| 1 |
XIA Jinbao, ZHU Feng, ZHANG Sasa, et al. Probing greenhouse gases in turbulent atmosphere by long-range open-path wavelength modulation spectroscopy[J]. Optics and Lasers in Engineering, 2019, 117: 21-28.
|
| 2 |
CHAO X, JEFFRIES J B, HANSON R K. Wavelength-modulation-spectroscopy for real-time, in situ NO detection in combustion gases with a 5.2μm quantum-cascade laser[J]. Applied Physics B, 2012, 106(4): 987-997.
|
| 3 |
刘立富, 邱梦春, 温作乐, 等. 基于TDLAS技术在线监测烟气排放一氧化碳的应用[J]. 中国环保产业, 2019(4): 29-32.
|
|
LIU Lifu, QIU Mengchun, WEN Zuole, et al. Application of laser gas analyzer in CO monitoring of flue gas[J]. China Environmental Protection Industry, 2019(4): 29-32.
|
| 4 |
彭于权, 阚瑞峰, 许振宇, 等. 基于可调谐半导体激光吸收光谱技术的甲烷/空气预混平焰炉温度测量[J]. 大气与环境光学学报, 2019, 14(3): 228-234.
|
|
PENG Yuquan, KAN Ruifeng, XU Zhenyu, et al. Temperature measurement of CH4/air premixed flat flame burner based on tunable diode laser absorption spectroscopy[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(3): 228-234.
|
| 5 |
中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[N]. 人民日报, 2021-10-25(1).
|
|
Opinions of the Central Committee of the Communist Party of China and the State Council on fully and accurately implementing the new development concept and doing a good job in carbon peak carbon neutralization[N]. People’s Daily, 2021-10-25(1).
|
| 6 |
王月姑, 周梅, 王兆林, 等. 以氨燃料为介质的全生命周期储能效率估算[J]. 储能科学与技术, 2018, 7(2): 301-308.
|
|
WANG Yuegu, ZHOU Mei, WANG Zhaolin, et al. Life-cycle energy efficiency estimation of large-scale ammonia fuel energy storage system[J]. Energy Storage Science and Technology, 2018, 7(2): 301-308.
|
| 7 |
赖诗妮, 江丽霞, 李军, 等. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615.
|
|
LAI Shini, JIANG Lixia, LI Jun, et al. Research progress of ammonia blended fossil fuel[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615.
|
| 8 |
姚顺春, 郭松杰, 杨言, 等. 基于可调谐二极管激光吸收光谱技术的烟气氨逃逸检测研究及应用(特邀)[J]. 光子学报, 2023, 52(3): 11-24.
|
|
YAO Shunchun, GUO Songjie, YANG Yan, et al. Research and application of flue gas ammonia slip detection based on tunable diode laser absorption spectroscopy (invited)[J]. Acta Photonica Sinica, 2023, 52(3): 11-24.
|
| 9 |
郑成强, 李小龙, 李军状, 等. 燃煤电厂逃逸氨迁移转化特性研究进展[J]. 化工进展, 2022, 41(2): 964-973.
|
|
ZHENG Chengqiang, LI Xiaolong, LI Junzhuang, et al. Research progress on migration and transformation characteristics of escaped ammonia in coal-fired power plants[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 964-973.
|
| 10 |
GU Baojing, ZHANG Lin, VAN DINGENEN Rita, et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution[J]. Science, 2021, 374(6568): 758-762.
|
| 11 |
Ravindra Kumar JHA. Non-dispersive infrared gas sensing technology: A review[J]. IEEE Sensors Journal, 2022, 22(1): 6-15.
|
| 12 |
KIRA Oz, SHAVIV Avi, DUBOWSKI Yael. Direct tracing of NH3 and N2O emissions associated with urea fertilization approaches, using static incubation cells[J]. Science of The Total Environment, 2019, 661: 75-85.
|
| 13 |
汪玉, 王贵师, 李竣, 等. 红外光谱技术测量氨排放的研究进展[J]. 大气与环境光学学报, 2024, 19(4): 391-404.
|
|
WANG Yu, WANG Guishi, LI Jun, et al. Research progress of measuring ammonia emission using infrared spectroscopy[J]. Journal of Atmospheric and Environmental Optics, 2024, 19(4): 391-404.
|
| 14 |
MOLLER Christian, WUNSCHER Heike, FRANK Thomas, et al. Ammonia sensors-different measurement principles[C]//2021 Smart Systems Integration (SSI). Grenoble, France: IEEE, 2021: 1-4.
|
| 15 |
MA Liuhao, WANG Wei, ZHOU Chen, et al. A laser absorption sensor for fuel slip monitoring in high-humidity flue gases from ammonia combustion[J]. Measurement Science and Technology, 2023, 34(9): 094005.
|
| 16 |
GOLDENSTEIN Christopher S, Mitchell SPEARRIN R, JEFFRIES Jay B, et al. Infrared laser-absorption sensing for combustion gases[J]. Progress in Energy and Combustion Science, 2017, 60: 132-176.
|
| 17 |
HANSON R K, DAVIDSON D F. Recent advances in laser absorption and shock tube methods for studies of combustion chemistry[J]. Progress in Energy and Combustion Science, 2014, 44: 103-114.
|
| 18 |
DUAN Kun, JI Yongbin, WEN Daxin, et al. Mid-infrared fiber-coupled laser absorption sensor for simultaneous NH3 and NO monitoring in flue gases[J]. Sensors and Actuators B: Chemical, 2023, 374: 132805.
|
| 19 |
GUO Songjie, LI Jiatong, WEI Youxing, et al. A multi-laser hybrid absorption sensor for simultaneous measurement of NH3, NO, and temperature in denitrification flue gas[J]. Infrared Physics & Technology, 2024, 136: 105034.
|
| 20 |
GUO Songjie, LI Zhenghui, LIU Zeming, et al. Simultaneous measurement of NH3 and NO by mid-infrared tunable diode laser absorption spectroscopy based on machine-learning algorithms[J]. Measurement, 2024, 234: 114858.
|
| 21 |
赵晓虎, 孙鹏帅, 张志荣, 等. 基于跨波长调制和直接吸收光谱的宽量程多气体检测方法[J]. 红外与激光工程, 2023, 52(1): 90-99.
|
|
ZHAO Xiaohu, SUN Pengshuai, ZHANG Zhirong, et al. Wide-range multi-gas detection method based on wavelength modulation spectroscopy and direct absorption spectroscopy[J]. Infrared and Laser Engineering, 2023, 52(1): 90-99.
|
| 22 |
LI Jinyi, ZHANG Chenge, WEI Yingying, et al. In situ, portable and robust laser sensor for simultaneous measurement of ammonia, water vapor and temperature in denitrification processes of coal fired power plants[J]. Sensors and Actuators B: Chemical, 2020, 305: 127533.
|
| 23 |
CUI H, LI J, WANG F, et al. High-temperature determination of ammonia by tunable diode laser absorption spectroscopy (TDLAS)[J]. Instrumentation Science & Technology, 2024, 52(3): 221-235.
|
| 24 |
GUO Xinqian, ZHENG Fei, LI Chuanliang, et al. A portable sensor for in situ measurement of ammonia based on near-infrared laser absorption spectroscopy[J]. Optics and Lasers in Engineering, 2019, 115: 243-248.
|