化工进展 ›› 2025, Vol. 44 ›› Issue (3): 1263-1274.DOI: 10.16085/j.issn.1000-6613.2024-0319
毛宇炜1(
), 薛志亮1(
), 洪钦2, 付鑫3, 金建龙1, 周永刚1, 黄群星1
收稿日期:2024-02-26
修回日期:2024-06-01
出版日期:2025-03-25
发布日期:2025-04-16
通讯作者:
薛志亮
作者简介:毛宇炜(1999—),男,硕士研究生,研究方向为废轮胎热解气污染物脱除。E-mail:22327125@zju.edu.cn。
基金资助:
MAO Yuwei1(
), XUE Zhiliang1(
), HONG Qin2, FU Xin3, JIN Jianlong1, ZHOU Yonggang1, HUANG Qunxing1
Received:2024-02-26
Revised:2024-06-01
Online:2025-03-25
Published:2025-04-16
Contact:
XUE Zhiliang
摘要:
常规间接换热冷凝得到的废轮胎热解油存在闪点偏低的问题。为解决此问题,本文提出了一种用于热解油气冷凝的喷水急冷技术。基于闭杯闪点实验与气相色谱-质谱联用(GC-MS)技术分析了喷水急冷条件下热解油的闪点和组分,得到了废轮胎热解油气的喷水急冷特性。实验结果表明,油气喷水急冷可以快速冷凝油气,降低油气分压,从而显著降低热解油中低闪点组分的含量,提高热解油的闪点。GC-MS分析结果表明,油气喷水急冷技术降低了热解油中低碳数组分的含量,提高了高碳数组分的含量,导致热解油组分的碳数分布由低碳向高碳转变。同时,油气喷水急冷降低了热解油中脂肪烃、单环芳烃(MAHs)以及杂原子化合物的含量,提高了多环芳烃(PAHs)的含量,高附加值产物BTEX(苯、甲苯、乙苯和二甲苯)和D-柠檬烯的含量有所下降。此外,油气喷水急冷还降低了热解油中含氮/含硫组分的总含量,其中含氮组分和含氮含硫组分的含量下降,而含硫组分的含量略有上升。本文为废轮胎热解油的提质改性研究提供了参考。
中图分类号:
毛宇炜, 薛志亮, 洪钦, 付鑫, 金建龙, 周永刚, 黄群星. 废轮胎热解油气喷水急冷特性[J]. 化工进展, 2025, 44(3): 1263-1274.
MAO Yuwei, XUE Zhiliang, HONG Qin, FU Xin, JIN Jianlong, ZHOU Yonggang, HUANG Qunxing. Study on water spray quenching characteristics of waste tire pyrolysis oil-gas[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1263-1274.
| 工业分析质量分数/% | 元素分析质量分数/% | |||||||
|---|---|---|---|---|---|---|---|---|
| Mad | Aad | Vad | FCad | Cad | Had | Oad① | Nad | Sad |
| 1.03 | 7.81 | 61.70 | 29.46 | 80.76 | 6.81 | 0.39 | 0.39 | 2.84 |
表1 废轮胎胶粒工业分析和元素分析
| 工业分析质量分数/% | 元素分析质量分数/% | |||||||
|---|---|---|---|---|---|---|---|---|
| Mad | Aad | Vad | FCad | Cad | Had | Oad① | Nad | Sad |
| 1.03 | 7.81 | 61.70 | 29.46 | 80.76 | 6.81 | 0.39 | 0.39 | 2.84 |
| 测量参数 | 测量次数 | 计算方法 | uA |
|---|---|---|---|
| 油气冷凝温度 | 120 | 贝塞尔法 | 0.182℃ |
| 油气冷凝压力 | 120 | 贝塞尔法 | 1.526Pa |
| 热解油闪点 | 3 | 极差法 | 1.264℃ |
| 热解油组分相对含量 | 3 | 极差法 | 0.0465% |
表2 A类标准不确定度评定结果
| 测量参数 | 测量次数 | 计算方法 | uA |
|---|---|---|---|
| 油气冷凝温度 | 120 | 贝塞尔法 | 0.182℃ |
| 油气冷凝压力 | 120 | 贝塞尔法 | 1.526Pa |
| 热解油闪点 | 3 | 极差法 | 1.264℃ |
| 热解油组分相对含量 | 3 | 极差法 | 0.0465% |
| 传感器名称 | 型号 | 精度 | uB |
|---|---|---|---|
| K型铠装热电偶 | WRNK-131 | ±0.5% | 0.508℃ |
| 智能差压传感器 | 3151DP3B22TM7B3i | ±0.1% FS | 0.577Pa |
| 单通道K型热电偶 | HY-101 | ±0.1%(±0.4℃) | 0.272℃ |
| 载气流量检测器 | AFC-2030 | ±5% | 0.232% |
表3 B类标准不确定度评定结果
| 传感器名称 | 型号 | 精度 | uB |
|---|---|---|---|
| K型铠装热电偶 | WRNK-131 | ±0.5% | 0.508℃ |
| 智能差压传感器 | 3151DP3B22TM7B3i | ±0.1% FS | 0.577Pa |
| 单通道K型热电偶 | HY-101 | ±0.1%(±0.4℃) | 0.272℃ |
| 载气流量检测器 | AFC-2030 | ±5% | 0.232% |
| 测量参数 | uA | uB | uC | ur/% |
|---|---|---|---|---|
| 油气冷凝温度 | 0.182℃ | 0.508℃ | 0.540℃ | 0.307 |
| 油气冷凝压力 | 1.526Pa | 0.577Pa | 1.631Pa | 1.657 |
| 热解油闪点 | 1.264℃ | 0.272℃ | 1.293℃ | 2.877 |
| 热解油组分相对含量 | 0.0465% | 0.232% | 0.246% | 2.944 |
表4 总不确定度评定结果
| 测量参数 | uA | uB | uC | ur/% |
|---|---|---|---|---|
| 油气冷凝温度 | 0.182℃ | 0.508℃ | 0.540℃ | 0.307 |
| 油气冷凝压力 | 1.526Pa | 0.577Pa | 1.631Pa | 1.657 |
| 热解油闪点 | 1.264℃ | 0.272℃ | 1.293℃ | 2.877 |
| 热解油组分相对含量 | 0.0465% | 0.232% | 0.246% | 2.944 |
| 冷凝温度/℃ | 闪点/℃ |
|---|---|
| 188 | 67 |
| 177 | 63 |
| 177 | 62 |
| 175 | 61 |
| 150 | 47 |
| 145 | 46 |
表5 常规冷凝热解油闪点及冷凝温度
| 冷凝温度/℃ | 闪点/℃ |
|---|---|
| 188 | 67 |
| 177 | 63 |
| 177 | 62 |
| 175 | 61 |
| 150 | 47 |
| 145 | 46 |
| 工况 | 序号 | 热解油闪点/℃ | 冷凝温度/℃ | 热解油产率/% |
|---|---|---|---|---|
| 未采用喷水急冷 | 1 | 78 | 205.1 | 17.27 |
| 2 | 62 | 170.0 | 17.52 | |
| 采用喷水急冷 | 3 | 78 | 176.7 | 18.72 |
| 4 | 62 | 146.2 | 21.23 |
表6 油品闪点相同时喷水急冷对热解油产率的影响
| 工况 | 序号 | 热解油闪点/℃ | 冷凝温度/℃ | 热解油产率/% |
|---|---|---|---|---|
| 未采用喷水急冷 | 1 | 78 | 205.1 | 17.27 |
| 2 | 62 | 170.0 | 17.52 | |
| 采用喷水急冷 | 3 | 78 | 176.7 | 18.72 |
| 4 | 62 | 146.2 | 21.23 |
| 组分类别 | 碳数区间 | 未采用喷水急冷 组分物质的量占比/% | 采用喷水急冷 组分物质的量占比/% | ||
|---|---|---|---|---|---|
| 147℃ | 176℃ | 147℃ | 176℃ | ||
| MAHs | C7~C10 | 74.19 | 67.41 | 65.73 | 60.98 |
| C11~C18 | 25.81 | 32.59 | 32.50 | 35.04 | |
| C19~C32 | 0 | 0 | 1.77 | 3.97 | |
| 杂原子 化合物 | C7~C10 | 29.27 | 14.69 | 17.56 | 10.41 |
| C11~C18 | 70.73 | 85.31 | 82.43 | 89.59 | |
| 脂肪烃 | C11~C18 | 62.49 | 23.97 | 29.86 | 21.59 |
| C19~C32 | 37.51 | 76.03 | 70.14 | 78.41 | |
表7 不同工况下热解油中组分在各碳数区间内的物质的量占比
| 组分类别 | 碳数区间 | 未采用喷水急冷 组分物质的量占比/% | 采用喷水急冷 组分物质的量占比/% | ||
|---|---|---|---|---|---|
| 147℃ | 176℃ | 147℃ | 176℃ | ||
| MAHs | C7~C10 | 74.19 | 67.41 | 65.73 | 60.98 |
| C11~C18 | 25.81 | 32.59 | 32.50 | 35.04 | |
| C19~C32 | 0 | 0 | 1.77 | 3.97 | |
| 杂原子 化合物 | C7~C10 | 29.27 | 14.69 | 17.56 | 10.41 |
| C11~C18 | 70.73 | 85.31 | 82.43 | 89.59 | |
| 脂肪烃 | C11~C18 | 62.49 | 23.97 | 29.86 | 21.59 |
| C19~C32 | 37.51 | 76.03 | 70.14 | 78.41 | |
| 组分 | CAS号 | 组分名称 | 分子式 | 类别 |
|---|---|---|---|---|
| 含氮组分 | 1198-37-4 | 2,4-二甲基喹啉 | C11H11N | 喹啉类 |
| 629-79-8 | 十六腈 | C16H31N | 腈类 | |
| 5399-02-0 | 十七腈 | C17H33N | 腈类 | |
| 101-54-2 | 对氨基二苯胺 | C12H12N2 | 二苯胺 | |
| 793-24-8 | 4-[(4-甲基-2-戊基) 氨基]二苯胺 | C18H24N2 | 二苯胺 | |
| 含硫组分 | 18428-05-2 | 2-乙基-5,7- 二甲基苯并[b]噻吩 | C12H14S | 噻吩衍生物 |
| 同时含氮 含硫组分 | 95-16-9 | 苯并噻唑 | C7H5NS | 苯并噻唑 |
| 883-93-2 | 2-苯基苯并噻唑 | C13H9NS | 苯并噻唑衍生物 |
表8 热解油中出现的含氮/含硫组分
| 组分 | CAS号 | 组分名称 | 分子式 | 类别 |
|---|---|---|---|---|
| 含氮组分 | 1198-37-4 | 2,4-二甲基喹啉 | C11H11N | 喹啉类 |
| 629-79-8 | 十六腈 | C16H31N | 腈类 | |
| 5399-02-0 | 十七腈 | C17H33N | 腈类 | |
| 101-54-2 | 对氨基二苯胺 | C12H12N2 | 二苯胺 | |
| 793-24-8 | 4-[(4-甲基-2-戊基) 氨基]二苯胺 | C18H24N2 | 二苯胺 | |
| 含硫组分 | 18428-05-2 | 2-乙基-5,7- 二甲基苯并[b]噻吩 | C12H14S | 噻吩衍生物 |
| 同时含氮 含硫组分 | 95-16-9 | 苯并噻唑 | C7H5NS | 苯并噻唑 |
| 883-93-2 | 2-苯基苯并噻唑 | C13H9NS | 苯并噻唑衍生物 |
| 1 | YAQOOB Haseeb, TEOH Yew Heng, AHMAD JAMIL Muhammad, et al. Potential of tire pyrolysis oil as an alternate fuel for diesel engines: A review[J]. Journal of the Energy Institute, 2021, 96: 205-221. |
| 2 | 王玉伟, 潘劲松, 苏俊杰, 等. 废旧轮胎高值化利用进展及建议[J]. 山东工业技术, 2020(4): 25-31. |
| WANG Yuwei, PAN Jinsong, SU Junjie, et al. Progress and suggestions on high-value utilization of waste tires[J]. Shandong Industrial Technology, 2020(4): 25-31. | |
| 3 | MARTÍNEZ Juan Daniel, LAPUERTA Magín, Reyes GARCÍA-CONTRERAS, et al. Fuel properties of tire pyrolysis liquid and its blends with diesel fuel[J]. Energy & Fuels, 2013, 27(6): 3296-3305. |
| 4 | ZHANG Guohao, CHEN Feng, ZHANG Yuhao, et al. Properties and utilization of waste tire pyrolysis oil: A mini review[J]. Fuel Processing Technology, 2021, 211: 106582. |
| 5 | 国家市场监督检验检疫总局, 中国国家标准化管理委员会. 化学品分类和标签规范 第7部分: 易燃液体: [S]. 北京: 中国标准出版社, 2014. |
| State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Rules for classification and labelling of chemicals:Part 7: Flammable liquids: [S]. Beijing: Standards Press of China, 2014. | |
| 6 | Mariusz WĄDRZYK, JANUS Rafał, Bartłomiej RZĄDZIK, et al. Pyrolysis oil from scrap tires as a source of fuel components: Manufacturing, fractionation, and characterization[J]. Energy & Fuels, 2020, 34(5): 5917-5928. |
| 7 | 潘宇涵, 徐俊, 赵光杰, 等. 废轮胎梯级热解中试装置开发与产物特性分析[J]. 化工进展, 2023, 42(3): 1240-1247. |
| PAN Yuhan, XU Jun, ZHAO Guangjie, et al. Development of pilot-plant for the step pyrolysis of waste tires and analysis of product characteristics[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1240-1247. | |
| 8 | HWANG Jae Gyu, LEE Byeong Kyu, CHOI Myung Kyu, et al. Optimal production of waste tire pyrolysis oil and recovery of high value-added D-limonene in a conical spouted bed reactor[J]. Energy, 2023, 262: 125519. |
| 9 | PAN Yuhan, SIMA Jingyuan, WANG Xinwen, et al. BTEX recovery from waste rubbers by catalytic pyrolysis over Zn loaded tire derived char[J]. Waste Management, 2021, 131: 214-225. |
| 10 | 李淼. 废轮胎热解过程中氮、硫、氯的迁移特性实验研究[D]. 天津: 天津大学, 2020. |
| LI Miao. Experimental study on migration characteristics of nitrogen, sulfur and chlorine during pyrolysis of waste tires[D]. Tianjin: Tianjin University, 2020. | |
| 11 | FAISAL F, M—G RASUL, M—I JAHIRUL. Upgrading MSW pyrolysis oil through distillation and hydrotreatment for automobile engine applications: A short review[J]. Energy Reports, 2023, 9: 555-560. |
| 12 | NABI Md Nurun, HUSSAM Wisam K, RASHID Adib BIN, et al. Notable improvement of fuel properties of waste tire pyrolysis oil by blending a novel pumpkin seed oil-biodiesel[J]. Energy Reports, 2022, 8: 112-119. |
| 13 | 刘本仕, 韩财畴. RDS柴油汽提塔使用蒸汽、天然气、氮气汽提对柴油质量的影响[J]. 石化技术, 2022, 29(7): 260-261. |
| LIU Benshi, HAN Caichou. Effect of steam, natural gas and nitrogen stripping on diesel quality in RDS diesel stripper[J]. Petrochemical Industry Technology, 2022, 29(7): 260-261. | |
| 14 | 陈佳鑫. 基于分解方法的初馏塔和常压塔多目标协同运行优化方法[D]. 沈阳: 东北大学, 2019. |
| CHEN Jiaxin. Multi-objective optimization approach for cooperative operation indices of prefractionator and atmospheric distillation column based on decomposition method[D]. Shenyang: Northeastern University, 2019. | |
| 15 | 杨庶. 分馏塔区配管设计[J]. 广州化工, 2021, 49(17): 145-148. |
| YANG Shu. Piping design of fractionating tower area[J]. Guangzhou Chemical Industry, 2021, 49(17): 145-148. | |
| 16 | 钟浥柳. 废轮胎热解油燃烧动力学特性研究[D]. 杭州: 浙江大学, 2022. |
| ZHONG Yiliu. Study on combustion kinetic characteristic of oil droplets produced by pyrolyzing waste tire rubber[D]. Hangzhou: Zhejiang University, 2022. | |
| 17 | 李锦峰. 仿蜂巢结构复合吸液芯均热板传热性能[D]. 济南: 山东大学, 2022. |
| LI Jinfeng. Heat transfer performance of the vapor chamber with bionic honeycomb structure composite wick[D]. Jinan: Shandong University, 2022. | |
| 18 | 马红莹. 双入口管柱式气液分离器气相分离性能实验研究[D]. 北京: 中国石油大学(北京), 2022. |
| MA Hongying. Experimental study on gas phase separation performance of dual-inlet gas-liquid cylindrical cyclone[D]. Beijing: China University of Petroleum (Beijing), 2022. | |
| 19 | 霍佳宁. 生物质燃料黏度的检测方法及预测模型研究[D]. 保定: 河北大学, 2023. |
| HUO Jianing. Research on detection method and prediction model for viscosity of biomass fuel[D]. Baoding: Hebei University, 2023. | |
| 20 | 吴丹, 周洁, 俞天明, 等. 废轮胎热解衍生油非加氢脱硫[J]. 环境工程学报, 2013, 7(8): 3153-3157. |
| WU Dan, ZHOU Jie, YU Tianming, et al. Non-hydrogenation desulfurization of derived pyrolytic oil from scrap tires[J]. Chinese Journal of Environmental Engineering, 2013, 7(8): 3153-3157. | |
| 21 | 裴宜星. 废轮胎回转窑热解油的应用研究[D]. 杭州: 浙江大学, 2006. |
| PEI Yixing. Properties and application of pyrolytic oil from pyrolysis of used tires in rotary kiln[D]. Hangzhou: Zhejiang University, 2006. | |
| 22 | 骆亮, 陈凯涛, 杨一帆, 等. 大气多环芳烃的浓度水平、来源与健康风险评价综述[J]. 首都师范大学学报(自然科学版), 2024, 45(3): 121-131. |
| LUO Liang, CHEN Kaitao, YANG Yifan, et al. Concentration levels, sources and health risk assessment of atmospheric polycyclic aromatic hydrocarbons[J]. Journal of Capital Normal University (Natural Science Edition), 2024, 45(3): 121-131. | |
| 23 | 栾明月. 环烷基原油馏分油制备油基钻井液基础油的研究[D]. 北京: 中国石油大学(北京), 2022. |
| LUAN Mingyue. Research on preparation of oil-based drilling fluid base oil from naphthenic crude oil distillate[D]. Beijing: China University of Petroleum (Beijing), 2022. | |
| 24 | 李亚利. 废轮胎热解油的性质及化学组成分析[D]. 上海: 华东理工大学, 2012. |
| LI Yali. Study on the properties and chemical composition of waste tire pyrolysis oil[D]. Shanghai: East China University of Science and Technology, 2012. | |
| 25 | 舒亦桥, 陶志平, 王俊, 等. 汽油特征组分的自燃特性和火焰传播速度[J]. 石油炼制与化工, 2023, 54(11): 76-85. |
| SHU Yiqiao, TAO Zhiping, WANG Jun, et al. Spontaneous ignition characteristics and flame propagation speed of essential components in gasoline[J]. Petroleum Processing and Petrochemicals, 2023, 54(11): 76-85. | |
| 26 | 黄丽丽, 王亘. 恶臭异味治理需求与治理技术[J]. 中国环保产业, 2023(11): 51-55. |
| HUANG Lili, WANG Gen. Needs and technologies for the treatment of odor[J]. China Environmental Protection Industry, 2023(11): 51-55. | |
| 27 | 黄凌瑞, 朱锡锋. 富氮生物质热解气的分级冷凝特性研究[J]. 化工学报, 2019, 70(6): 2229-2236. |
| HUANG Lingrui, ZHU Xifeng. Study on fractional condensation of pyrolysis vapors of nitrogen-enriched biomass[J]. CIESC Journal, 2019, 70(6): 2229-2236. | |
| 28 | 薛麟嘉. 废轮胎热解轻质油中高价值物质的分离提纯[D]. 大连: 大连理工大学, 2022. |
| XUE Linjia. Separation and purification of high-value substances from waste tire pyrolysis light oil[D]. Dalian: Dalian University of Technology, 2022. | |
| 29 | 韩元凯. 溶胀改性强化废轮胎微波热解特性研究[D]. 济南: 山东大学, 2021. |
| HAN Yuankai. Research on swelling pretreatment to enhance microwave pyrolysis characteristics of waste tires[D]. Jinan: Shandong University, 2021. | |
| 30 | DANIEL MARTÍNEZ Juan, Alberto SANCHÍS, VESES Alberto, et al. Design and operation of a packed pilot scale distillation column for tire pyrolysis oil: Towards the recovery of value-added raw materials[J]. Fuel, 2024, 358: 130266. |
| 31 | 殷志童, 吕洪炳, 张东明, 等. 废轮胎热解富芳烃油燃烧温度与烟气污染物排放特性[J]. 环境工程, 2022, 40(10): 105-111. |
| YIN Zhitong, Hongbing LYU, ZHANG Dongming, et al. Combustion temperature and emission characteristics of flue gas pollutants of waste tires pyrolysis oil rich in aromatics[J]. Environmental Engineering, 2022, 40(10): 105-111. | |
| 32 | ZHANG Yueqin, LI Songcan, ZHANG Qundan, et al. Structural characterization and transformation of nitrogen compounds in waste tire pyrolysis oils[J]. Journal of Chromatography A, 2023, 1702: 464093. |
| 33 | TOTEVA Vesislava, STANULOV Kiril. Waste tires pyrolysis oil as a source of energy: Methods for refining[J]. Progress in Rubber, Plastics and Recycling Technology, 2020, 36(2): 143-158. |
| 34 | GMEHLING Juergen, RASMUSSEN Peter. Flash points of flammable liquid mixtures using UNIFAC[J]. Industrial & Engineering Chemistry Fundamentals, 1982, 21(2): 186-188. |
| 35 | 李汝雄. 混合液闪点的计算方法[J]. 化学工程, 1989, 17(6): 71-73, 7. |
| LI Ruxiong. Flash point of liquid mixture[J]. Chemical Engineering, 1989, 17(6): 71-73, 7. | |
| 36 | ZABETAKIS Michael George. Flammability characteristics of combustible gases and vapors[R]. Pittsburgh, PA (United States): Bureau of Mines, 1964. |
| 37 | 武丽娜, 陈睿谦. 混合液体闪点确定的计算方法[J]. 化学工程, 2016, 44(1): 75-78. |
| WU Lina, CHEN Ruiqian. Calculating method of liquid mixture flash point[J]. Chemical Engineering, 2016, 44(1): 75-78. |
| [1] | 张鑫, 汤吉昀, 陈娟, 宋占龙, 董勇, 姚洪. 高温烟气热解废轮胎过程中痕量金属Cu、Pb的迁移特性分析[J]. 化工进展, 2024, 43(3): 1606-1613. |
| [2] | 代权晨, 薛志亮, 周永刚, 洪钦, 冯宏, 金亮, 黄群星. 废轮胎热解气燃烧NO x 和SO2生成及控制[J]. 化工进展, 2024, 43(12): 7059-7066. |
| [3] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
| [4] | 潘宇涵, 徐俊, 赵光杰, 林诚乾, 金亮, 薛志亮, 周永刚, 黄群星. 废轮胎梯级热解中试装置开发与产物特性分析[J]. 化工进展, 2023, 42(3): 1240-1247. |
| [5] | 季炫宇, 林伟坚, 周雄, 柏继松, 杨宇, 孔杰, 廖重阳. 废轮胎热裂解技术研究现状与进展[J]. 化工进展, 2022, 41(8): 4498-4512. |
| [6] | 虞宇翔,徐平平,邢靖晨,常建民. 合成工艺对热解油改性酚醛树脂老化性能影响[J]. 化工进展, 2019, 38(03): 1530-1537. |
| [7] | 马腾, 丛宏斌, 王敬茹, 赵立欣, 姚宗路, 孟海波, 霍丽丽. 生物质热解油/柴油乳化效果评价方法及影响因素[J]. 化工进展, 2018, 37(10): 4098-4108. |
| [8] | 李萍, 王丽红, 司慧, 王一青. HZSM-5催化条件下反应温度对热解油品质影响规律[J]. 化工进展, 2018, 37(09): 3379-3385. |
| [9] | 吕全伟, 林顺洪, 柏继松, 李长江, 江辽, 李伟. 热重-红外联用(TG-FTIR)分析含油污泥-废轮胎混合热解特性[J]. 化工进展, 2017, 36(12): 4692-4699. |
| [10] | 程晓晗, 何选明, 柴军, 容斐. 石莼与褐煤低温共热解产物的特性[J]. 化工进展, 2016, 35(01): 105-109. |
| [11] | 车德勇, 杨亚龙, 李洪, 孙艳雪. 稻壳热解油的特性[J]. 化工进展, 2015, 34(06): 1625-1630. |
| [12] | 苏亚欣,邓文义,姜 凡,沈恒根. 废轮胎的燃料特性及用于燃煤锅炉再燃脱硝 [J]. 化工进展, 2011, 30(3): 642-. |
| [13] | 王 慧,邹 滢,余 锋,翁惠新. 废轮胎热解油的化学组成分布 [J]. 化工进展, 2011, 30(3): 656-. |
| [14] | 刘 霞1,邓德敏1,廖洪强2,张振国2. 废轮胎与煤共焦化焦油分析 [J]. 化工进展, 2010, 29(8): 1571-. |
| [15] | 张长森1,2,3,石 文2,3,徐兴敏2,3,张瑞芹2,3. 木屑快速热解液化与产品分析 [J]. 化工进展, 2010, 29(5): 952-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |