用的反应分离一体化技术。
中图分类号:
王嘉, 孙丹卉, 乔一凡, 范秀方, 赵立东, 贺雷, 陆安慧. 乙醇催化转化制高值化学品研究进展[J]. 化工进展, 2025, 44(5): 2587-2597.
WANG Jia, SUN Danhui, QIAO Yifan, FAN Xiufang, ZHAO Lidong, HE Lei, LU Anhui. Catalytic conversion of ethanol to high value-added chemicals[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2587-2597.
| 1 | CORDON Michael J, ZHANG Junyan, PURDY Stephen C, et al. Selective butene formation in direct ethanol-to-C3+-olefin valorization over Zn-Y/beta and single-atom alloy composite catalysts using in situ-generated hydrogen[J]. ACS Catalysis, 2021, 11(12): 7193-7209. |
| 2 | POKORNY Tomas, VYKOUKAL Vit, MACHAC Petr, et al. Ethanol dehydrogenation over copper-silica catalysts: From sub-nanometer clusters to 15 nm large particles[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(30): 10980-10992. |
| 3 | XU Lulu, ZHAO Rongrong, ZHANG Weiping. One-step high-yield production of renewable propene from bioethanol over composite ZnCeO x oxide and HBeta zeolite with balanced Brönsted/Lewis acidity[J]. Applied Catalysis B: Environmental, 2020, 279: 119389. |
| 4 | WANG Qingnan, WENG Xuefei, ZHOU Baichuan, et al. Direct, selective production of aromatic alcohols from ethanol using a tailored bifunctional cobalt–hydroxyapatite catalyst[J]. ACS Catalysis, 2019, 9(8): 7204-7216. |
| 5 | PAMPARARO Giovanni, GARBARINO Gabriella, RIANI Paola, et al. Ethanol dehydrogenation to acetaldehyde with mesoporous Cu-SiO2 catalysts prepared by aerosol-assisted sol-gel[J]. Chemical Engineering Journal, 2023, 465: 142715. |
| 6 | PATEL Dipna A, GIANNAKAKIS Georgios, YAN George, et al. Mechanistic insights into nonoxidative ethanol dehydrogenation on NiCu single-atom alloys[J]. ACS Catalysis, 2023, 13(7): 4290-4303. |
| 7 | WANG Qingnan, ZHOU Baichuan, WENG Xuefei, et al. Hydroxyapatite nanowires rich in [Ca-O-P] sites for ethanol direct coupling showing high C6-12 alcohol yield[J]. Chemical Communications, 2019, 55(70): 10420-10423. |
| 8 | TANG Fan, LI Wencui, HE Lei, et al. High catalytic activity in upgrading of ethanol to aromatic alcohols over zinc hydroxyapatite[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(45): 16300-16309. |
| 9 | DAGLE Vanessa Lebarbier, COLLINGE Gregory, RAHMAN Mohammed, et al. Single-step conversion of ethanol into n-butene-rich olefins over metal catalysts supported on ZrO2-SiO2 mixed oxides[J]. Applied Catalysis B: Environmental, 2023, 331: 122707. |
| 10 | WANG Peng, HOU Shaowen, TU Pengxiang, et al. Coordinating the interaction of ZnO and ZrO2 for an efficient ethanol-to-butadiene process[J]. Catalysis Science & Technology, 2024, 14(7): 1822-1836. |
| 11 | 周百川. 磷酸盐负载金属催化乙醇转化制高值化学品[D]. 大连: 大连理工大学, 2023. |
| ZHOU Baichuan. Catalytic conversion of ethanol to value-added chemicals over phosphate supported metal catalysts[D]. Dalian: Dalian University of Technology, 2023. | |
| 12 | MORALES M V, ASEDEGBEGA-NIETO E, BACHILLER-BAEZA B, et al. Bioethanol dehydrogenation over copper supported on functionalized graphene materials and a high surface area graphite[J]. Carbon, 2016, 102: 426-436. |
| 13 | WANG Qingnan, SHI Lei, LU Anhui. Highly selective copper catalyst supported on mesoporous carbon for the dehydrogenation of ethanol to acetaldehyde[J]. ChemCatChem, 2015, 7(18): 2846-2852. |
| 14 | WANG Qingnan, SHI Lei, LI Wencui, et al. Cu supported on thin carbon layer-coated porous SiO2 for efficient ethanol dehydrogenation[J]. Catalysis Science & Technology, 2018, 8(2): 472-479. |
| 15 | LI Mengyue, LU Wenduo, HE Lei, et al. Tailoring the surface structure of silicon carbide support for copper catalyzed ethanol dehydrogenation[J]. ChemCatChem, 2019, 11(1): 481-487. |
| 16 | CHENG Shiqun, WENG Xuefei, WANG Qingnan, et al. Defect-rich BN-supported Cu with superior dispersion for ethanol conversion to aldehyde and hydrogen[J]. Chinese Journal of Catalysis, 2022, 43(4): 1092-1100. |
| 17 | TANG Fan, LI Wencui, WANG Dongqi, et al. Synergistic roles of hexagonal boron nitride-supported Cu0 and Cu+ species in dehydrogenation of ethanol to acetaldehyde: A computational mechanistic study[J]. The Journal of Physical Chemistry C, 2023, 127(23): 11014-11025. |
| 18 | PANG Jifeng, ZHENG Mingyuan, WANG Chan, et al. Hierarchical echinus-like Cu-MFI catalysts for ethanol dehydrogenation[J]. ACS Catalysis, 2020, 10(22): 13624-13629. |
| 19 | LI Xianquan, PANG Jifeng, ZHAO Yujia, et al. Ethanol dehydrogenation to acetaldehyde over a Cu δ +-based Cu-MFI catalyst[J]. Chinese Journal of Catalysis, 2023, 49: 91-101. |
| 20 | SHAN Junjun, LIU Jilei, LI Mengwei, et al. NiCu single atom alloys catalyze the C-H bond activation in the selective non- oxidative ethanol dehydrogenation reaction[J]. Applied Catalysis B: Environmental, 2018, 226: 534-543. |
| 21 | DE WAELE Jolien, GALVITA Vladimir V, POELMAN Hilde, et al. PdZn nanoparticle catalyst formation for ethanol dehydrogenation: Active metal impregnation vs incorporation[J]. Applied Catalysis A: General, 2018, 555: 12-19. |
| 22 | YANG Ji, ZHENG Juan, Chaochao DUN, et al. Unveiling highly sensitive active site in atomically dispersed gold catalysts for enhanced ethanol dehydrogenation[J]. Angewandte Chemie International Edition, 2024(35), 63(35): e202408894. |
| 23 | CHEN Baohui, LU Jiazheng, WU Lianping, et al. Dehydration of bio-ethanol to ethylene over iron exchanged HZSM-5[J]. Chinese Journal of Catalysis, 2016, 37(11): 1941-1948. |
| 24 | HAO Yan, ZHAO Dajie, ZHOU Yang, et al. Hierarchical leaf-like alumina-carbon nanosheets with ammonia water modification for ethanol dehydration to ethylene[J]. Fuel, 2023, 333: 126128. |
| 25 | SALCEDO Agustín, Eduardo POGGIO-FRACCARI, Fernando MARIÑO, et al. Tuning the selectivity of cerium oxide for ethanol dehydration to ethylene[J]. Applied Surface Science, 2022, 599: 153963. |
| 26 | XIA Wei, WANG Xue, LI Shuangshuang, et al. Multiple synergistic roles of Zr modification on ZSM-5 in performant and stable catalyst for ethanol conversion to propene[J]. Energy, 2024, 288: 129910. |
| 27 | BAI Ting, LI Xiaohui, DING Liang, et al. Direct conversion of ethanol to propylene over Zn-modified HBeta zeolite: Influence of zinc precursors[J]. Catalysts, 2024, 14(4): 276. |
| 28 | EPELDE Eva, María IBÁÑEZ, VALECILLOS José, et al. SAPO-18 and SAPO-34 catalysts for propylene production from the oligomerization-cracking of ethylene or 1-butene[J]. Applied Catalysis A: General, 2017, 547: 176-182. |
| 29 | MATHEUS Caio R V, CHAGAS Luciano H, GONZALEZ Guilherme G, et al. Synthesis of propene from ethanol: A mechanistic study[J]. ACS Catalysis, 2018, 8(8): 7667-7678. |
| 30 | ZHANG Junyan, WEGENER Evan C, SAMAD Nohor River, et al. Isolated metal sites in Cu-Zn-Y/beta for direct and selective butene-rich C3+ olefin formation from ethanol[J]. ACS Catalysis, 2021, 11(15): 9885-9897. |
| 31 | CHUNG Sang-Ho, DE MIGUEL Juan Carlos Navarro, LI Teng, et al. Core-shell structured magnesia-silica as a next generation catalyst for one-step ethanol-to-butadiene Lebedev process[J]. Applied Catalysis B: Environment and Energy, 2024, 344: 123628. |
| 32 | HRADSKY Dalibor, MACHAC Petr, SKODA David, et al. Catalytic performance of micro-mesoporous zirconosilicates prepared by non-hydrolytic sol-gel in ethanol-acetaldehyde conversion to butadiene and related reactions[J]. Applied Catalysis A: General, 2023, 652: 119037. |
| 33 | CHUNG Sang-Ho, ANGELICI Carlo, HINTERDING Stijn O M, et al. Role of magnesium silicates in wet-kneaded silica-magnesia catalysts for the Lebedev ethanol-to-butadiene process[J]. ACS Catalysis, 2016, 6(6): 4034-4045. |
| 34 | CHUNG Sang-Ho, LI Teng, SHOINKHOROVA Tuiana, et al. Origin of active sites on silica-magnesia catalysts and control of reactive environment in the one-step ethanol-to-butadiene process[J]. Nature Catalysis, 2023, 6: 363-376. |
| 35 | YANG Yishan, GUO Xuan, PAN Yang, et al. Direct SVUV-PIMS identification of unstable oxygenated intermediates in ethanol to butadiene reaction[J]. Catalysis Science & Technology, 2022, 12(6): 1746-1750. |
| 36 | MIYAKE Naomi, BREZICKI Gordon, DAVIS Robert J. Cascade reaction of ethanol to butadiene over multifunctional silica-supported Ag and ZrO2 catalysts[J]. ACS Sustainable Chemistry and Engineering, 2022, 10(2): 1020-1035. |
| 37 | WANG Kangzhou, CHEN Chong, GAO Weizhe, et al. Green and rapid synthesis of hierarchical nano-sized pure Si-Beta zeolite supported with Zn and Y for effective synthesis of butadiene from aqueous ethanol[J]. Chemical Engineering Journal, 2024, 479: 147780. |
| 38 | CORDON Michael J, ZHANG Junyan, SAMAD Nohor “River”, et al. Ethanol conversion to C4+ olefins over bimetallic copper- and lanthanum-containing beta zeolite catalysts[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(18): 5702-5707. |
| 39 | PURDY Stephen C, COLLINGE Gregory, ZHANG Junyan, et al. Dynamic copper site redispersion through atom trapping in zeolite defects[J]. Journal of the American Chemical Society, 2024, 146(12): 8280-8297. |
| 40 | ZHOU Baichuan, LI Wencui, WANG Jia, et al. PO4 3- coordinated Co2+ species on yttrium phosphate boosting the valorization of ethanol to butadiene[J]. Chinese Journal of Catalysis, 2024, 56: 166-175. |
| 41 | 杨春,孟中岳. 碱金属沸石上乙醇双分子缩合反应及其机理[J]. 催化学报, 1994, 15(1): 28-33. |
| YANG Chun, MENG Zhongyue. Bimolecular condensation of ethanol on alkali zeolites and its reaction mechanism[J]. Chinese Journal of Catalysis, 1994, 15(1): 28-33. | |
| 42 | YANG Chun, MENG Zhongyue. Bimolecular condensation of ethanol to 1-butanol catalyzed by alkali cation zeolites[J]. Journal of Catalysis, 1993, 142(1): 37-44. |
| 43 | SCALBERT Julien, Frederic THIBAULT-STARZYK, JACQUOT Roland, et al. Ethanol condensation to butanol at high temperatures over a basic heterogeneous catalyst: How relevant is acetaldehyde self-aldolization?[J]. Journal of Catalysis, 2014, 311: 28-32. |
| 44 | Christopher R HO, SHYLESH Sankaranarayanapillai, BELL Alexis T. Mechanism and kinetics of ethanol coupling to butanol over hydroxyapatite[J]. ACS Catalysis, 2016, 6(2): 939-948. |
| 45 | WANG Zhinuo, YIN Ming, PANG Jifeng, et al. Active and stable Cu doped NiMgAlO catalysts for upgrading ethanol to n-butanol[J]. Journal of Energy Chemistry, 2022, 72: 306-317. |
| 46 | MOTEKI Takahiko, FLAHERTY David W. Mechanistic insight to C-C bond formation and predictive models for cascade reactions among alcohols on Ca- and Sr-hydroxyapatites[J]. ACS Catalysis, 2016, 6(7): 4170-4183. |
| 47 | EAGAN Nathaniel M, LANCI Michael P, HUBER George W. Kinetic modeling of alcohol oligomerization over calcium hydroxyapatite[J]. ACS Catalysis, 2020, 10(5): 2978-2989. |
| 48 | GU Juwen, GONG Wanbing, ZHANG Qian, et al. Enabling direct-growth route for highly efficient ethanol upgrading to long-chain alcohols in aqueous phase[J]. Nature Communications, 2023, 14(1): 7935. |
| 49 | ZHANG Jian, SHI Kai, AN Zhe, et al. Acid-base promoted dehydrogenation coupling of ethanol on supported Ag particles[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3342-3350. |
| 50 | YUAN Bowen, ZHANG Jian, AN Zhe, et al. Atomic Ru catalysis for ethanol coupling to C4+ alcohols[J]. Applied Catalysis B: Environmental, 2022, 309: 121271. |
| 51 | ZHANG Jian, AN Zhe, ZHU Yanru, et al. Ni0/Ni δ + synergistic catalysis on a nanosized Ni surface for simultaneous formation of C-C and C-N bonds[J]. ACS Catalysis, 2019, 9(12): 11438-11446. |
| 52 | PANG Jifeng, ZHENG Mingyuan, HE Lei, et al. Upgrading ethanol to n-butanol over highly dispersed Ni-MgAlO catalysts[J]. Journal of Catalysis, 2016, 344: 184-193. |
| 53 | Wenlu LYU, HE Lei, LI Wencui, et al. Atomically dispersed Co2+ on MgAlO x boosting C4-10 alcohols selectivity of ethanol valorization[J]. Green Chemistry, 2023, 25(7): 2653-2662. |
| 54 | HANSPAL Sabra, YOUNG Zachary D, Tyler PRILLAMAN J, et al. Influence of surface acid and base sites on the Guerbet coupling of ethanol to butanol over metal phosphate catalysts[J]. Journal of Catalysis, 2017, 352: 182-190. |
| 55 | Shuhei OGO, ONDA Ayumu, YANAGISAWA Kazumichi. Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts[J]. Applied Catalysis A: General, 2011, 402(1/2): 188-195. |
| 56 | Shuhei OGO, ONDA Ayumu, IWASA Yukina, et al. 1-Butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios[J]. Journal of Catalysis, 2012, 296: 24-30. |
| 57 | Sarah DIALLO-GARCIA, OSMAN Manel BEN, KRAFFT Jean-Marc, et al. Identification of surface basic sites and acid–base pairs of hydroxyapatite[J]. The Journal of Physical Chemistry C, 2014, 118(24): 12744-12757. |
| 58 | TSUCHIDA Takashi, Kubo JUN, YOSHIOKA Tetsuya, et al. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst[J]. Journal of Catalysis, 2008, 259(2): 183-189. |
| 59 | RODRIGUES E G, KELLER T C, MITCHELL S, et al. Hydroxyapatite, an exceptional catalyst for the gas-phase deoxygenation of bio-oil by aldol condensation[J]. Green Chemistry, 2014, 16(12): 4870-4874. |
| 60 | Su Cheun OH, XU Jiayi, TRAN Dat T, et al. Effects of controlled crystalline surface of hydroxyapatite on methane oxidation reactions[J]. ACS Catalysis, 2018, 8(5): 4493-4507. |
| 61 | XUE Machen, YANG Bolun, XIA Chungu, et al. Upgrading ethanol to higher alcohols via biomass-derived Ni/bio-apatite[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(11): 3466-3476. |
| 62 | XUE Machen, JIN Zerun, YANG Bolun, et al. Boosting higher alcohols selectivity via regulating basicity of Ni/hydroxyapatite in ethanol upgrading[J]. ACS Catalysis, 2024, 14(16): 12654-12663. |
| 63 | ZHOU Baichuan, LI Wencui, Wenlu LYU, et al. Enhancing ethanol coupling to produce higher alcohols by tuning H2 partial pressure over a copper-hydroxyapatite catalyst[J]. ACS Catalysis, 2022, 12(19): 12045-12054. |
| 64 | HE Jinfeng, LI Xiuzhen, KOU Jianyao, et al. Catalytic upgrading of ethanol to higher alcohols over nickel-modified Cu–La2O3/Al2O3 catalysts[J].Catalysis Science & Technology, 2023, 13(1): 170-177. |
| 65 | JIANG Dahao, WU Xianyuan, MAO Jun, et al. Continuous catalytic upgrading of ethanol to n-butanol over Cu-CeO2/AC catalysts[J]. Chemical Communications, 2016, 52(95): 13749-13752. |
| 66 | TONG Yuqin, ZHOU Jian, HE Yaohui, et al. Structure-activity relationship of Cu species in the ethanol upgrading to n-butanol[J]. ChemistrySelect, 2020, 5(26): 7714-7719. |
| 67 | JIANG Dahao, FANG Geqian, TONG Yuqin, et al. Multifunctional Pd@UiO-66 catalysts for continuous catalytic upgrading of ethanol to n-butanol[J]. ACS Catalysis, 2018, 8(12): 11973-11978. |
| 68 | ZHOU Jian, HE Yaohui, XUE Bing, et al. Benefits of active site proximity in Cu@UiO-66 catalysts for efficient upgrading of ethanol to n-butanol[J]. Sustainable Energy & Fuels, 2021, 5(18): 4628-4636. |
| 69 | JORDISON Tyler L, LIRA Carl T, MILLER Dennis J. Condensed-phase ethanol conversion to higher alcohols[J]. Industrial & Engineering Chemistry Research, 2015, 54(44): 10991-11000. |
| 70 | LU Bing, MA Shuangxiu, LIANG Shipan, et al. Efficient conversion of ethanol to 1-butanol over adjacent acid–base dual sites via enhanced C-H activation[J]. ACS Catalysis, 2023, 13(7): 4866-4872. |
| 71 | LIU Haowei, ZHENG Tao, HUI Tianli, et al. Synthesis of n-butanol from ethanol over Pt-Y/beta catalyst: Synergistic catalysis of yttrium and platinum site[J]. Chemical Engineering Journal, 2024, 481: 148397. |
| 72 | ZHANG Lu, PHAM Tu N, FARIA Jimmy, et al. Improving the selectivity to C4 products in the aldol condensation of acetaldehyde in ethanol over faujasite zeolites[J]. Applied Catalysis A: General, 2015, 504: 119-129. |
| 73 | ZHANG Lu, PHAM Tu N, FARIA Jimmy, et al. Synthesis of C4 and C8 chemicals from ethanol on MgO-incorporated faujasite catalysts with balanced confinement effects and basicity[J]. ChemSusChem, 2016, 9(7): 736-748. |
| 74 | MOTEKI Takahiko, ROWLEY Andrew T, FLAHERTY David W. Self-terminated cascade reactions that produce methylbenzaldehydes from ethanol[J]. ACS Catalysis, 2016, 6(11): 7278-7282. |
| 75 | MOTEKI Takahiko, ROWLEY Andrew T, BREGANTE Daniel T, et al. Formation pathways toward 2- and 4-methylbenzaldehyde via sequential reactions from acetaldehyde over hydroxyapatite catalyst[J]. ChemCatChem, 2017, 9(11): 1921-1929. |
| 76 | LUSARDI Marcella, STRUBLE Thomas, TEIXEIRA Andrew R, et al. Identifying the roles of acid-base sites in formation pathways of tolualdehydes from acetaldehyde over MgO-based catalysts[J]. Catalysis Science & Technology, 2020, 10(2): 536-548. |
| 77 | ZHOU Baichuan, WANG Qingnan, WENG Xuefei, et al. Regulating aromatic alcohols distributions by cofeeding methanol with ethanol over cobalt-hydroxyapatite catalyst[J]. ChemCatChem, 2020, 12(8): 2341-2347. |
| 78 | SUN Danhui, LI Wencui, TANG Fan, et al. Emergence of meta-methylbenzyl alcohol in novel pathway of ethanol with methacrolein catalyzed by hydroxyapatite[J]. Applied Catalysis A: General, 2024, 687: 119946. |
| 79 | GUO Jinqiu, FENG Zongjing, XU Jun, et al. Facile preparation of methyl phenols from ethanol over lamellar Ce(OH)SO4·xH2O[J]. ACS Catalysis, 2021, 11(10): 6162-6174. |
| [1] | 谢静雯, 孟仪方, 叶文杰, 王华磊, 魏东芝. 半理性设计提高短链醇脱氢酶在(S)-1-(4-氟苯基)乙醇合成中的应用[J]. 化工进展, 2025, 44(5): 2515-2523. |
| [2] | 钟家伟, 谭涛, 谢君, 陈勇. 生物质高值能源转换技术[J]. 化工进展, 2025, 44(5): 2524-2528. |
| [3] | 王水众, 宋国勇. 木质素选择性氢解制备高功能化单酚及其高值利用[J]. 化工进展, 2025, 44(5): 2535-2540. |
| [4] | 陈彦君, 戴杰, 单军强, 张思欣, 计磊, 朱晨杰, 应汉杰. 我国纤维素乙醇的研究进展和发展趋势[J]. 化工进展, 2025, 44(5): 2541-2562. |
| [5] | 魏志强, 孙丽丽. 工业富碳气体发酵制备燃料乙醇技术现状与挑战[J]. 化工进展, 2025, 44(5): 2563-2576. |
| [6] | 宋坤莉, 肖雷, 马丹丹, 肖朋, 杨莎莎, 石建稳. 超低温氨气选择性脱硝催化剂的研究进展[J]. 化工进展, 2025, 44(4): 2028-2035. |
| [7] | 王淑媛, 尹玲玲, 高志华, 黄伟. 插层Cu比例对CuZnAl-LDHs催化剂结构及催化性能的影响[J]. 化工进展, 2025, 44(4): 2036-2044. |
| [8] | 张佩, 高莉宁, 丁思晴, 李立, 祝锡爇, 何锐. g-C3N4/TiO2异质结光催化剂的制备及其对NO的降解性能[J]. 化工进展, 2025, 44(4): 2045-2056. |
| [9] | 张绎如, 韩东梅, 马伟芳. 铁基复合卤氧化铋磁性材料强化可见光催化处理难降解有机废水研究进展[J]. 化工进展, 2025, 44(4): 2258-2273. |
| [10] | 苏晓洁, 严群, 李欣城, 薛文慧, 陈奕浩. NiCo2O4@纤蛇纹石活化过硫酸钾降解甲基橙[J]. 化工进展, 2025, 44(4): 2352-2364. |
| [11] | 陈宇航, 李巧艳, 梁美生, 宋天远, 汪玥, 李思萌, 周宇璇. Sn掺杂Cu/CeZrO2/γ-Al2O3对三效催化(TWC)反应的作用:提高低温活性和抗硫性[J]. 化工进展, 2025, 44(3): 1368-1377. |
| [12] | 张馨儿, 裴刘军, 周雨蝶, 靳凯丽, 王际平. 基于TiO2的光催化剂利用太阳能裂解水制氢研究进展[J]. 化工进展, 2025, 44(3): 1298-1308. |
| [13] | 刘俊杰, 吴建民, 孙启文, 王建成, 孙燕. 茂金属催化线性α-烯烃聚合获取高分子量产物研究进展[J]. 化工进展, 2025, 44(3): 1309-1322. |
| [14] | 朱国瑜, 葛棋, 付名利. 甲醇重整制氢催化剂耐久性评价和寿命预测方法[J]. 化工进展, 2025, 44(3): 1338-1346. |
| [15] | 谢鑫瑶, 万芬, 伏炫羽, 范雨婷, 陈令修, 李鹏. Cu-Ag纳米团簇CO2电催化还原性能和机理[J]. 化工进展, 2025, 44(3): 1387-1395. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |