化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 315-324.DOI: 10.16085/j.issn.1000-6613.2024-0469
韩洪晶1,2(), 车宇1,2, 田宇轩1,2, 王海英1,2, 张亚男1,2, 陈彦广1,2
收稿日期:
2024-03-22
修回日期:
2024-06-12
出版日期:
2024-11-20
发布日期:
2024-12-06
通讯作者:
韩洪晶
作者简介:
韩洪晶(1980—),女,副教授,博士生导师,研究方向为生物质转化利用。E-mail:hongjing_han@163.com。
基金资助:
HAN Hongjing1,2(), CHE Yu1,2, TIAN Yuxuan1,2, WANG Haiying1,2, ZHANG Yanan1,2, CHEN Yanguang1,2
Received:
2024-03-22
Revised:
2024-06-12
Online:
2024-11-20
Published:
2024-12-06
Contact:
HAN Hongjing
摘要:
生物质是化石能源的潜在替代资源,木质素是自然界第二大生物质资源,将木质素催化转化为高附加值化学品对国家“双碳”战略实施具有重要的意义。催化剂和溶剂是影响木质素催化转化反应过程的关键因素,本文概述了催化氢解木质素过程中常用的金属、分子筛和金属氧化物催化剂的作用机理以及性能调控规律,并对不同溶剂分散和供氢作用进行了对比分析,通过溶剂效应原位表征、溶剂反应路径模拟,探究催化剂结构和性能间的构效关系,明晰催化剂与溶剂对木质素催化氢解的协同作用机制,为木质素的资源化和高值化利用提供了理论基础。
中图分类号:
韩洪晶, 车宇, 田宇轩, 王海英, 张亚男, 陈彦广. 木质素催化氢解催化剂及溶剂的研究进展[J]. 化工进展, 2024, 43(S1): 315-324.
HAN Hongjing, CHE Yu, TIAN Yuxuan, WANG Haiying, ZHANG Yanan, CHEN Yanguang. Advances on catalysts and solvents for catalytic hydrogenolysis of lignin[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 315-324.
反应物 | 溶剂 | 催化剂 | 反应条件 | 主产物收率 | 参考 文献 |
---|---|---|---|---|---|
2-苯氧基-1-苯乙醇 | 水 | PdNi4/MIL-100(Fe) | 180℃、6h | 酚类、酮类(81%) | [ |
桦木木质素 | 水 | PdNi4/MIL-100(Fe) | 180℃、6h | 酚类、酮类(17%) | [ |
愈创木酚 | 甲醇 | SiO2-Al2O3 | 400℃、1h | 芳烃(57.93%) | [ |
2-(2-甲氧基苯氧基)- 1-苯基乙醇 | 超临界甲醇 | Cu/CuMgAlO x | 300℃、4h | 乙苯(100%) 愈创木酚(96%) | [ |
苄基苯醚 | 乙醇 | NiCu/Al2O3 | 200℃、2h | — | [ |
苄基苯醚 | 异丙醇 | NiCu/Al2O3 | 200℃、2h | 甲苯(100%) 环己醇(100%) | [ |
苄基苯醚 | 叔丁醇 | NiCu/Al2O3 | 200℃、2h | — | [ |
苄基苯醚 | 2-丁醇 | NiCu/Al2O3 | 200℃、2h | 甲苯(52.34%) 苯酚(4.15%) 环己醇(48.19%) | [ |
硫酸盐木质素 | 甲酸 | Ni/沸石分子筛 | 200℃、3h | 生物油(93.5%±4.1%) | [ |
香兰素 | 异丙醇 | PdNi/CuFe2O4 | 180℃、3h | 环己醇(95.8%) | [ |
硫酸盐木质素 | 异丙醇 | Ni-Cu/H-Beta | 330℃、3h | 环烷烃(50.83%) | [ |
硫酸盐木质素 | 1,4二烷/甲醇/异丙醇 | MoO3-350 | 280℃、6h | 石油醚可溶性产物[87%(质量分数)] | [ |
碱木质素 | 1,4二烷/乙醇/水 | Pd/C NaOH | 260℃、4h | 苄醇[26.25%(质量分数)] | [ |
碱木质素 | 甲酸/异丙醇 | WO3-Al2O3 | 240℃、8h | 生物油(63.4%) | [ |
玉米秸秆木质素 | 甲酸/异丙醇/水 | Co/AC-N | 235℃、200min | 酚类化合物(23.8%) | [ |
杨木木质素 | 乙醇/异丙醇 | NiCu/C | 270℃、4h | 单酚含量63.4%(质量分数) | [ |
表1 木质素及其模型化合物催化氢解反应溶剂
反应物 | 溶剂 | 催化剂 | 反应条件 | 主产物收率 | 参考 文献 |
---|---|---|---|---|---|
2-苯氧基-1-苯乙醇 | 水 | PdNi4/MIL-100(Fe) | 180℃、6h | 酚类、酮类(81%) | [ |
桦木木质素 | 水 | PdNi4/MIL-100(Fe) | 180℃、6h | 酚类、酮类(17%) | [ |
愈创木酚 | 甲醇 | SiO2-Al2O3 | 400℃、1h | 芳烃(57.93%) | [ |
2-(2-甲氧基苯氧基)- 1-苯基乙醇 | 超临界甲醇 | Cu/CuMgAlO x | 300℃、4h | 乙苯(100%) 愈创木酚(96%) | [ |
苄基苯醚 | 乙醇 | NiCu/Al2O3 | 200℃、2h | — | [ |
苄基苯醚 | 异丙醇 | NiCu/Al2O3 | 200℃、2h | 甲苯(100%) 环己醇(100%) | [ |
苄基苯醚 | 叔丁醇 | NiCu/Al2O3 | 200℃、2h | — | [ |
苄基苯醚 | 2-丁醇 | NiCu/Al2O3 | 200℃、2h | 甲苯(52.34%) 苯酚(4.15%) 环己醇(48.19%) | [ |
硫酸盐木质素 | 甲酸 | Ni/沸石分子筛 | 200℃、3h | 生物油(93.5%±4.1%) | [ |
香兰素 | 异丙醇 | PdNi/CuFe2O4 | 180℃、3h | 环己醇(95.8%) | [ |
硫酸盐木质素 | 异丙醇 | Ni-Cu/H-Beta | 330℃、3h | 环烷烃(50.83%) | [ |
硫酸盐木质素 | 1,4二烷/甲醇/异丙醇 | MoO3-350 | 280℃、6h | 石油醚可溶性产物[87%(质量分数)] | [ |
碱木质素 | 1,4二烷/乙醇/水 | Pd/C NaOH | 260℃、4h | 苄醇[26.25%(质量分数)] | [ |
碱木质素 | 甲酸/异丙醇 | WO3-Al2O3 | 240℃、8h | 生物油(63.4%) | [ |
玉米秸秆木质素 | 甲酸/异丙醇/水 | Co/AC-N | 235℃、200min | 酚类化合物(23.8%) | [ |
杨木木质素 | 乙醇/异丙醇 | NiCu/C | 270℃、4h | 单酚含量63.4%(质量分数) | [ |
1 | 路瑶, 魏贤勇, 宗志敏, 等. 木质素的结构研究与应用[J]. 化学进展, 2013, 25(5): 838-858. |
LU Yao, WEI Xianyong, ZONG Zhimin, et al. Structural investigation and application of lignins[J]. Chemistry Industry and Engineering Progress, 2013, 25(5): 838-858. | |
2 | AGARWAL Ashutosh, Young-Tae JO, PARK Jeong-Hun. Hybrid microwave-ultrasound assisted catalyst-free depolymerization of Kraft lignin to bio-oil[J]. Industrial Crops and Products, 2021, 162: 113300. |
3 | ZHANG Chaofeng, SHEN Xiaojun, JIN Yongcan, et al. Catalytic strategies and mechanism analysis orbiting the center of critical intermediates in lignin depolymerization[J]. Chemical Reviews, 2023, 123(8): 4510-4601. |
4 | LIU Wujun, JIANG Hong, YU Hanqing. Thermochemical conversion of lignin to functional materials: A review and future directions[J]. Green Chemistry, 2015, 17(11): 4888-4907. |
5 | 张雷, 王海英, 韩洪晶, 等. 木质素催化热解用催化剂的研究进展[J]. 化工进展, 2022, 41(5): 2429-2440. |
ZHANG Lei, WANG Haiying, HAN Hongjing, et al. Development of catalysts for catalytic pyrolysis of lignin[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2429-2440. | |
6 | SHEN Zhensheng, SHI Chengxiang, LIU Fan, et al. Advances in heterogeneous catalysts for lignin hydrogenolysis[J]. Advanced Science, 2024, 11(1): 2306693. |
7 | WAN Zhouyuanye, ZHANG Hongjie, GUO Yanzhu, et al. Advances in catalytic depolymerization of lignin[J]. ChemistrySelect, 2022, 7(40): e202202582. |
8 | 练彩霞, 李凝, 蒋武, 等. 生物质油催化加氢脱氧(HDO)反应机理及催化剂研究进展[J]. 化工进展, 2020, 39(S1): 153-162. |
LIAN Caixia, LI Ning, JIANG Wu, et al. Research progress on reaction mechanism and catalysts for catalytic hydrodeoxygenation(HDO) of biomass oil[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 153-162. | |
9 | AUERSVALD Miloš, SHUMEIKO Bogdan, Martin STAŠ, et al. Quantitative study of straw bio-oil hydrodeoxygenation over a sulfided NiMo catalyst[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7080-7093. |
10 | LI Tan, SU Jing, WANG Huiyuan, et al. Catalytic hydropyrolysis of lignin using NiMo-doped catalysts: Catalyst evaluation and mechanism analysis[J]. Applied Energy, 2022, 316: 119115. |
11 | XIANG Liang, FAN Guoli, YANG Lan, et al. Structure-tunable pompon-like RuCo catalysts: Insight into the roles of atomically dispersed Ru-Co sites and crystallographic structures for guaiacol hydrodeoxygenation[J]. Journal of Catalysis, 2021, 398: 76-88. |
12 | Hadi ALI, VANDEVYVERE Tom, LAUWAERT Jeroen, et al. Impact of oxygen vacancies in Ni supported mixed oxide catalysts on anisole hydrodeoxygenation[J]. Catalysis Communications, 2022, 164: 106436. |
13 | SHU Riyang, LIN Yuankai, ZHOU Linxuan, et al. Enhanced lignin hydrogenolysis through synergy-induced bimetallic NiCu catalyst for chemocatalytic production of aromatic monomers[J]. Chemical Engineering Science, 2024, 286: 119654. |
14 | HUANG Yaobing, ZHANG Jilong, ZHANG Xuan, et al. Catalytic depolymerization of lignin via transfer hydrogenation strategy over skeletal CuZnAl catalyst[J]. Fuel Processing Technology, 2022, 237: 107448. |
15 | LI Wenbin, ZHU Yongfeng, LI Shuirong, et al. Catalytic fast pyrolysis of cellulose over Ce0.8Zr0.2- x Al x O2 catalysts to produce aromatic hydrocarbons: Analytical Py-GC×GC/MS[J]. Fuel Processing Technology, 2020, 205: 106438. |
16 | MA Zhiqiang, TROUSSARD Ekaterina, VAN BOKHOVEN Jeroen A. Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis[J]. Applied Catalysis A: General, 2012, 423/424: 130-136. |
17 | ROLDUGINA E A, NARANOV E R, MAXIMOV A L, et al. Hydrodeoxygenation of guaiacol as a model compound of bio-oil in methanol over mesoporous noble metal catalysts[J]. Applied Catalysis A: General, 2018, 553: 24-35. |
18 | SUN Qiming, WANG Ning, YU Jihong. Advances in catalytic applications of zeolite-supported metal catalysts[J]. Advanced Materials, 2021, 33(51): e2104442. |
19 | LI Xiangping, CHEN Guanyi, LIU Caixia, et al. Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 71: 296-308. |
20 | WAN Hongliu, QIAN Lixiang, GONG Nengfeng, et al. Size-dependent structures and catalytic properties of supported bimetallic PtSn catalysts for propane dehydrogenation reaction[J]. ACS Catalysis, 2023, 13(11): 7383-7394. |
21 | RANA Masud, GHOSH Shubho, NSHIZIRUNGU Theoneste, et al. Catalytic depolymerization of Kraft lignin to high yield alkylated-phenols over CoMo/SBA-15 catalyst in supercritical ethanol[J]. RSC Advances, 2023, 13(43): 30022-30039. |
22 | HE Ping, YI Qisong, GENG Huawei, et al. Boosting the catalytic activity and stability of Ru metal clusters in hydrodeoxygenation of guaiacol through MWW zeolite pore constraints[J]. ACS Catalysis, 2022, 12(23): 14717-14726. |
23 | YUSUF Mustapha, LEEKE Gary, WOOD Joseph. Anisole hydrodeoxygenation over nickel-based catalysts: Influences of solvent and support properties[J]. Energy & Fuels, 2023, 37(2): 1225-1237. |
24 | KONG Liping, LIU Chunze, GAO Ji, et al. Efficient and controllable alcoholysis of Kraft lignin catalyzed by porous zeolite-supported nickel-copper catalyst[J]. Bioresource Technology, 2019, 276: 310-317. |
25 | HUNNS James A, ARROYO Marta, LEE Adam F, et al. Hierarchical mesoporous Pd/ZSM-5 for the selective catalytic hydrodeoxygenation of m-cresol to methylcyclohexane[J]. Catalysis Science & Technology, 2016, 6(8): 2560-2564. |
26 | LI Wenlin, LI Feng, WANG Hongyan, et al. Hierarchical mesoporous ZSM-5 supported nickel catalyst for the catalytic hydrodeoxygenation of anisole to cyclohexane[J]. Molecular Catalysis, 2020, 480: 110642. |
27 | ZHU Hongwei, DU Boyu, ZHANG Zhenshu, et al. Effect of hierarchical HZSM-5 zeolite on the catalytic depolymerization of organosolv lignin to renewable phenols[J]. Journal of Porous Materials, 2022, 29(2): 445-457. |
28 | Tina ROČNIK, LIKOZAR Blaž, Edita JASIUKAITYTÈ-GROJZDEK, et al. Catalytic lignin valorisation by depolymerisation, hydrogenation, demethylation and hydrodeoxygenation: Mechanism, chemical reaction kinetics and transport phenomena[J]. Chemical Engineering Journal, 2022, 448: 137309. |
29 | WANG Yannan, WEI Lianghuan, HOU Qidong, et al. A Review on catalytic depolymerization of lignin towards high-value chemicals: Solvent and catalyst[J]. Fermentation, 2023, 9(4): 386. |
30 | XU Qian, WANG Qiang, XIAO Lingping, et al. Metal–organic framework-derived CuO catalysts for the efficient hydrogenolysis of hardwood lignin into phenolic monomers[J]. Journal of Materials Chemistry A, 2023, 11(44): 23809-23820. |
31 | MATSON Theodore D, BARTA Katalin, IRETSKII Alexei V, et al. One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels[J]. Journal of the American Chemical Society, 2011, 133(35): 14090-14097. |
32 | KONG Xiangchen, LIU Chao, LEI Ming, et al. Critical roles of the oxygen-containing functional groups via β -O-4 lignin linkage hydrogenolysis over copper catalysts[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(32): 10939-10947. |
33 | ZHANG Xia, LI Wenzhi, WANG Jindong, et al. Depolymerization of Kraft lignin into liquid fuels over a WO3 modified acid-base coupled hydrogenation catalyst[J]. Fuel, 2022, 323: 124428. |
34 | VÉDRINE Jacques C. Importance, features and uses of metal oxide catalysts in heterogeneous catalysis[J]. Chinese Journal of Catalysis, 2019, 40(11): 1627-1636. |
35 | PROFETI Luciene P R, TICIANELLI Edson A, ASSAF Elisabete M. Production of hydrogen via steam reforming of biofuels on Ni/CeO2-Al2O3 catalysts promoted by noble metals[J]. International Journal of Hydrogen Energy, 2009, 34(12): 5049-5060. |
36 | WANG Ze, ZENG Ying, LIN Weigang, et al. In-situ hydrodeoxygenation of phenol by supported Ni catalyst-explanation for catalyst performance[J]. International Journal of Hydrogen Energy, 2017, 42(33): 21040-21047. |
37 | LU Xinyu, GU Xiaoli. Efficient lignin conversion over Ni/(Fe/Zn/Co/Mo/Cu)-WO3/Al2O3 for selectively yielding alkyl phenols[J]. Catalysis Science & Technology, 2023, 13(2): 468-478. |
38 | Florent HÉROGUEL, NGUYEN Xuan Trung, LUTERBACHER Jeremy S. Catalyst support and solvent effects during lignin depolymerization and hydrodeoxygenation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 16952-16958. |
39 | ZHANG Yaowen, WANG Wenyun, FAN Guoli, et al. Defect-decorated NiFe bimetallic nanocatalysts for the enhanced hydrodeoxygenation of guaiacol[J]. ChemCatChem, 2022, 14(19): e202200585. |
40 | WU Kui, WANG Weiyan, GUO Haiwei, et al. Engineering Co nanoparticles supported on defect MoS2– x for mild deoxygenation of lignin-derived phenols to arenes[J]. ACS Energy Letters, 2020, 5(4): 1330-1336. |
41 | XIE Jin, XI Yongjie, GAO Wensheng, et al. Hydrogenolysis of lignin model compounds on Ni nanoparticles surrounding the oxygen vacancy of CeO2 [J]. ACS Catalysis, 2023, 13(14): 9577-9587. |
42 | YE Ke, LIU Ying, WU Shubin, et al. A review for lignin valorization: Challenges and perspectives in catalytic hydrogenolysis[J]. Industrial Crops and Products, 2021, 172: 114008. |
43 | NIE Renfeng, TAO Yuewen, NIE Yunqing, et al. Recent advances in catalytic transfer hydrogenation with formic acid over heterogeneous transition metal catalysts[J]. ACS Catalysis, 2021, 11(3): 1071-1095. |
44 | RAIKWAR Deepak, MAJUMDAR Saptarshi, SHEE Debaprasad. Effects of solvents in the depolymerization of lignin into value-added products: A review[J]. Biomass Conversion and Biorefinery, 2023, 13(13): 11383-11416. |
45 | ZHANG Jiawei, LU Guoping, CAI Chun. Self-hydrogen transfer hydrogenolysis of β-O-4 linkages in lignin catalyzed by MIL-100(Fe) supported Pd-Ni BMNPs[J]. Green Chemistry, 2017, 19(19): 4538-4543. |
46 | KUMAR Avnish, BISWAS Bijoy, KAUR Ramandeep, et al. Hydrothermal oxidative valorisation of lignin into functional chemicals: A review[J]. Bioresource Technology, 2021, 342: 126016. |
47 | WANG Da, WANG Yuyang, LI Xiaoyu, et al. Lignin valorization: A novel in situ catalytic hydrogenolysis method in alkaline aqueous solution[J]. Energy & Fuels, 2018, 32(7): 7643-7651. |
48 | ROBERTS Virginia M, STEIN Valentin, REINER Thomas, et al. Towards quantitative catalytic lignin depolymerization[J]. Chemistry, 2011, 17(21): 5939-5948. |
49 | KOCATURK Engin, SALAN Tufan, OZCELIK Orhan, et al. Recent advances in lignin-based biofuel production[J]. Energies, 2023,16(8): 3382. |
50 | ZHANG Dequan, ZHANG Xinghua, YIN Han, et al. Production of aromatic hydrocarbons from lignin derivatives by catalytic cracking over a SiO2-Al2O3 catalyst[J]. RSC Advances, 2023, 13(16): 10830-10839. |
51 | CHOU Weichao, LU Pingping, LOU Bin, et al. Pt/CeCrO2- x : A multifunctional catalyst for tandem catalysis of lignocellulose hydro-liquefaction and Guerbet reaction[J]. Applied Catalysis B: Environmental, 2024, 342: 123320. |
52 | GILKEY Matthew J, XU Bingjun. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading[J]. ACS Catalysis, 2016, 6(3): 1420-1436. |
53 | SUNIL MORE Ganesh, RAJENDRA KANCHAN Dipika, BANERJEE Arghya, et al. Selective catalytic hydrodeoxygenation of vanillin to 2-methoxy-4-methyl phenol and 4-methyl cyclohexanol over Pd/CuFe2O4 and PdNi/CuFe2O4 catalysts[J]. Chemical Engineering Journal, 2023, 462: 142110. |
54 | WU Fapeng, ZHAO Yunpeng, FU Zongpin, et al. Catalytic transfer hydrogenolysis mechanism of benzyl phenyl ether over NiCu/Al2O3 using isopropanol as hydrogen source[J]. Fuel Processing Technology, 2023, 250: 107874. |
55 | WANG Wenhua, NIU Muge, HOU Yucui, et al. Catalytic conversion of biomass-derived carbohydrates to formic acid using molecular oxygen[J]. Green Chemistry, 2014, 16(5): 2614-2618. |
56 | LU Xinyu, WANG Dandan, GUO Haoquan, et al. Insights into depolymerization pathways and mechanism of alkali lignin over a Ni1.2- Z r O 2 / W O 3 / γ - A l 2 O 3 catalyst[J]. Chinese Journal of Chemical Engineering, 2022, 48: 191-201. |
57 | HUANG Shanhua, MAHMOOD Nubla, ZHANG Yongsheng, et al. Reductive de-polymerization of Kraft lignin with formic acid at low temperatures using inexpensive supported Ni-based catalysts[J]. Fuel, 2017, 209: 579-586. |
58 | Mikel OREGUI-BENGOECHEA, GANDARIAS Inaki, ARIAS Pedro L, et al. Unraveling the role of formic acid and the type of solvent in the catalytic conversion of lignin: A holistic approach[J]. ChemSusChem, 2017, 10(4): 754-766. |
59 | TANG Bingyue, LI Wenzhi, ZHANG Xia, et al. Depolymerization of Kraft lignin to liquid fuels with MoS2 derived oxygen-vacancy-enriched MoO3 in a hydrogen-donor solvent system[J]. Fuel, 2022, 324: 124674. |
60 | LI Xi, LIU Yuan, WANG Wenjin, et al. Effect of solvent systems on the synergistic catalytic hydrogenolysis of alkaline lignin over Pd/C-NaOH[J]. Fuel, 2023, 349: 128570. |
61 | DABRAL Saumya, ENGEL Julien, MOTTWEILER Jakob, et al. Mechanistic studies of base-catalysed lignin depolymerisation in dimethyl carbonate[J]. Green Chemistry, 2018, 20(1): 170-182. |
62 | SHEN Changcheng, LI Wenzhi, ZHANG Baikai, et al. Valorization of lignin in native corn stover via fractionation-hydrogenolysis process over cobalt-supported catalyst without external hydrogen[J]. Molecular Catalysis, 2021, 514: 111832. |
63 | CHENG Chongbo, LI Pengfei, YU Wenbing, et al. Nonprecious metal/bimetallic catalytic hydrogenolysis of lignin in a mixed-solvent system[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(43): 16217-16228. |
[1] | 李新月, 李振京, 韩沂杭, 郭永强, 闫瑜, 哈力米热·卡热木拉提, 赵会吉, 柴永明, 刘东, 殷长龙. 油脂加氢脱氧生产绿色柴油催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 351-364. |
[2] | 李帅哲, 聂懿宸, PHIDSAVARD Keomeesay, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保. 非贵金属催化生物质加氢脱氧制备烃基生物燃料的研究进展[J]. 化工进展, 2024, 43(S1): 225-242. |
[3] | 熊磊, 丁飞燕, 李聪, 王群乐, 吕起, 翟晓娜, 刘峰. 金属Pt负载型非均相催化剂研究进展[J]. 化工进展, 2024, 43(S1): 295-304. |
[4] | 宋财城, 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 碳基载体负载加氢脱硫催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 305-314. |
[5] | 胡兴, 刘易, 杜泽学. 3-氯丙烯直接合成环氧氯丙烷催化剂研究进展[J]. 化工进展, 2024, 43(S1): 325-334. |
[6] | 于梦洁, 吴语童, 罗发祥, 豆义波. 低浓度二氧化碳还原光催化剂结构设计的研究进展[J]. 化工进展, 2024, 43(S1): 335-350. |
[7] | 何世坤, 张荣花, 李昊阳, 潘晖, 冯君锋. 脱铝分子筛固体酸催化葡萄糖制备5-羟甲基糠醛[J]. 化工进展, 2024, 43(S1): 374-381. |
[8] | 张日东, 吕建华, 刘继东, 郭豹, 李文松. Ru-K-NaY催化草酸二甲酯脱羰基制备碳酸二甲酯[J]. 化工进展, 2024, 43(S1): 382-390. |
[9] | 高聪志, 张雅萱, 林璐, 邓晓婷, 殷霞, 丁一刚, 肖艳华, 杜治平. 新戊二醇的合成工艺[J]. 化工进展, 2024, 43(S1): 469-478. |
[10] | 万震, 王绍庆, 李志合, 赵天生. HZSM-5分子筛催化木质素热解制芳烃研究进展[J]. 化工进展, 2024, 43(S1): 517-532. |
[11] | 何方, 许高洁, 裴翔, 孙德智, 宁朋歌, 曹宏斌. IPE-23萃取剂在含锂废液中回收锂的应用[J]. 化工进展, 2024, 43(S1): 627-639. |
[12] | 李琳, 黄国勇, 徐盛明, 郁丰善, 翁雅青, 曹才放, 温嘉玮, 王春霞, 王俊莲, 顾斌涛, 张袁华, 刘斌, 王才平, 潘剑明, 徐泽良, 王翀, 王珂. 铝基废催化剂载体的回收与再生制备[J]. 化工进展, 2024, 43(S1): 640-649. |
[13] | 廖旭, 周骏, 罗杰, 曾瑞琳, 王泽宇, 李尊华, 林金清. 多孔离子聚合物催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2024, 43(9): 4925-4940. |
[14] | 修浩然, 王云刚, 白彦渊, 刘涛, 张兴邦, 张益嘉. H2O2低温催化氧化法脱硫脱硝中试实验特性[J]. 化工进展, 2024, 43(9): 4941-4950. |
[15] | 付维, 宁淑英, 蔡晨, 陈佳音, 周皞, 苏亚欣. Cu改性MIL-100(Fe)催化剂的SCR-C3H6脱硝特性[J]. 化工进展, 2024, 43(9): 4951-4960. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |