| 1 |
谭超, 董峰. 多相流过程参数检测技术综述[J]. 自动化学报, 2013, 39(11): 1923-1932.
|
|
TAN Chao, DONG Feng. Parameters measurement for multiphase flow process[J]. Acta Automatica Sinica, 2013, 39(11): 1923-1932.
|
| 2 |
BONIZZI Marco, ISSA Raad I. On the simulation of three-phase slug flow in nearly horizontal pipes using the multi-fluid model[J]. International Journal of Multiphase Flow, 2003, 29(11): 1719-1747.
|
| 3 |
FOSSA Marco. Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows[J]. Flow Measurement and Instrumentation, 1998, 9(2): 103-109.
|
| 4 |
苏茜, 邓翔天, 刘振兴. 油气水三相流相含率超声测试模型优化[J]. 化工进展, 2024, 43(2): 791-799.
|
|
SU Qian, DENG Xiangtian, LIU Zhenxing. Model optimization of phase fraction in oil-gas-water three-phase flow using ultrasonic testing technique[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 791-799.
|
| 5 |
SALGADO César Marques, PEREIRA Cláudio M N A, SCHIRRU Roberto,et al. Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks[J]. Progress in Nuclear Energy, 2010, 52(6): 555-562.
|
| 6 |
GU Mengtao, LI Jian, HOSSAIN Md Moinul,et al. High-resolution microscale velocity field measurement using light field particle image-tracking velocimetry[J]. Physics of Fluids, 2023, 35(11): 112006.
|
| 7 |
ZHANG Zhixiang, JIN Ningde, BAI Landi, et al. Nonlinear analysis for identification of vertical upward oil-water two-phase flow patterns[J]. IEEE Sensors Journal, 2024, 24(3): 3259-3265.
|
| 8 |
徐一, 李轶, 马志扬, 等. 基于电容层析测量的油气两相流动态信号时频分析方法[J]. 化工进展, 2024, 43(2): 855-864.
|
|
XU Yi, LI Yi, MA Zhiyang, et al. Dynamic signal analysis for gas-oil two-phase flow in time-frequency domain based on electrical capacitance tomography[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 855-864.
|
| 9 |
董峰, 李昭, 李凌涵, 等. 多模态动态核主成分分析的气液两相流状态监测[J]. 自动化学报, 2022, 48(3): 762-773.
|
|
DONG Feng, LI Zhao, LI Linghan, et al. Flow state monitoring of gas-liquid two-phase flow using multiple dynamic kernel principle component analysis[J]. Acta Automatica Sinica, 2022, 48(3): 762-773.
|
| 10 |
LI Linghan, HAN Xinyi, DONG Feng, et al. Zero-shot state identification of industrial gas-liquid two-phase flow via supervised deep slow and steady feature analysis[J]. IEEE Transactions on Industrial Informatics, 2024, 20(6): 8170-8180.
|
| 11 |
史雪薇, 谭超, 董峰. 基于环形电导传感器的气液两相流流型识别与过程参数测量[J]. 化工进展, 2024, 43(2): 637-648.
|
|
SHI Xuewei, TAN Chao, DONG Feng. Gas-liquid two-phase flow pattern identification and flow parameters measurement based on the ring-shape conductance sensor[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 637-648.
|
| 12 |
SHI Xuewei, TAN Chao, DONG Xiaoxiao, et al. Structural velocity measurement of gas-liquid slug flow based on EMD of continuous wave ultrasonic Doppler[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(11): 2662-2675.
|
| 13 |
王杰, 李爱蓉. 小波包分析识别气液固三相流流型[J]. 石油化工, 2020, 49(1): 62-69.
|
|
WANG Jie, LI Airong. Identification of gas-liquid-solid three-phase flow patterns by wavelet packet analysis[J]. Petrochemical Technology, 2020, 49(1): 62-69.
|
| 14 |
GILLES Jérôme. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 3999-4010.
|
| 15 |
CHEN Jinglong, PAN Jun, LI Zipeng, et al. Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals[J]. Renewable Energy, 2016, 89: 80-92.
|
| 16 |
ANURAGI Arti, SISODIA Dilip Singh. Empirical wavelet transform based automated alcoholism detecting using EEG signal features[J]. Biomedical Signal Processing and Control, 2020, 57: 101777.
|
| 17 |
RAGAB Mohamed, OMER Osama A, Mohamed ABDEL-NASSER. Compressive sensing MRI reconstruction using empirical wavelet transform and grey wolf optimizer[J]. Neural Computing and Applications, 2020, 32(7): 2705-2724
|
| 18 |
REN Chao, JIANG Bin, LU Ningyun, et al. Meta-learning with distributional similarity preference for few-shot fault diagnosis under varying working conditions[J]. IEEE Transactions on Cybernetics, 2024, 54(5): 2746-2756.
|
| 19 |
SNELL Jake, SWERSKY Kevin, ZEMEL Richard, et al. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA: ACM, 2017: 4080-4090.
|
| 20 |
VINYALS Oriol, BLUNDELL Charles, LILLICRAP Timothy, et al. Matching networks for one shot learning[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: ACM, 2016: 3637-3645.
|
| 21 |
XIE Tingli, HUANG Xufeng, CHOI Seung-Kyum. Metric-based meta-learning for cross-domain few-shot identification of welding defect[J]. Journal of Computing and Information Science in Engineering, 2023, 23(3): 030902.
|
| 22 |
TANG Tang, WANG Jingwei, YANG Tianyuan, et al. An improved prototypical network with L2 prototype correction for few-shot cross-domain fault diagnosis[J]. Measurement, 2023, 217: 113065.
|
| 23 |
LI Kang, SHANG Chao, YE Hao. Reweighted regularized prototypical network for few-shot fault diagnosis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(5): 6206-6217.
|
| 24 |
WANG Yimeng, SHEN Jie, YANG Shusen, et al. Knowledge and data dual-driven fault diagnosis in industrial scenarios: A survey[J]. IEEE Internet of Things Journal, 2024, 11(11): 19256-19277.
|
| 25 |
BERTOLAZZI Enrico, FREGO Marco, BIRAL Francesco. Point data reconstruction and smoothing using cubic splines and clusterization[J]. Mathematics and Computers in Simulation, 2020, 176: 36-56.
|
| 26 |
DONG Feng, ZHANG Shuo, SHI Xuewei, et al. Flow regimes identification-based multidomain features for gas-liquid two-phase flow in horizontal pipe[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 7502911.
|
| 27 |
DENG Fang, GUO Su, ZHOU Rui, et al. Sensor multifault diagnosis with improved support vector machines[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(2): 1053-1063.
|
| 28 |
CHAI Zheng, ZHAO Chunhui. Enhanced random forest with concurrent analysis of static and dynamic nodes for industrial fault classification[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1): 54-66.
|
| 29 |
ZHEN Rong, JIN Yongxing, HU Qinyou, et al. Maritime anomaly detection within coastal waters based on vessel trajectory clustering and Naïve Bayes classifier[J]. Journal of Navigation, 2017, 70(3): 648-670.
|
| 30 |
VAN DER MAATEN Laurens, HINTON Geoffrey. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
|