| 1 |
杨振明, 田冲, 矫义来, 等. 泡沫碳化硅的制备及应用[J]. 化学反应工程与工艺, 2013, 29(3): 269-275.
|
|
YANG Zhenming, TIAN Chong, JIAO Yilai, et al. Preparation and applications of foam SiC[J]. Chemical Reaction Engineering and Technology, 2013, 29(3): 269-275.
|
| 2 |
WU Songze, ZHOU Yang, GAO Wen, et al. Preparation and properties of shape-stable phase change material with enhanced thermal conductivity based on SiC porous ceramic carrier made of iron tailings[J]. Applied Energy, 2024, 355: 122256.
|
| 3 |
SEDANOVA E P, KASHKAROV E B, LIDER A M, et al. Porous SiC ceramic obtained by spark plasma sintering of preceramic paper: Microstructure, mechanical properties and gas permeability[J]. Ceramics International, 2024, 50(8): 12950-12959.
|
| 4 |
WANG Zhen, LIU Jingxiang, HAO Haoquan, et al. Microwave absorption enhancement by SiC nanowire aerogels through heat treatment-based oxidation modulation[J]. Carbon, 2024, 217: 118622.
|
| 5 |
WU Meihong, GAO Mingxia, QU Shanqing, et al. LiBH4 hydrogen storage system with low dehydrogenation temperature and favorable reversibility promoted by metallocene additives[J]. Journal of Energy Storage, 2023, 72: 108679.
|
| 6 |
王新瑞, 龚业磊, 姚军龙, 等. 碳化硅/氮化硅/聚丙烯复合材料的制备及介电性能研究[J]. 化肥设计, 2018, 56(4): 12-15.
|
|
WANG Xinrui, GONG Yelei, YAO Junlong, et al. Preparation and dielectric performance studies of SiC/Si3N4/PP composite materials[J]. Chemical Fertilizer Design, 2018, 56(4): 12-15.
|
| 7 |
HANNA S B, AWAAD M, AJIBA N A. Optimization of a novel process for preparation of silicon carbide foams[J]. Materials Chemistry and Physics, 2018, 218: 77-86.
|
| 8 |
杨振明, 姜春海, 田冲, 等. 泡沫碳化硅陶瓷表面纳米多孔碳化硅涂层的制备[J]. 功能材料, 2012, 43(21): 2893-2896.
|
|
YANG Zhenming, JIANG Chunhai, TIAN Chong, et al. Preparation of nanoporous SiC coating on SiC foam[J]. Journal of Functional Materials, 2012, 43(21): 2893-2896.
|
| 9 |
谌伟, 闫洪. 莫来石/碳化硅复相泡沫陶瓷的制备及抗压强度研究[J]. 稀有金属, 2015, 39(4): 331-336.
|
|
CHEN Wei, YAN Hong. Preparation and compressive strengths of mullite/SiC composite ceramic foams[J]. Chinese Journal of Rare Metals, 2015, 39(4): 331-336.
|
| 10 |
曹小明, 金鹏, 徐奕辰, 等. 碳化硅泡沫陶瓷/铝双连续相复合材料结构特征及增强机制[J]. 复合材料学报, 2022, 39(4): 1771-1777.
|
|
CAO Xiaoming, JIN Peng, XU Yichen, et al. Structural feature and reinforcement mechanism of silicon carbide foam ceramics aluminum matrix co-continuous phase composites[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1771-1777.
|
| 11 |
许思奇. 碳化硅泡沫多孔材料内流动及换热特性实验和数值模拟研究[D]. 北京: 北京交通大学, 2022.
|
|
XU Siqi. Experimental and numerical simulation study on internal flow and heat transfer characteristics of SiC foam porous material[D]. Beijing: Beijing Jiaotong University, 2022.
|
| 12 |
张洋, 高鑫, 严鹏, 等. 泡沫碳化硅填料孔内流体微观流动特性研究[J]. 现代化工, 2021, 41(9): 192-196.
|
|
ZHANG Yang, GAO Xin, YAN Peng, et al. Microscopic experimental characterization of liquid flow in hole of SiC foam packings[J]. Modern Chemical Industry, 2021, 41(9): 192-196.
|
| 13 |
王辰晨. 泡沫碳化硅填料内的流场模拟及结构优化[D]. 天津: 天津大学, 2014.
|
|
WANG Chenchen. CFD simulation and structure optimization of foam SiC structure packing[D]. Tianjin: Tianjin University, 2014.
|
| 14 |
MONCADA QUINTERO Carmen W, ERCOLINO Giuliana, SPECCHIA Stefania. Combined silicon carbide and zirconia open cell foams for the process intensification of catalytic methane combustion in lean conditions: Impact on heat and mass transfer[J]. Chemical Engineering Journal, 2022, 429: 132448.
|
| 15 |
VOGT U F, GYÖRFY L, HERZOG A, et al. Macroporous silicon carbide foams for porous burner applications and catalyst supports[J]. Journal of Physics and Chemistry of Solids, 2007, 68(5/6): 1234-1238.
|
| 16 |
Xiaoxia OU, TOMATIS Marco, LAN Yongyong, et al. A novel microwave-assisted methanol-to-hydrocarbons process with a structured ZSM-5/SiC foam catalyst: Proof-of-concept and environmental impacts[J]. Chemical Engineering Science, 2022, 255: 117669.
|
| 17 |
LI Wanchong, LI Chusen, LIN Lihai, et al. Foam structure to improve microwave absorption properties of silicon carbide/carbon material[J]. Journal of Materials Science & Technology, 2019, 35(11): 2658-2664.
|
| 18 |
KUMARI Saroj, KUMAR Rajeev, AGRAWAL Pinki R, et al. Fabrication of lightweight and porous silicon carbide foams as excellent microwave susceptor for heat generation[J]. Materials Chemistry and Physics, 2020, 253: 123211.
|
| 19 |
LI Wanchong, LI Chusen, LIN Lihai, et al. All-dielectric radar absorbing array metamaterial based on silicon carbide/carbon foam material[J]. Journal of Alloys and Compounds, 2019, 781: 883-891.
|
| 20 |
ZHOU Nan, LIU Shiyu, ZHANG Yaning, et al. Silicon carbide foam supported ZSM-5 composite catalyst for microwave-assisted pyrolysis of biomass[J]. Bioresource Technology, 2018, 267: 257-264.
|
| 21 |
TAN Ruiyang, ZHOU Jintang, YAO Zhengjun, et al. A low-cost lightweight microwave absorber: Silicon carbide synthesized from tissue[J]. Ceramics International, 2021, 47(2): 2077-2085.
|
| 22 |
CAMACHO HERNANDEZ Jesus Nain, LINK Guido, SOLDATOV Sergey, et al. Experimental and numerical analysis of the complex permittivity of open-cell ceramic foams[J]. Ceramics International, 2020, 46(17): 26829-26840.
|
| 23 |
WEI Bo, WANG Mengqing, YAO Zhengjun, et al. Bimetallic nanoarrays embedded in three-dimensional carbon foam as lightweight and efficient microwave absorbers[J]. Carbon, 2022, 191: 486-501.
|
| 24 |
ZHANG Huihui, LIU Huan, WU Haibo, et al. Microwave absorbing property of gelcasting SiC-Si3N4 ceramics with hierarchical pore structures[J]. Journal of the European Ceramic Society, 2022, 42(4): 1249-1257.
|
| 25 |
LI Xiangming, ZHANG Litong, YIN X, et al. Mechanical and dielectric properties of porous Si3N4-SiC(BN) ceramic[J]. Journal of Alloys & Compounds, 2010, 490(1/2): L40-L43.
|
| 26 |
YE Xinli, ZHANG Junxiong, CHEN Zhaofeng, et al. Microwave absorption properties of Ni/C@SiC composites prepared by precursor impregnation and pyrolysis processes[J]. Defence Technology, 2023, 21: 94-102.
|
| 27 |
ZHONG Zhaoxin, ZHANG Biao, YE Jian, et al. Tailorable microwave absorption properties of macro-porous core@shell structured SiC@Ti3SiC2 via molten salt shielded synthesis (MS3) method in air[J]. Journal of Alloys and Compounds, 2022, 927: 167046.
|
| 28 |
LAN Xiaolin, LI Yibin, WANG Zhijiang. High-temperature electromagnetic wave absorption, mechanical and thermal insulation properties of in situ grown SiC on porous SiC skeleton[J]. Chemical Engineering Journal, 2020, 397(29): 125250.
|
| 29 |
SRIRAM S, SIERGIEJ R R, CLARKE R C, et al. SiC for microwave power transistors[J]. Physica Status Solidi (a), 1997, 162(1): 441-457.
|
| 30 |
CERNEAUX Sophie, XIONG Xiangyuan, SIMON George P, et al. Sol-gel synthesis of SiC-TiO2 nanoparticles for microwave processing[J]. Nanotechnology, 2007, 18(5): 055708.
|
| 31 |
OGHBAEI Morteza, MIRZAEE Omid. Microwave versus conventional sintering: A review of fundamentals, advantages and applications[J]. ChemInform, 2010, 41(1/2): 175-189.
|
| 32 |
RAJKUMAR K, ARAVINDAN S. Microwave sintering of copper-graphite composites[J]. Journal of Materials Processing Technology, 2009, 209(15/16): 5601-5605.
|
| 33 |
RAMESH Peelamedu D, BRANDON David, Levi SCHÄCHTER. Use of partially oxidized SiC particle bed for microwave sintering of low loss ceramics[J]. Materials Science and Engineering: A, 1999, 266(1/2): 211-220.
|
| 34 |
LASRI Jacob, RAMESH Peelamedu D, Levi SCHÄCHTER. Energy conversion during microwave sintering of a multiphase ceramic surrounded by a susceptor[J]. Journal of the American Ceramic Society, 2000, 83(6): 1465-1468.
|
| 35 |
WU Tong, LIU Yun, ZENG Xiang, et al. Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 7370-7380.
|
| 36 |
MILES P A, WESTPHAL W B, VON HIPPEL A. Dielectric spectroscopy of ferromagnetic semiconductors[J]. Reviews of Modern Physics, 1957, 29(3): 279-307.
|
| 37 |
CHENG Yan, CAO Jieming, LI Yong, et al. The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorption[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 1427-1435.
|
| 38 |
LIANG Caiyun, WANG Zhenfeng, WU Lina, et al. Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29950-29957.
|