化工进展 ›› 2024, Vol. 43 ›› Issue (8): 4506-4515.DOI: 10.16085/j.issn.1000-6613.2023-1244
• 材料科学与技术 • 上一篇
孙忻茹1(), 张秋怡2, 卓建坤2(), 杨润1, 姚强1,2
收稿日期:
2023-07-19
修回日期:
2023-11-13
出版日期:
2024-08-15
发布日期:
2024-09-02
通讯作者:
卓建坤
作者简介:
孙忻茹(2000—),女,硕士研究生,研究方向为热化学储热。E-mail:sunxr797@163.com。
基金资助:
SUN Xinru1(), ZHANG Qiuyi2, ZHUO Jiankun2(), YANG Run1, YAO Qiang1,2
Received:
2023-07-19
Revised:
2023-11-13
Online:
2024-08-15
Published:
2024-09-02
Contact:
ZHUO Jiankun
摘要:
水合盐热化学储热技术具有储热密度高、长期储存热损失小等优点,有望解决太阳能供给与能源需求间不平衡的问题。CaCl2具有快速水合反应动力学、高储热密度、低成本、原料广泛的优势。然而,纯水合盐存在膨胀结块、热导率低、稳定性差等问题。目前,研究者主要通过高热导率的多孔基质担载使水合盐均匀分散,实现稳定性的提升,并通过微纳米孔增加气体扩散通道,加快反应速率。本文分析了CaCl2复合热化学储热材料性能的主要影响因素,分别从储/放热机理分析、性能评价指标、复合材料物性的调控三方面展开。研究发现,多孔基质的孔隙特性、CaCl2的担载量是影响复合材料储热密度的主要影响因素,介孔结构的多孔基质更适宜作为水合盐热化学反应的载体。同时,加入镁基盐类形成二元盐复合材料是另一种有效的物性调控方法,其中,MgCl2能有效提高CaCl2的循环稳定性,在50次循环测试后仍保持良好性能。最后,指出了未来研究的重要技术方向,即开发以介孔结构为主的多孔基质,包括提高多孔基质的孔道开放度和稳定性、探索构建新的二元盐复合材料以及储热系统与储热材料的匹配等。
中图分类号:
孙忻茹, 张秋怡, 卓建坤, 杨润, 姚强. CaCl2复合热化学储热材料的研究进展[J]. 化工进展, 2024, 43(8): 4506-4515.
SUN Xinru, ZHANG Qiuyi, ZHUO Jiankun, YANG Run, YAO Qiang. Research progress of CaCl2 composite thermochemical heat storage materials[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4506-4515.
水合盐 | 最高能量密度/GJ∙m-3 | 标准摩尔反应焓变/kJ∙mol-1 | 吸附温度/℃ | 脱附温度/℃ | 30℃时潮解相对湿度/% | 循环稳定性/次 | 成本/EUR∙kg-1 |
---|---|---|---|---|---|---|---|
CaCl2 | 2.58 | 277 | 32 | 180 | 29 | 20 | 0.1 |
MgSO4 | 2.27 | 335.7 | 25 | 200 | 90 | 7 | 0.4 |
MgCl2 | 2.48 | 255 | 61 | 130 | 33 | 30 | 0.18 |
Na2S | 2.79 | 148 | 66 | 80 | — | 4 | 0.65 |
SrBr2 | 2.49 | 337 | 48 | 80 | 60 | 10 | 24 |
表1 常见水合盐的热力学性能[4,11]
水合盐 | 最高能量密度/GJ∙m-3 | 标准摩尔反应焓变/kJ∙mol-1 | 吸附温度/℃ | 脱附温度/℃ | 30℃时潮解相对湿度/% | 循环稳定性/次 | 成本/EUR∙kg-1 |
---|---|---|---|---|---|---|---|
CaCl2 | 2.58 | 277 | 32 | 180 | 29 | 20 | 0.1 |
MgSO4 | 2.27 | 335.7 | 25 | 200 | 90 | 7 | 0.4 |
MgCl2 | 2.48 | 255 | 61 | 130 | 33 | 30 | 0.18 |
Na2S | 2.79 | 148 | 66 | 80 | — | 4 | 0.65 |
SrBr2 | 2.49 | 337 | 48 | 80 | 60 | 10 | 24 |
多孔基质 | 孔隙结构 | 复合材料 | 参考文献 | ||||||
---|---|---|---|---|---|---|---|---|---|
孔径/nm | 微孔容积 /cm3·g-1 | 总孔容积 /cm3·g-1 | 比表面积 /m2·g-1 | 制备方法 | CaCl2质量分数 /% | 水蒸气吸收量 /g·g-1 | 质量储热密度 /kJ·kg-1 | ||
硅胶 | 12 | — | 1.06 | 320 | 等体积浸渍 | 43 | 0.77 | 1080 | [ |
2.45 | 0.381 | 1.31 | 785 | 等体积浸渍 | 24 | 0.6 | — | [ | |
氧化铝 | 4 | — | 0.25 | 214 | 等体积浸渍 | 14.4 | 0.17 | 576 | [ |
膨润土 | 6 | — | 0.34 | 225 | 等体积浸渍 | 15.22 | 0.23 | 719 | |
膨胀石墨 | 218.69 | — | 0.63 | 11.51 | 湿法浸渍 | 48.1 | 0.79 | 1637.6 | [ |
活性炭 | 1.98 | 0.395 | 2.365 | 678 | 等体积浸渍 | 24 | 0.49 | — | [ |
— | — | — | — | 湿法浸渍 | 63 | 0.24 | 645 | [ | |
0.7~0.3 | — | 0.7~1.3 | 1432~1946 | 真空浸渍 | 31~58 | 0.12~0.2 | 235~298 | [ | |
蛭石 | — | — | 2.5 | — | 湿法浸渍 | 23.3~47.9 | 0.58~1.24 | 1764~4500 | [ |
沸石 | 42.8 | 0.153 | 1.489 | 233 | 等体积浸渍 | 24 | 0.6 | — | [ |
PHTS① | 5.6~6.2 | 0.016~0.037 | 0.189~0.493 | 163~461 | 等体积浸渍 | — | 0.78~2.24 | — | [ |
膨胀珍珠岩 | 30.88 | — | 0.03 | 4 | 真空浸渍 | — | 1.22 | 1080 | [ |
MWNT | 20 | — | — | 36~55 | 研磨混合 | 50 | 1.17~1.25 | — | [ |
MOF | — | 0.47~1.05 | 1.01~2.49 | 1706~3279 | 真空浸渍 | 43.7~46 | 0.4~0.6 | 711~1274 | [ |
1.34 | — | 1.13 | 2397 | 湿法浸渍 | 52.8 | 0.98 | — | [ | |
— | — | 0.5~1.95 | 1119~3721 | 湿法浸渍 | 40~62 | — | 874.8~1746 | [ | |
SBA-15 | 8.2 | 0.81 | 1 | 828 | 湿法浸渍 | 76 | — | 1290.5~1704.5 | [ |
富马酸铝 | — | 0.07 | 0.54 | 959 | 湿法浸渍 | 25~58 | 0.37~0.68 | 998~1840 | [ |
富马酸铝/氧化铝 | — | 0.48 | 0.72 | 623 | 湿法浸渍 | 23~61 | 0.29~0.68 | 998~1938 | [ |
硅胶/氧化铝 | 4.7 | — | 0.8 | 628 | 等体积浸渍 | 5.3~24.4 | — | 503~886 | [ |
膨润土/石墨 | 5.35 | — | 0.062 | 42.19 | 等体积浸渍 | — | — | 854.5 | [ |
海藻酸钠 | — | — | — | — | 水凝胶法 | 80~90 | 0.88 | 1206 | [ |
表2 多孔基质孔隙结构和复合材料部分储热性能
多孔基质 | 孔隙结构 | 复合材料 | 参考文献 | ||||||
---|---|---|---|---|---|---|---|---|---|
孔径/nm | 微孔容积 /cm3·g-1 | 总孔容积 /cm3·g-1 | 比表面积 /m2·g-1 | 制备方法 | CaCl2质量分数 /% | 水蒸气吸收量 /g·g-1 | 质量储热密度 /kJ·kg-1 | ||
硅胶 | 12 | — | 1.06 | 320 | 等体积浸渍 | 43 | 0.77 | 1080 | [ |
2.45 | 0.381 | 1.31 | 785 | 等体积浸渍 | 24 | 0.6 | — | [ | |
氧化铝 | 4 | — | 0.25 | 214 | 等体积浸渍 | 14.4 | 0.17 | 576 | [ |
膨润土 | 6 | — | 0.34 | 225 | 等体积浸渍 | 15.22 | 0.23 | 719 | |
膨胀石墨 | 218.69 | — | 0.63 | 11.51 | 湿法浸渍 | 48.1 | 0.79 | 1637.6 | [ |
活性炭 | 1.98 | 0.395 | 2.365 | 678 | 等体积浸渍 | 24 | 0.49 | — | [ |
— | — | — | — | 湿法浸渍 | 63 | 0.24 | 645 | [ | |
0.7~0.3 | — | 0.7~1.3 | 1432~1946 | 真空浸渍 | 31~58 | 0.12~0.2 | 235~298 | [ | |
蛭石 | — | — | 2.5 | — | 湿法浸渍 | 23.3~47.9 | 0.58~1.24 | 1764~4500 | [ |
沸石 | 42.8 | 0.153 | 1.489 | 233 | 等体积浸渍 | 24 | 0.6 | — | [ |
PHTS① | 5.6~6.2 | 0.016~0.037 | 0.189~0.493 | 163~461 | 等体积浸渍 | — | 0.78~2.24 | — | [ |
膨胀珍珠岩 | 30.88 | — | 0.03 | 4 | 真空浸渍 | — | 1.22 | 1080 | [ |
MWNT | 20 | — | — | 36~55 | 研磨混合 | 50 | 1.17~1.25 | — | [ |
MOF | — | 0.47~1.05 | 1.01~2.49 | 1706~3279 | 真空浸渍 | 43.7~46 | 0.4~0.6 | 711~1274 | [ |
1.34 | — | 1.13 | 2397 | 湿法浸渍 | 52.8 | 0.98 | — | [ | |
— | — | 0.5~1.95 | 1119~3721 | 湿法浸渍 | 40~62 | — | 874.8~1746 | [ | |
SBA-15 | 8.2 | 0.81 | 1 | 828 | 湿法浸渍 | 76 | — | 1290.5~1704.5 | [ |
富马酸铝 | — | 0.07 | 0.54 | 959 | 湿法浸渍 | 25~58 | 0.37~0.68 | 998~1840 | [ |
富马酸铝/氧化铝 | — | 0.48 | 0.72 | 623 | 湿法浸渍 | 23~61 | 0.29~0.68 | 998~1938 | [ |
硅胶/氧化铝 | 4.7 | — | 0.8 | 628 | 等体积浸渍 | 5.3~24.4 | — | 503~886 | [ |
膨润土/石墨 | 5.35 | — | 0.062 | 42.19 | 等体积浸渍 | — | — | 854.5 | [ |
海藻酸钠 | — | — | — | — | 水凝胶法 | 80~90 | 0.88 | 1206 | [ |
1 | LAURA Cozzi, Gül TIMUR. Net Zero by 2050: A Roadmap for the Global Energy Sector[R]. France: IEA, 2021. |
2 | 王亚蓉, 丁静, 陆建峰, 等. 太阳模拟器加热下甲烷重整管式反应器的热化学储能特性[J]. 太阳能学报, 2021, 42(11): 163-168. |
WANG Yarong, DING Jing, LU Jianfeng, et al. Thermochemical energy storage characteristics of methane steam reforming in tube reactor with focused solar simulation[J]. Acta Energiae Solaris Sinica, 2021, 42(11): 163-168. | |
3 | 汪德良, 张纯, 杨玉, 等. 基于太阳能光热发电的热化学储能体系研究进展[J]. 热力发电, 2019, 48(7): 1-9. |
WANG Deliang, ZHANG Chun, YANG Yu, et al. Research progress of thermochemical energy storage system based on solar thermal power generation[J]. Thermal Power Generation, 2019, 48(7): 1-9. | |
4 | 翁立奎, 张叶龙, 姜琳, 等. 基于水合盐的热化学吸附储热技术研究进展[J]. 储能科学与技术, 2020, 9(6): 1729-1736. |
WENG Likui, ZHANG Yelong, JIANG Lin, et al. Research progress on thermochemical adsorption heat storage technology based on hydrate[J]. Energy Storage Science and Technology, 2020, 9(6): 1729-1736. | |
5 | YAN Ting, ZHANG Hong. A critical review of salt hydrates as thermochemical sorption heat storage materials: Thermophysical properties and reaction kinetics[J]. Solar Energy, 2022, 242: 157-183. |
6 | ZHAO Qian, LIN Jianquan, HUANG Haotian, et al. Optimization of thermochemical energy storage systems based on hydrated salts: A review[J]. Energy and Buildings, 2021, 244: 111035-111069. |
7 | ZHOU Hong, ZHANG Dong. Investigation on pH/temperature-manipulated hydrothermally reduced graphene oxide aerogel impregnated with MgCl2 hydrates for low-temperature thermochemical heat storage[J]. Solar Energy Materials and Solar Cells, 2022, 241: 111740-111751. |
8 | BARSK Aleksi, YAZDANI Maryam Roza, KANKKUNEN Ari, et al. Exceptionally high energy storage density for seasonal thermochemical energy storage by encapsulation of calcium chloride into hydrophobic nanosilica capsules[J]. Solar Energy Materials and Solar Cells, 2023, 251: 112154-112168. |
9 | MAZUR Natalia, SALVIATI Sergio, HUININK Henk, et al. Impact of polymeric stabilisers on the reaction kinetics of SrBr2 [J]. Solar Energy Materials and Solar Cells, 2022, 238: 111648-111660. |
10 | MIAO Qi, ZHANG Yelong, JIA Xu, et al. MgSO4-expanded graphite composites for mass and heat transfer enhancement of thermochemical energy storage[J]. Solar Energy, 2021, 220: 432-439. |
11 | 杨慧, 童莉葛, 尹少武, 等. 水合盐热化学储热材料的研究概述[J]. 材料导报, 2021, 35(17): 17150-17162. |
YANG Hui, TONG Lige, YIN Shaowu, et al. A review on the salt hydrate thermochemical heat storage materials[J]. Materials Reports, 2021, 35(17): 17150-17162. | |
12 | N’TSOUKPOE Kokouvi Edem, RAMMELBERG Holger Urs, LELE Armand Fopah, et al. A review on the use of calcium chloride in applied thermal engineering[J]. Applied Thermal Engineering, 2015, 75: 513-531. |
13 | DONKERS P A J, PEL L, ADAN O C G. Experimental studies for the cyclability of salt hydrates for thermochemical heat storage[J]. Journal of Energy Storage, 2016, 5: 25-32. |
14 | YU N, WANG R Z, WANG L W. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39(5): 489-514. |
15 | ZHANG Xueling, WANG Feifei, LEI Xudong, et al. Influential factors and optimization analysis of adsorption refrigeration system performance[J]. AIP Advances, 2020, 10(10): 105315-105327. |
16 | KEMP R, KEEGAN S E. Calcium Chloride[M]. Germany: Ullmann’s Encyclopedia of Industrial Chemistry, 2003: 511-517. |
17 | FUJIOKA Keiko, SUZUKI Hiroshi. Thermophysical properties and reaction rate of composite reactant of calcium chloride and expanded graphite[J]. Applied Thermal Engineering, 2013, 50(2): 1627-1632. |
18 | 魏思雨. 氯化钙复合吸附剂用于太阳光直驱热化学储热研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
WEI Siyu. Calcium chloride composite sorbent for solar-driven thermochemical heat storage[D]. Harbin: Harbin Institute of Technology, 2021. | |
19 | XU J X, LI T X, CHAO J W, et al. High energy-density multi-form thermochemical energy storage based on multi-step sorption processes[J]. Energy, 2019, 185: 1131-1142. |
20 | YU N, WANG R Z, LU Z S, et al. Evaluation of a three-phase sorption cycle for thermal energy storage[J]. Energy, 2014, 67: 468-478. |
21 | ROSATO A, SIBILIO S. Preliminary experimental characterization of a three-phase absorption heat pump[J]. International Journal of Refrigeration, 2013, 36(3): 717-729. |
22 | LU Zisheng, WANG Ruzhu, GORDEEVA Larisa. Novel multi-step sorption-reaction energy storage cycles for air conditioning and temperature upgrading[J]. Energy, 2017, 118: 464-472. |
23 | 罗伊默, 芮金金, 徐薇, 等. 热化学储热反应器内水合盐物性调控及传热传质优化研究进展[J]. 储能科学与技术, 2021, 10(4): 1273-1284. |
LUO Yimo, RUI Jinjin, XU Wei, et al. Research progress on physical property control and heat and mass transfer optimization of hydrated salt in thermochemical heat storage reactor[J]. Energy Storage Science and Technology, 2021, 10(4): 1273-1284. | |
24 | KIMPTON Harriet, ZHANG Xunli, STULZ Eugen. Decarbonising heating and hot water using solar thermal collectors coupled with thermal storage: The scale of the challenge[J]. Energy Reports, 2020, 6: 25-34. |
25 | OUSALEH Hanane AIT, SAIR Said, MANSOURI Said, et al. Enhanced inorganic salts stability using bentonite clay for high-performance and low-cost thermochemical energy storage[J]. Journal of Energy Storage, 2022, 49: 104140-104156. |
26 | MOLENDA Margarethe, STENGLER Jana, LINDER Marc, et al. Reversible hydration behavior of CaCl2 at high H2O partial pressures for thermochemical energy storage[J]. Thermochimica Acta, 2013, 560: 76-81. |
27 | 张艳楠, 王如竹, 李廷贤. 蛭石/氯化钙复合吸附剂的吸附特性和储热性能[J]. 化工学报, 2018, 69(1): 363-370. |
ZHANG Yannan, WANG Ruzhu, LI Tingxian. Sorption characteristics and thermal storage performance of expanded vermiculite/CaCl2 composite sorbent[J]. CIESC Journal, 2018, 69(1): 363-370. | |
28 | GAO Na, DENG Lisheng, LI Jun, et al. Multi-form heat storage performance of expanded graphite based CaCl2 composites for low-grade heat source[J]. Energy Reports, 2022, 8: 12117-12125. |
29 | SHI Weina, ZHU Yanqing, SHEN Cong, et al. Water sorption properties of functionalized MIL-101(Cr)-X (X=—NH2, —SO3H, H, —CH3, —F) based composites as thermochemical heat storage materials[J]. Microporous and Mesoporous Materials, 2019, 285: 129-136. |
30 | CASEY Sean P, ELVINS Jon, RIFFAT Saffa, et al. Salt impregnated desiccant matrices for ‘open’ thermochemical energy storage—Selection, synthesis and characterisation of candidate materials[J]. Energy and Buildings, 2014, 84: 412-425. |
31 | WEI Siyu, ZHOU Wei, HAN Rui, et al. Scalable production of EP/CaCl2@C multistage core–shell sorbent for solar-driven sorption heat storage application[J]. Energy & Fuels, 2021, 35(8): 6845-6857. |
32 | SALGADO-PIZARRO R, CALDERÓN A, SVOBODOVA-SEDLACKOVA A, et al. The relevance of thermochemical energy storage in the last two decades: The analysis of research evolution[J]. Journal of Energy Storage, 2022, 51: 104377-104389. |
33 | KUZNIK Frédéric, JOHANNES Kévyn, OBRECHT Christian. Chemisorption heat storage in buildings: State-of-the-art and outlook[J]. Energy and Buildings, 2015, 106: 183-191. |
34 | AYDIN Devrim, CASEY Sean P, CHEN Xiangjie, et al. Numerical and experimental analysis of a novel heat pump driven sorption storage heater[J]. Applied Energy, 2018, 211: 954-974. |
35 | WANG Chenxi, ZOU Hao, DU Shuai, et al. Water and heat recovery for greenhouses in cold climates using a solid sorption system[J]. Energy, 2023, 270: 126919-126930. |
36 | SKRYLNYK Oleksandr, COURBON Emilie, HEYMANS Nicolas, et al. Combined solar thermochemical solid/gas energy storage process for domestic thermal applications: Analysis of global performance[J]. Applied Sciences, 2019, 9(9): 1946-1966. |
37 | CRESPO Alicia, Cèsar FERNÁNDEZ, David VÉREZ, et al. Thermal performance assessment and control optimization of a solar-driven seasonal sorption storage system for residential application[J]. Energy, 2023, 263: 125382-125398. |
38 | KUZNIK Frédéric, JOHANNES Kevyn, OBRECHT Christian, et al. A review on recent developments in physisorption thermal energy storage for building applications[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 576-586. |
39 | CLARK Ruby-Jean, MEHRABADI Abbas, FARID Mohammed. State of the art on salt hydrate thermochemical energy storage systems for use in building applications[J]. Journal of Energy Storage, 2020, 27: 101145-101163. |
40 | MOHAMED Zbair, SIMONA Bennici. Survey summary on salts hydrates and composites used in thermochemical sorption heat storage: A review[J]. Energies, 2021, 14(11): 3105-3138. |
41 | ZHANG Yannan, WANG Ruzhu. Sorption thermal energy storage: Concept, process, applications and perspectives[J]. Energy Storage Materials, 2020, 27: 352-369. |
42 | 顾清之. 镁-氢化镁热化学蓄热系统数值模拟和实验研究[D]. 上海: 上海交通大学, 2013. |
GU Qingzhi. Numerical simulation and experimental study of magnesium-magnesium hydride themochemical heat storage system[D]. Shanghai: Shanghai Jiao Tong University, 2013. | |
43 | FOPAH LELE Armand, N’TSOUKPOE Kokouvi Edem, OSTERLAND Thomas, et al. Thermal conductivity measurement of thermochemical storage materials[J]. Applied Thermal Engineering, 2015, 89: 916-926. |
44 | DONKERS P A J, SÖGÜTOGLU L C, HUININK H P, et al. A review of salt hydrates for seasonal heat storage in domestic applications[J]. Applied Energy, 2017, 199: 45-68. |
45 | JI J G, WANG R Z, LI L X. New composite adsorbent for solar-driven fresh water production from the atmosphere[J]. Desalination, 2007, 212(1/2/3): 176-182. |
46 | ZHANG Haiquan, YUAN Yanping, YANG Fan, et al. Inorganic composite adsorbent CaCl2/MWNT for water vapor adsorption[J]. RSC Advances, 2015, 5(48): 38630-38639. |
47 | COURBON Emilie, Pierre D’ANS, PERMYAKOVA Anastasia, et al. Further improvement of the synthesis of silica gel and CaCl2 composites: Enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications[J]. Solar Energy, 2017, 157: 532-541. |
48 | Amira JABBARI-HICHRI, BENNICI Simona, AUROUX Aline. CaCl2-containing composites as thermochemical heat storage materials[J]. Solar Energy Materials and Solar Cells, 2017, 172: 177-185. |
49 | DRUSKE Mona-Maria, Armand FOPAH-LELE, KORHAMMER Kathrin, et al. Developed materials for thermal energy storage: Synthesis and characterization[J]. Energy Procedia, 2014, 61: 96-99. |
50 | KORHAMMER Kathrin, DRUSKE Mona-Maria, Armand FOPAH-LELE, et al. Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage[J]. Applied Energy, 2016, 162: 1462-1472. |
51 | Alenka RISTIĆ, LOGAR Nataša Zabukovec. New composite water sorbents CaCl2-PHTS for low-temperature sorption heat storage: Determination of structural properties[J]. Nanomaterials, 2018, 9(1): 27-43. |
52 | TAN Bingqiong, LUO Yanshu, LIANG Xianghui, et al. Composite salt in MIL-101(Cr) with high water uptake and fast adsorption kinetics for adsorption heat pumps[J]. Microporous and Mesoporous Materials, 2019, 286: 141-148. |
53 | PERMYAKOVA Anastasia, WANG Sujing, COURBON Emilie, et al. Design of salt-metal organic framework composites for seasonal heat storage applications[J]. Journal of Materials Chemistry A, 2017, 5(25): 12889-12898. |
54 | SILVESTER Lishil, TOULOUMET Quentin, KAMARUDDIN Aiman, et al. Influence of silica functionalization on water sorption and thermochemical heat storage of mesoporous SBA-15/CaCl2 composites[J]. ACS Applied Energy Materials, 2021, 4(6): 5944-5956. |
55 | TOULOUMET Quentin, SILVESTER Lishil, BOIS Laurence, et al. Water sorption and heat storage in CaCl2 impregnated aluminium fumarate MOFs[J]. Solar Energy Materials and Solar Cells, 2021, 231: 111332-111345. |
56 | TOULOUMET Quentin, POSTOLE Georgeta, SILVESTER Lishil, et al. Hierarchical aluminum fumarate metal-organic framework-alumina host matrix: Design and application to CaCl2 composites for thermochemical heat storage[J]. Journal of Energy Storage, 2022, 50: 104702-104715. |
57 | Amira JABBARI-HICHRI, BENNICI Simona, AUROUX Aline. Enhancing the heat storage density of silica-alumina by addition of hygroscopic salts (CaCl2, Ba(OH)2, and LiNO3)[J]. Solar Energy Materials and Solar Cells, 2015, 140: 351-360. |
58 | KALLENBERGER Paul A, POSERN Konrad, LINNOW Kirsten, et al. Alginate-derived salt/polymer composites for thermochemical heat storage[J]. Advanced Sustainable Systems, 2018, 2(7): 1700160-1700168. |
59 | 展佳, 秦善, 高静. 无机水合盐中水的状态与相变潜热的关系[J]. 北京大学学报(自然科学版), 2018, 54(1): 80-86. |
ZHAN Jia, QIN Shan, GAO Jing. Storage of water in inorganic salt hydrates and the implications to latent heat in phase changes[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(1): 80-86. | |
60 | 徐玲, 徐海燕, 吴通好, 等. 新型复合分子筛的合成和催化应用[J]. 催化学报, 2006, 27(12): 1149-1158. |
XU Ling, XU Haiyan, WU Tonghao, et al. Synthesis and catalytic applications of novel composite molecular sieves[J]. Chinese Journal of Catalysis, 2006, 27(12): 1149-1158. | |
61 | MITRA Sourav, MUTTAKIN Mahbubul, Kyaw THU, et al. Study on the influence of adsorbent particle size and heat exchanger aspect ratio on dynamic adsorption characteristics[J]. Applied Thermal Engineering, 2018, 133: 764-773. |
62 | 王利丰. 多级孔材料的合成、表征及催化性能初探[D]. 长春: 吉林大学, 2007. |
WANG Lifeng. Synthesis, characterization, and catalytic properties of hierarchical porous materials[D]. Changchun: Jilin University, 2007. | |
63 | 魏思雨, 周伟, 韩瑞, 等. 硅藻土/CaCl2制备及热化学吸附储热性能研究[J]. 工程热物理学报, 2022, 43(4): 883-888. |
WEI Siyu, ZHOU Wei, HAN Rui, et al. Development of diatomite/CaCl2 for thermochemical sorption heat storage[J]. Journal of Engineering Thermophysics, 2022, 43(4): 883-888. | |
64 | VAN DONK Sander, BITTER Johannes H, VERBERCKMOES An, et al. Physicochemical characterization of porous materials: Spatially resolved accessibility of zeolite crystals[J]. Angewandte Chemie International Edition, 2005, 44(9): 1360-1363. |
65 | ZOU Ting, FU Wanwan, LIANG Xianghui, et al. Hydrophilic modification of expanded graphite to develop form-stable composite phase change material based on modified CaCl2·6H2O[J]. Energy, 2020, 190: 116473-116480. |
66 | RAMMELBERG Holger U, OSTERLAND Thomas, PRIEHS Boris, et al. Thermochemical heat storage materials—Performance of mixed salt hydrates[J]. Solar Energy, 2016, 136: 571-589. |
67 | JI Wenjie, ZHANG Heng, LIU Shuli, et al. An experimental study on the binary hydrated salt composite zeolite for improving thermochemical energy storage performance[J]. Renewable Energy, 2022, 194: 1163-1173. |
68 | ZHANG Xueling, WANG Feifei, ZHANG Qi, et al. Heat storage performance analysis of ZMS-Porous media/CaCl2/MgSO4 composite thermochemical heat storage materials[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111246. |
[1] | 杨光, 姜瑞婷, 张玥, 符子剑, 刘伟. 五氧化二钒/碳纳米复合材料在超级电容器中的应用[J]. 化工进展, 2024, 43(7): 3857-3871. |
[2] | 赵伟刚, 张倩倩, 蓝钰玲, 闫雯, 周晓剑, 范毜仔, 杜官本. 真空绝热板芯材的研究进展与展望[J]. 化工进展, 2024, 43(7): 3910-3922. |
[3] | 江慧珍, 罗凯, 王艳, 费华, 吴登科, 叶卓铖, 曹雄金. 废弃生物质复合相变材料的构建与应用[J]. 化工进展, 2024, 43(7): 3934-3945. |
[4] | 杜倩, 侯明, 高冀芸, 杨黎, 鲁元佳, 郭胜惠. f-Ti3C2T x /ZIF-8异质结构增强NO2气体传感器的敏感性能[J]. 化工进展, 2024, 43(7): 3946-3954. |
[5] | 张世蕊, 范朕连, 宋慧平, 张丽娜, 高宏宇, 程淑艳, 程芳琴. 粉煤灰负载光催化材料的研究进展[J]. 化工进展, 2024, 43(7): 4043-4058. |
[6] | 刘梦凡, 王华伟, 王亚楠, 张艳茹, 蒋旭彤, 孙英杰. Bio-FeMnCeO x 活化PMS降解四环素效能与机制[J]. 化工进展, 2024, 43(6): 3492-3502. |
[7] | 杨磊, 邱广薇, 李思言, 葛宏程, 孙园园, 王菲, 范晓光. 基于温度和葡萄糖双重响应性共聚物微囊的胰岛素控释载体[J]. 化工进展, 2024, 43(6): 3277-3284. |
[8] | 刘涵, 曲明璐, 叶振东, 杨帆, 黄蓓佳, 张亚宁, 刘洪芝. 钙镁二元盐复合材料的储热性能[J]. 化工进展, 2024, 43(4): 1764-1773. |
[9] | 刘雨蓉, 王兴宝, 李文英. 分子筛负载Pt催化剂酸性位点调控及对蒽深度加氢性能的影响[J]. 化工进展, 2024, 43(4): 1832-1839. |
[10] | 熊文婷, 罗启基, 鄢春根. 二氧化硅基气凝胶材料及其制备技术的专利分析[J]. 化工进展, 2024, 43(4): 1912-1922. |
[11] | 郭迎春, 梁晓怿. 柠檬酸改性球形活性炭对氨气吸附性能的影响[J]. 化工进展, 2024, 43(2): 1082-1088. |
[12] | 见禹, 陈宝明, 宫晗语. 基于分级结构骨架相变储热系统强化传热特性[J]. 化工进展, 2024, 43(2): 649-658. |
[13] | 代洪静, 马学虎, 王四芳. 低中放射性废水处理吸附技术及材料[J]. 化工进展, 2024, 43(1): 529-540. |
[14] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[15] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |