化工进展 ›› 2024, Vol. 43 ›› Issue (7): 3798-3811.DOI: 10.16085/j.issn.1000-6613.2023-0947
• 能源加工与技术 • 上一篇
舒岗韦1(), 林钰程1, 张为宏2, 赵世强1,3, 郑晓阳2, 常春1,4()
收稿日期:
2023-06-08
修回日期:
2023-08-04
出版日期:
2024-07-10
发布日期:
2024-08-14
通讯作者:
常春
作者简介:
舒岗韦(1997—),男,硕士研究生,研究方向为生物质炼制与高值化。E-mail:shuke9723@163.com。
基金资助:
SHU Gangwei1(), LIN Yucheng1, ZHANG Weihong2, ZHAO Shiqiang1,3, ZHENG Xiaoyang2, CHANG Chun1,4()
Received:
2023-06-08
Revised:
2023-08-04
Online:
2024-07-10
Published:
2024-08-14
Contact:
CHANG Chun
摘要:
木糖作为木质纤维素生物质中半纤维素部分最丰富的戊糖,其衍生物具有巨大的应用市场。在国家“双碳”目标下,绿色高效的木糖炼制工艺不仅符合国家节能减排、绿色循环发展的要求,也能有效降低木糖制备成本并促进木糖的高值化利用。本文对木糖的生物炼制工艺进行了综述,并分析了不同工艺发展现状及存在的问题。同时综述了近年来木糖水解分离技术的进展以及木糖在生物基化学品和生物基材料的高值化应用,最后提出了促进木糖生物炼制发展的建议并对木糖高值化应用进行了展望。
中图分类号:
舒岗韦, 林钰程, 张为宏, 赵世强, 郑晓阳, 常春. 木糖生物炼制与高值化应用研究进展[J]. 化工进展, 2024, 43(7): 3798-3811.
SHU Gangwei, LIN Yucheng, ZHANG Weihong, ZHAO Shiqiang, ZHENG Xiaoyang, CHANG Chun. Research progress in biorefinery and high value application of xylose[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3798-3811.
名称 | 纤维素/% | 半纤维素/% | 木质素/% | 参考文献 |
---|---|---|---|---|
水葫芦 | 18~24 | 26~48 | 3~11 | [ |
小麦秸秆 | 35~40.37 | 28~37.32 | 20~22.31 | [ |
大麦壳 | 34.2 | 35.8 | 13.6~18.8 | [ |
柳枝稷 | 45 | 31.4 | 12 | [ |
毛竹 | 35~40 | 20~32 | 20~30 | [ |
玉米芯 | 35.3~45 | 30.2~37 | 15.3~20.6 | [ |
稻壳 | 27.9~35.4 | 11.8~29.4 | 15.3~19.9 | [ |
玉米秸秆 | 30~39 | 21~26 | 17~25 | [ |
杨木 | 49.8 | 24.4 | 23.3 | [ |
巨菌草 | 41.3~43.9 | 22.9~25.8 | 17.3~18.6 | [ |
核桃青皮 | 33.82 | 22.42 | 21.42 | [ |
表1 半纤维素含量较高的部分生物质材料
名称 | 纤维素/% | 半纤维素/% | 木质素/% | 参考文献 |
---|---|---|---|---|
水葫芦 | 18~24 | 26~48 | 3~11 | [ |
小麦秸秆 | 35~40.37 | 28~37.32 | 20~22.31 | [ |
大麦壳 | 34.2 | 35.8 | 13.6~18.8 | [ |
柳枝稷 | 45 | 31.4 | 12 | [ |
毛竹 | 35~40 | 20~32 | 20~30 | [ |
玉米芯 | 35.3~45 | 30.2~37 | 15.3~20.6 | [ |
稻壳 | 27.9~35.4 | 11.8~29.4 | 15.3~19.9 | [ |
玉米秸秆 | 30~39 | 21~26 | 17~25 | [ |
杨木 | 49.8 | 24.4 | 23.3 | [ |
巨菌草 | 41.3~43.9 | 22.9~25.8 | 17.3~18.6 | [ |
核桃青皮 | 33.82 | 22.42 | 21.42 | [ |
原料 | 酸 | 酸浓度/% | 温度/℃ | 物料比/g·mL-1 | 时间/min | 木糖质量产率/% | 参考文献 |
---|---|---|---|---|---|---|---|
玉米芯 | 硫酸 | 1.2 | 120 | 1∶10 | 90 | 86.36 | [ |
油棕空壳 | 硫酸 | 6 | 120 | 1∶12.5 | 15 | — | [ |
稻草 | 硝酸 | 1 | 121 | 1∶10 | 30 | 71.32 | [ |
高粱秸秆 | 盐酸 | 6 | 122 | 1∶10 | 70 | — | [ |
玉米秸秆 | 盐酸 | 0.7 | 120 | 1∶10 | 40 | 81.0 | [ |
甘蔗渣 | 草酸 | 3.6 | 120 | 1∶20 | 10 | 93.2 | [ |
玉米芯 | 草酸 | 1.2 | 130 | 1∶8 | 120 | 96.1 | [ |
芒草 | 甲酸 | 88 | 100 | 1∶10 | 180 | 88.58 | [ |
玉米芯 | 乙酸/乙酸钠 | 0.9 | 170 | 1∶10 | 60 | 74.8 | [ |
杨木 | 乙酸/乙酸钠 | 0.9 | 170 | — | 60 | 55.7 | [ |
玉米芯 | 丙酸 | 5 | 170 | — | 50 | 68.5 | [ |
表2 不同酸催化各生物质原料的木糖质量产率
原料 | 酸 | 酸浓度/% | 温度/℃ | 物料比/g·mL-1 | 时间/min | 木糖质量产率/% | 参考文献 |
---|---|---|---|---|---|---|---|
玉米芯 | 硫酸 | 1.2 | 120 | 1∶10 | 90 | 86.36 | [ |
油棕空壳 | 硫酸 | 6 | 120 | 1∶12.5 | 15 | — | [ |
稻草 | 硝酸 | 1 | 121 | 1∶10 | 30 | 71.32 | [ |
高粱秸秆 | 盐酸 | 6 | 122 | 1∶10 | 70 | — | [ |
玉米秸秆 | 盐酸 | 0.7 | 120 | 1∶10 | 40 | 81.0 | [ |
甘蔗渣 | 草酸 | 3.6 | 120 | 1∶20 | 10 | 93.2 | [ |
玉米芯 | 草酸 | 1.2 | 130 | 1∶8 | 120 | 96.1 | [ |
芒草 | 甲酸 | 88 | 100 | 1∶10 | 180 | 88.58 | [ |
玉米芯 | 乙酸/乙酸钠 | 0.9 | 170 | 1∶10 | 60 | 74.8 | [ |
杨木 | 乙酸/乙酸钠 | 0.9 | 170 | — | 60 | 55.7 | [ |
玉米芯 | 丙酸 | 5 | 170 | — | 50 | 68.5 | [ |
原料 | 反应体系溶剂 | 固体酸/碳前体 | 催化剂负载量/g·g-1 | 温度/℃ | 时间/min | 木糖质量产率/% | 参考文献 |
---|---|---|---|---|---|---|---|
玉米芯 | 水 | 碳基固体酸/木质素磺酸钠 | — | 130 | 720 | 84.2 | [ |
玉米芯 | 水 | 碳基固体酸/稻壳 | 0.5 | 160 | 180 | 48.65 | [ |
玉米芯 | 水 | 碳基固体酸/微晶纤维素 | 0.25 | 140 | 360 | 78.1 | [ |
木聚糖 | 水 | 碳基固体酸/微晶纤维素、棉纤维纸浆 | — | 150 | 240 | 58.8 | [ |
桉木屑 | 水 | 碳基固体酸/蔗糖 | 0.05 | 200 | 5 | 40.7 | [ |
玉米芯 | 水 | 磁性碳基固体酸/微晶纤维素 | 0.5 | 150 | 120 | 73.4 | [ |
甘蔗渣 | 水 | 磁性碳基固体酸/微晶纤维素 | 1 | 170 | 10 | 91.62 | [ |
玉米芯 | 水 | SO42-/TiO2-ZrO2/La3+ | — | 180 | 120 | 6.8 | [ |
油茶果壳 | 水 | 碳基固体酸/油茶果壳 | 0.2 | 170 | 20 | 51.41 | [ |
玉米芯 | 水 | 碳基固体酸/油茶果壳 | 0.2 | 160 | 20 | 41.04 | [ |
甘蔗渣 | 水 | 碳基固体酸/油茶果壳 | 0.15 | 160 | 20 | 45.03 | [ |
玉米秸秆 | 水 | H-USY沸石 | — | 170 | 180 | 40 | [ |
竹粉 | 水-甲苯 | 菱沸石(CHA) | — | 170 | 120 | — | [ |
玉米芯 | 水 | ZrO2 | 0.33 | 153 | 318 | 33 | [ |
玉米芯 | 水 | 阳离子交换树脂(NKC-9 | 5 | 131 | 42 | 47.7 | [ |
甘蔗渣 | 水 | 硝酸浸渍的活性炭 | 0.03 | 120 | — | 50 | [ |
表3 不同固体酸催化各生物质原料的木糖质量产率
原料 | 反应体系溶剂 | 固体酸/碳前体 | 催化剂负载量/g·g-1 | 温度/℃ | 时间/min | 木糖质量产率/% | 参考文献 |
---|---|---|---|---|---|---|---|
玉米芯 | 水 | 碳基固体酸/木质素磺酸钠 | — | 130 | 720 | 84.2 | [ |
玉米芯 | 水 | 碳基固体酸/稻壳 | 0.5 | 160 | 180 | 48.65 | [ |
玉米芯 | 水 | 碳基固体酸/微晶纤维素 | 0.25 | 140 | 360 | 78.1 | [ |
木聚糖 | 水 | 碳基固体酸/微晶纤维素、棉纤维纸浆 | — | 150 | 240 | 58.8 | [ |
桉木屑 | 水 | 碳基固体酸/蔗糖 | 0.05 | 200 | 5 | 40.7 | [ |
玉米芯 | 水 | 磁性碳基固体酸/微晶纤维素 | 0.5 | 150 | 120 | 73.4 | [ |
甘蔗渣 | 水 | 磁性碳基固体酸/微晶纤维素 | 1 | 170 | 10 | 91.62 | [ |
玉米芯 | 水 | SO42-/TiO2-ZrO2/La3+ | — | 180 | 120 | 6.8 | [ |
油茶果壳 | 水 | 碳基固体酸/油茶果壳 | 0.2 | 170 | 20 | 51.41 | [ |
玉米芯 | 水 | 碳基固体酸/油茶果壳 | 0.2 | 160 | 20 | 41.04 | [ |
甘蔗渣 | 水 | 碳基固体酸/油茶果壳 | 0.15 | 160 | 20 | 45.03 | [ |
玉米秸秆 | 水 | H-USY沸石 | — | 170 | 180 | 40 | [ |
竹粉 | 水-甲苯 | 菱沸石(CHA) | — | 170 | 120 | — | [ |
玉米芯 | 水 | ZrO2 | 0.33 | 153 | 318 | 33 | [ |
玉米芯 | 水 | 阳离子交换树脂(NKC-9 | 5 | 131 | 42 | 47.7 | [ |
甘蔗渣 | 水 | 硝酸浸渍的活性炭 | 0.03 | 120 | — | 50 | [ |
原料 | 优化条件 | 效果 | 参考文献 |
---|---|---|---|
玉米秸秆 | 0.5% H2SO4浸泡24h,121℃下1.21MPa保压30min | 叶子和秸秆外壳的糖化率最高达89.27% | [ |
玉米秸秆 | 2% H2SO4浸泡秸秆,200℃下保压10min | 半纤维素几乎全部被去除 | [ |
玉米秸秆 | 10%(NH4)2CO3浸泡秸秆,200℃保压10min | 还原糖浓度显著高于单独蒸汽爆破 | [ |
玉米芯 | 0.3% H2SO4以固液比为3∶1预浸6h后,200℃下蒸煮5min | 提高了半纤维素的水解率 | [ |
玉米秸秆 | 玉米秸秆使用氯化胆碱以1∶2.2的比例,1.0MPa、184℃处理15min | 得到78.3%的木糖产率,增强了残渣的酶促反应 | [ |
大麦秸秆 | 180℃下蒸汽爆破30min,固体残渣使用糖苷水解酶处理 | 增强酶促反应,每100g原料得到11.1g低聚木糖 | [ |
小麦秸秆 | 小麦秸秆与蒸馏水1∶1浸润,190℃保压10min后酶处理 | 木糖的浓度从13.8g/L提升到18.9g/L | [ |
啤酒糟 | 原料使用5%H2SO4室温下浸渍12h后进行蒸汽爆破(170℃,30min) | 与没有酸浸相比,得到了最高的木糖(49.8%)和阿拉伯糖(61.5%)质量产率 | [ |
表4 优化的蒸汽爆破条件
原料 | 优化条件 | 效果 | 参考文献 |
---|---|---|---|
玉米秸秆 | 0.5% H2SO4浸泡24h,121℃下1.21MPa保压30min | 叶子和秸秆外壳的糖化率最高达89.27% | [ |
玉米秸秆 | 2% H2SO4浸泡秸秆,200℃下保压10min | 半纤维素几乎全部被去除 | [ |
玉米秸秆 | 10%(NH4)2CO3浸泡秸秆,200℃保压10min | 还原糖浓度显著高于单独蒸汽爆破 | [ |
玉米芯 | 0.3% H2SO4以固液比为3∶1预浸6h后,200℃下蒸煮5min | 提高了半纤维素的水解率 | [ |
玉米秸秆 | 玉米秸秆使用氯化胆碱以1∶2.2的比例,1.0MPa、184℃处理15min | 得到78.3%的木糖产率,增强了残渣的酶促反应 | [ |
大麦秸秆 | 180℃下蒸汽爆破30min,固体残渣使用糖苷水解酶处理 | 增强酶促反应,每100g原料得到11.1g低聚木糖 | [ |
小麦秸秆 | 小麦秸秆与蒸馏水1∶1浸润,190℃保压10min后酶处理 | 木糖的浓度从13.8g/L提升到18.9g/L | [ |
啤酒糟 | 原料使用5%H2SO4室温下浸渍12h后进行蒸汽爆破(170℃,30min) | 与没有酸浸相比,得到了最高的木糖(49.8%)和阿拉伯糖(61.5%)质量产率 | [ |
1 | 黄元, 田立航, 李玉洁. 农业废弃物的综合利用[J]. 河南农业, 2023(10): 11. |
HUANG Yuan, TIAN Lihang, LI Yujie. Comprehensive utilization of agricultural wastes[J]. Agriculture of Henan, 2023(10): 11. | |
2 | PALANIAPPAN Ayyappan, ANTONY Usha, EMMAMBUX Mohammad Naushad. Current status of xylooligosaccharides: Production, characterization, health benefits and food application[J]. Trends in Food Science & Technology, 2021, 111: 506-519. |
3 | 沈家赫. 基于半纤维素酶解的巨菌草纤维组分分离研究[D]. 济南: 齐鲁工业大学,2021. |
SHEN Jiahe. Study on fiber component separation of giant weed based on hemicellulose enzymatic hydrolysis[D]. Jinan: Qilu University of Technology, 2021. | |
4 | FIGUEROA-TORRES L A, LIZARDI-JIMÉNEZ M A, LÓPEZ-RAMÍREZ N, et al. Saccharification of water hyacinth biomass by a combination of steam explosion with enzymatic technologies for bioethanol production[J].3 Biotech, 2020, 10(10): 432. |
5 | 程军, 俞聪, 宋文路, 等. 微光波对水葫芦水解糖化的促进机理研究[J]. 浙江大学学报(工学版), 2009, 43(7): 1337-1343. |
CHENG Jun, YU Cong, SONG Wenlu, et al. Study on the promotion mechanism of low-light wave on hydrolysis and saccharification of water hyacinth[J]. Journal of Zhejiang University (Engineering Science), 2009, 43(7): 1337-1343. | |
6 | JIN Liqun, ZHAO Nan, LIU Zhiqiang, et al. Enhanced production of xylose from corncob hydrolysis with oxalic acid as catalyst[J].Bioprocess and Biosystems Engineering, 2018, 41(1): 57-64. |
7 | ZHU Tao, LI Pingli, WANG Xiaowei, et al. Optimization of formic acid hydrolysis of corn cob in xylose production[J].Korean Journal of Chemical Engineering, 2014, 31(9): 1624-1631. |
8 | QI Wei, LIU Guifeng, HE Chao, et al. An efficient magnetic carbon-based solid acid treatment for corncob saccharification with high selectivity for xylose and enhanced enzymatic digestibility[J]. Green Chemistry, 2019, 21(6): 1292-1304. |
9 | SATYAVOLU Jagannadh, TADIMETI Jogi Ganesh Dattatreya, THILAKARATNE Rajeeva. Xylose production and the associated integration for biocoal production[J]. Energy Conversion and Management: X, 2021, 10: 100073. |
10 | LIU Jia, SONG Qianyi, LI Youxin, et al. Development of a polyallylamine hydrochloride hydrogel imprinted with xylose for the purification of xylose from sugar mixture[J]. International Journal of Food Science & Technology, 2023, 58(3): 1423-1433. |
11 | MIKKONEN Kirsi S, LAINE Christiane, KONTRO Inkeri, et al. Combination of internal and external plasticization of hydroxypropylated birch xylan tailors the properties of sustainable barrier films[J]. European Polymer Journal, 2015, 66: 307-318. |
12 | BALCIOGLU Sevgi, PARLAKPINAR Hakan, VARDI Nigar, et al. Design of xylose-based semisynthetic polyurethane tissue adhesives with enhanced bioactivity properties[J]. ACS Applied Materials & Interfaces, 2016, 8(7): 4456-4466. |
13 | 柏凌寒. D-木糖基碳复合材料的制备及微波吸收性能研究[D]. 淮南: 安徽理工大学, 2021. |
BAI Linghan. Synthesis and microwave absorption properties of D-xylose-based carbon composites[D]. Huainan: Anhui University of Science & Technology, 2021. | |
14 | HUANG Lingzhi, MA Mingguo, JI Xingxiang, et al. Recent developments and applications of hemicellulose from wheat straw: A review[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 690773. |
15 | Cătălin VOINICIUC. Modern mannan: A hemicellulose’s journey[J]. The New Phytologist, 2022, 234(4): 1175-1184. |
16 | Andrés ANCA-COUCE, OBERNBERGER Ingwald. Application of a detailed biomass pyrolysis kinetic scheme to hardwood and softwood torrefaction[J]. Fuel, 2016, 167: 158-167. |
17 | LIU Zhiwei, KU Xiaoke, JIN Hanhui. Pyrolysis mechanism of wheat straw based on ReaxFF molecular dynamics simulations[J]. ACS Omega, 2022, 7(24): 21075-21085. |
18 | 郭健铭. 基于有机酸预处理的小麦秸秆聚糖组分水解技术研究[D]. 南京: 南京林业大学,2021. |
GUO Jianming. Study on hydrolysis technology of polysaccharide components of wheat straw based on organic acid pretreatment[D]. Nanjing: Nanjing Forestry University,2021. | |
19 | 张锦旭. 离子液体预处理纤维素生物质产糖研究及木质素纳米颗粒的制备与应用[D]. 北京: 北京化工大学, 2022. |
ZHANG Jinxu. Study on sugar production from cellulose biomass pretreated by ionic liquid and preparation and application of lignin nanoparticles[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
20 | KUMAR Adepu Kiran, SHARMA Shaishav. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review[J]. Bioresources and Bioprocessing, 2017, 4(1): 7. |
21 | 李志强, 江泽慧, 费本华. 竹材制取生物乙醇原料预处理技术研究进展[J]. 化工进展, 2012, 31(3): 533-540. |
LI Zhiqiang, JIANG Zehui, FEI Benhua. Research progress on pretreatment technology of raw materials for producing bioethanol from bamboo[J]. Chemical Industry and Engineering Progress, 2012, 31(3): 533-540. | |
22 | JIANG Liqun, WU Nannan, ZHENG Anqing, et al. Comprehensive utilization of hemicellulose and cellulose to release fermentable sugars from corncobs via acid hydrolysis and fast pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5208-5213. |
23 | 乔慧, 欧阳水平, 刘蕾, 等. 低浓度乙酸预处理玉米芯的工艺研究[J]. 林产化学与工业, 2019, 39(1): 81-87. |
QIAO Hui, OUYANG Shuiping, LIU Lei, et al. Pretreatment of corncob by dilute acetic acid[J]. Chemistry and Industry of Forest Products, 2019, 39(1): 81-87. | |
24 | 黄历. 生物质的特性分析及其热裂解产物的研究[D]. 上海: 上海交通大学, 2014. |
HUANG Li. Characteristic analysis of biomass and study on its pyrolysis products[D]. Shanghai: Shanghai Jiao Tong University, 2014. | |
25 | ZHONG Xiuhong, YUAN Ran, ZHANG Baoshuai, et al. Full fractionation of cellulose, hemicellulose, and lignin in pith-leaf containing corn stover by one-step treatment using aqueous formic acid[J]. Industrial Crops and Products, 2021, 172: 113962. |
26 | ZHANG Zhibo, LU Qiang, YE Xiaoning, et al. Production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass using magnetic solid base catalyst[J]. Energy Conversion and Management, 2015, 106: 1309-1317. |
27 | 田中建. 巨菌草三大组分的分离、糖化及高值化利用研究[D]. 南宁: 广西大学, 2017. |
TIAN Zhongjian. Study on separation, saccharification and high-value utilization of three major components of giant weed[D]. Nanning: Guangxi University, 2017. | |
28 | 赵玉雪, 朱佳敏, 杨霞, 等. 核桃青皮中木质素、纤维素、半纤维素测定初报[J]. 贵州林业科技, 2021, 49(2): 7-10. |
ZHAO Yuxue, ZHU Jiamin, YANG Xia, et al. A preliminary report on the determination of lignin, cellulose and hemicellulose in walnut green husk[J]. Guizhou Forestry Science and Technology, 2021, 49(2): 7-10. | |
29 | ZHANG Weiwei, YOU Yanzhi, LEI Fuhou, et al. Acetyl-assisted autohydrolysis of sugarcane bagasse for the production of xylo-oligosaccharides without additional chemicals[J]. Bioresource Technology, 2018, 265: 387-393. |
30 | Fatmagül HALICI-DEMIR, Özlem AKPINAR. Xylose release from sunflower stalk by coupling autohydrolysis and enzymatic post-hydrolysis[J]. Waste and Biomass Valorization, 2022, 13(3): 1491-1502. |
31 | FORSAN Carolina Froes, PAZ CEDEÑO Fernando Roberto, MASARIN Fernando, et al. Xylooligosaccharides production by optimized autohydrolysis, sulfuric and acetic acid hydrolysis for minimum sugar degradation production[J]. Bioactive Carbohydrates and Dietary Fibre, 2021, 26: 100268. |
32 | SUREK Ece, BUYUKKILECI Ali Oguz. Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell[J]. Carbohydrate Polymers, 2017, 174: 565-571. |
33 | 傅丹宁, 唐艳军, 李勉. 稀酸预处理玉米芯提取木糖的研究[J]. 中国造纸, 2020, 39(3): 35-43. |
FU Danning, TANG Yanjun, LI Mian. Research on extracting xylose from corncob by acid pretreatment[J]. China Pulp & Paper, 2020, 39(3): 35-43. | |
34 | RAHMAN S H A, CHOUDHURY J P, AHMAD A L. Production of xylose from oil palm empty fruit bunch fiber using sulfuric acid[J]. Biochemical Engineering Journal, 2006, 30(1): 97-103. |
35 | KAUR Sundeep, GULERIA Payal, SIDANA Arushdeep, et al. Efficient process for xylitol production from nitric acid pretreated rice straw derived pentosans by Candida tropicalis GS18[J]. Biomass and Bioenergy, 2022, 166: 106618. |
36 | HERRERA A, TÉLLEZ-LUIS S J, RAMı́REZ J A, et al. Production of xylose from sorghum straw using hydrochloric acid[J]. Journal of Cereal Science, 2003, 37(3): 267-274. |
37 | LIU Qiyu, LI Wenzhi, MA Qiaozhi, et al. Pretreatment of corn stover for sugar production using a two-stage dilute acid followed by wet-milling pretreatment process[J]. Bioresource Technology, 2016, 211: 435-442. |
38 | YAN Yuhuan, ZHANG Chunhui, LIN Qixuan, et al. Microwave-assisted oxalic acid pretreatment for the enhancing of enzyme hydrolysis in the production of xylose and Arabinose from bagasse[J]. Molecules, 2018, 23(4): 862. |
39 | OUYANG Jia, HE Wenqiang, LI Qingming, et al. Separation of lignocellulose and preparation of xylose from miscanthus lutarioriparius with a formic acid method[J]. Applied Sciences, 2022, 12(3): 1432. |
40 | LIAO Hong, LI Xin, LIAN Zhina, et al. Two-step acetic acid/sodium acetate and xylanase hydrolysis for xylooligosaccharides production from corncob[J]. Bioresource Technology, 2021, 342: 125979. |
41 | YING Wenjun, OUYANG Jia, LIAN Zhina, et al. Lignin removal improves xylooligosaccharides production from poplar by acetic acid hydrolysis[J]. Bioresource Technology, 2022, 354: 127190. |
42 | LIAO Hong, XU Yong, ZHANG Junhua. Efficient production of xylooligosaccharides and fermentable sugars from corncob by propionic acid and enzymatic hydrolysis[J]. Bioresource Technology, 2021, 342: 125680. |
43 | LI Xun, SHU Fengyao, HE Chao, et al. Preparation and investigation of highly selective solid acid catalysts with sodium lignosulfonate for hydrolysis of hemicellulose in corncob[J]. RSC Advances, 2018, 8(20): 10922-10929. |
44 | CHEN Na, ZHANG Guangming, ZHANG Panyue, et al. Rice husk-based solid acid for efficient hydrolysis and saccharification of corncob[J]. Bioresource Technology, 2019, 292: 121915. |
45 | QI Wei, HE Chao, WANG Qiong, et al. Carbon-based solid acid pretreatment in corncob saccharification: Specific xylose production and efficient enzymatic hydrolysis[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3640-3648. |
46 | QU Zheng, HAN Ying, MA Zihao, et al. Controlling cellulose feedstock size allows for modification of cellulose-based carbon-based solid acid size[J].Cellulose, 2023, 30(4): 2323-2335. |
47 | WEERASAI Khatiya, CHAMPREDA Verawat, SAKDARONNARONG Chularat, et al. Hydrolysis of eucalyptus wood chips under hot compressed water in the presence of sulfonated carbon-based catalysts[J]. Food and Bioproducts Processing, 2018, 110: 136-144. |
48 | LU Si, WANG Qiong, LIANG Zheng, et al. Saccharification of sugarcane bagasse by magnetic carbon-based solid acid pretreatment and enzymatic hydrolysis[J]. Industrial Crops and Products, 2021, 160: 113159. |
49 | LI Huiling, DENG Aojie, REN Junli, et al. Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst[J]. Bioresource Technology, 2014, 158: 313-320. |
50 | XU Wei, ZHANG Weiwei, HAN Minghui, et al. Production of xylooligosaccharides from Camellia oleifera Abel fruit shell using a shell-based solid acid catalyst[J]. Bioresource Technology, 2022, 365: 128173. |
51 | ZHOU Lipeng, SHI Meiting, CAI Qiyong, et al. Hydrolysis of hemicellulose catalyzed by hierarchical H-USY zeolites—The role of acidity and pore structure[J]. Microporous and Mesoporous Materials, 2013, 169: 54-59. |
52 | YOSHIDA Kurumi, NANAO Hidetaka, KIYOZUMI Yoshimichi, et al. Furfural production from xylose and bamboo powder over chabazite-type zeolite prepared by interzeolite conversion method[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 79: 55-59. |
53 | WAN Lijun, GAO Zhen, WU Bin, et al. Hydrolysis of corncob hemicellulose by solid acid sulfated zirconia and its evaluation in xylitol production[J].Applied Biochemistry and Biotechnology, 2021, 193(1): 205-217. |
54 | ZHANG Qibo, ZHOU Xin, XU Yong. Xylooligosaccharides production from xylan hydrolysis using recyclable strong acidic cationic exchange resin as solid acid catalyst[J].Applied Biochemistry and Biotechnology, 2022, 194(8): 3609-3620. |
55 | RAHMATI Shahrooz, ATANDA Luqman, HORN Michael, et al. A hemicellulose-first approach: One-step conversion of sugarcane bagasse to xylooligosaccharides over activated carbon modified with tandem plasma and acid treatments[J]. Green Chemistry, 2022, 24(19): 7410-7428. |
56 | XU Jifei, HAN Yutong, ZHU Wenbo, et al. Multivariable analysis of the effects of factors in the pretreatment and enzymolysis processes on saccharification efficiency[J]. Industrial Crops and Products, 2019, 142: 111824. |
57 | KATSIMPOURAS Constantinos, ZACHAROPOULOU Maria, MATSAKAS Leonidas, et al. Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover[J]. Bioresource Technology, 2017, 244: 1129-1136. |
58 | XU Hui, ZHAO Ning, YAO Huiyin, et al. Lipid production from corn stover by a cost-efficient system featuring ammonium carbonate-steam explosion and recirculating enzymatic hydrolysis[J]. Biomass and Bioenergy, 2019, 120: 387-395. |
59 | WANG Le, FAN Xiaoguang, TANG Pingwah, et al. Xylitol fermentation using hemicellulose hydrolysate prepared by acid pre‐impregnated steam explosion of corncob[J]. Journal of Chemical Technology and Biotechnology, 2013,88(11): 2067-2074. |
60 | NASIR Arslna, CHEN Hongzhang, WANG Lan. Novel single-step pretreatment of steam explosion and choline chloride to de-lignify corn stover for enhancing enzymatic edibility[J]. Process Biochemistry, 2020,94: 273-281. |
61 | Cristina ÁLVAREZ, Felicia SÁEZ, Alberto GONZÁLEZ, et al. Production of xylooligosaccharides and cellulosic ethanol from steam-exploded barley straw[J]. Holzforschung, 2018, 73(1): 35-44. |
62 | SULZENBACHER Daniel, Denise ATZMÜLLER, HAWE Felix, et al. Optimization of steam explosion parameters for improved biotechnological use of wheat straw[J].Biomass Conversion and Biorefinery, 2023, 13(2): 1035-1046. |
63 | ROJAS-PÉREZ Lilia C, NARVÁEZ-RINCÓN Paulo C, BALLESTEROS I. Improving sugar extraction from brewers’ spent grain using sequential deproteinization and acid-catalyzed steam explosion in a biorefinery context[J]. Biomass and Bioenergy, 2022, 159: 106389. |
64 | CEBREIROS Florencia, RISSO Florencia, CAGNO Matias, et al. Enhanced production of butanol and xylosaccharides from Eucalyptus grandis wood using steam explosion in a semi-continuous pre-pilot reactor[J]. Fuel, 2021, 290: 119818. |
65 | 陈晓东. 蒸汽爆破磷酸水解蔗渣制备木糖及发酵饲料[J]. 轻工科技, 2019, 35(4): 5-7. |
CHEN Xiaodong. Preparation of xylose and fermented feed by hydrolysis of bagasse with phosphoric acid by steam blasting[J]. Light Industry Science and Technology, 2019, 35(4): 5-7. | |
66 | LIU Zhihua, CHEN Hongzhang. Xylose production from corn stover biomass by steam explosion combined with enzymatic digestibility[J]. Bioresource Technology, 2015, 193: 345-356. |
67 | XIA Qi, PENG Hong, YUAN Lin, et al. Anionic structural effect on the dissolution of Arabinoxylan-rich hemicellulose in 1-butyl-3-methylimidazolium carboxylate-based ionic liquids[J]. RSC Advances, 2020, 10(20): 11643-11651. |
68 | ZHANG Yajuan, XU Airong, LU Benlian, et al. Dissolution of cellulose in 1-allyl-3-methylimizodalium carboxylates at room temperature: A structure–property relationship study[J]. Carbohydrate Polymers, 2015, 117: 666-672. |
69 | XU Feng, SHI Yongcheng, WANG Donghai. Enhanced production of glucose and xylose with partial dissolution of corn stover in ionic liquid, 1-ethyl-3-methylimidazolium acetate[J]. Bioresource Technology, 2012, 114: 720-724. |
70 | VANOYE Laurent, FANSELOW Markus, HOLBREY John D, et al. Kinetic model for the hydrolysis of lignocellulosic biomass in the ionic liquid, 1-ethyl-3-methyl-imidazolium chloride[J]. Green Chemistry, 2009, 11(3): 390-396. |
71 | LI Dong, SUN Yong, LI Ruiling, et al. Selective conversion of corncob hemicellulose to xylose via hydrothermal treatment with Fe2(SO4)3 and NaCl[J]. Biomass Conversion and Biorefinery, 2023, 13(2): 1231-1240. |
72 | KANG Kyeong Eop, PARK Don-Hee, JEONG Gwi-Taek. Effects of inorganic salts on pretreatment of Miscanthus straw[J]. Bioresource Technology, 2013, 132: 160-165. |
73 | YI Jian, HE Ting, JIANG Zhicheng, et al. AlCl3 catalyzed conversion of hemicellulose in corn stover[J]. Chinese Journal of Catalysis, 2013, 34(11): 2146-2152. |
74 | LIAO Hong, YING Wenjun, LIAN Zhina, et al. One-step sodium bisulfate hydrolysis for efficient production of xylooligosaccharides from poplar[J]. Bioresource Technology, 2022, 355: 127269. |
75 | PRUKSASRI Suwattana, LANNER Bernhard, NOVALIN Senad. Nanofiltration as a potential process for the reduction of sugar in apple juices on an industrial scale[J]. LWT, 2020, 133: 110118. |
76 | CHEN Kaifei, LUO Gang, LEI Zhongfang, et al. Chromatographic separation of glucose, xylose and Arabinose from lignocellulosic hydrolysates using cation exchange resin[J]. Separation and Purification Technology, 2018, 195: 288-294. |
77 | DU Hong, MA Xiuyun, JIANG Miao, et al. Efficient Ni/SiO2 catalyst derived from nickel phyllosilicate for xylose hydrogenation to xylitol[J]. Catalysis Today, 2021, 365: 265-273. |
78 | DU Hong, MA Xiuyun, JIANG Miao, et al. Xylitol production from xylose by catalytic hydrogenation over an efficient Cu-Ni/SiO2 bimetallic catalyst[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(6): 2115-2126. |
79 | YUAN Xinsong, CAO Jiyun, WANG Rui, et al. Genetically engineering Escherichia coli to produce xylitol from corncob hydrolysate without lime detoxification[J]. Molecules, 2023, 28(4): 1550. |
80 | BONDAR Maryna, FONSECA M Manuela R DA, Teresa CESÁRIO M. Xylonic acid production from xylose by Paraburkholderia sacchari[J]. Biochemical Engineering Journal, 2021, 170: 107982. |
81 | ZHANG Junqiang, LIU Kangning, SUN Shaolong, et al. Photo-splitting xylose and xylan to xylonic acid and carbon monoxide[J]. Green Chemistry, 2022, 24(21): 8367-8376. |
82 | XU Hao, XIONG Shanshan, ZHAO Yuan, et al. Conversion of xylose to furfural catalyzed by carbon-based solid acid prepared from pectin[J]. Energy & Fuels, 2021, 35(12): 9961-9969. |
83 | HUA Derun, DING Hao, LIU Yunfeng, et al. Dehydration of xylose to furfural over imidazolium-based ionic liquid with phase separation[J]. Catalysts, 2021, 11(12): 1552. |
84 | RAHIMI Alireza, ABDOUSS Majid, FARHADIAN Abdolreza, et al. Development of a novel thermally stable inhibitor based on furfuryl alcohol for mild steel corrosion in a 15% HCl medium for acidizing application[J]. Industrial & Engineering Chemistry Research, 2021, 60(30): 11030-11044. |
85 | EBRAHIMI Hamidreza, Hossein ROGHANI‐MAMAQANI, Mehdi SALAMI‐KALAJAHI, et al. Preparation of furfuryl alcohol‐functionalized carbon nanotube and epoxidized novolac resin composites with high char yield[J]. Polymer Composites, 2018, 39(S2): E1231-E1236. |
86 | PAN Ganen, CHENG Shifang, ZHANG Yingxue, et al. In situ reduction of Cu nanoparticles on Mg-Al-LDH for simultaneous efficient catalytic transfer hydrogenation of furfural to furfuryl alcohol[J]. Chemical Communications, 2023, 59(22): 3301-3304. |
87 | HU Xun, JIANG Shengjuan, WU Liping, et al. One-pot conversion of biomass-derived xylose and furfural into levulinate esters via acid catalysis[J]. Chemical Communications, 2017, 53(20): 2938-2941. |
88 | DI FIDIO Nicola, ANTONETTI Claudia, RASPOLLI GALLETTI Anna Maria. Microwave-assisted cascade exploitation of giant reed (Arundo donax L.) to xylose and levulinic acid catalysed by ferric chloride[J]. Bioresource Technology, 2019, 293: 122050. |
89 | NARAYANAMOORTHY R, SIVAPRAKASAM S, SARAVANAN C G, et al. Experimental investigation of 2-methyl furan as an additive with camphor blended gasoline blend for SI engines[J]. Fuel, 2021, 306: 121748. |
90 | LI Hao, LIU Huimin, CAI Chiliu, et al. Tandem conversion xylose to 2-methylfuran with NiCu/C catalyst[J]. Catalysis Communications, 2023, 175: 106625. |
91 | RAO Jun, Ziwen LYU, CHEN Gegu, et al. Fabrication of flexible composite film based on xylan from pulping process for packaging application[J]. International Journal of Biological Macromolecules, 2021, 173: 285-292. |
92 | RAMOS Ana, Sónia SOUSA, EVTUGUIN Dmitry V, et al. Functionalized xylans in the production of xylan-coated paper laminates[J]. Reactive and Functional Polymers, 2017, 117: 89-96. |
[1] | 白毓黎, 白富栋, 张雷, 孙启梅, 李秀峥. 木质素基酚醛树脂的制备和过程优化[J]. 化工进展, 2024, 43(2): 1033-1038. |
[2] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
[3] | 王川东, 张君奇, 刘丁源, 马媛媛, 李锋, 宋浩. 微生物共利用木糖和葡萄糖生产化学品研究进展[J]. 化工进展, 2023, 42(1): 354-372. |
[4] | 徐丽洁, 刘豪杰, 薛瑞, 周小力, 周杰, 钱秀娟, 董维亮, 姜岷. 多学科交叉助力废塑料生物法循环回收利用[J]. 化工进展, 2022, 41(9): 5029-5036. |
[5] | 庄雨婷, 王建华, 向智艳, 赵娟, 徐琼, 刘贤响, 尹笃林. 半纤维素及其衍生物转化为γ-戊内酯及其动力学研究进展[J]. 化工进展, 2022, 41(7): 3519-3533. |
[6] | 蔡的, 李树峰, 司志豪, 秦培勇, 谭天伟. 生物丁醇分离技术的研究进展及发展趋势[J]. 化工进展, 2021, 40(3): 1161-1177. |
[7] | 高传瑞, 田纯焱, 李志合, 易维明, 袁巧霞, 付鹏, 张玉春, 李治宇. 生物原油炼制: 副产物内循环及水热自催化[J]. 化工进展, 2021, 40(10): 5348-5359. |
[8] | 张林雅, 薛伟, 顾丽敏. 半纤维素基阿维菌素载药微囊的制备及性能[J]. 化工进展, 2020, 39(8): 3246-3255. |
[9] | 岳军, 宁艳春, 岳春雨, 徐友海, 惠继星, 胡世洋, 屈海峰, 金刚, 谢宝华, 黄文涛. β-葡萄糖苷酶的发酵工艺优化及在木糖渣酶水解中的应用[J]. 化工进展, 2019, 38(s1): 186-192. |
[10] | 聂一凡, 候其东, 李维尊, 白川云龙, 鞠美庭. 糠醛的水解制备和应用研究进展[J]. 化工进展, 2019, 38(05): 2164-2178. |
[11] | 李琦, 蒋雯怡, 孙雨薇, 吴涛, 赵林果. Aspergillus niger NL-1来源的木聚糖酶的耐热性能改造及其在水解木聚糖中的应用[J]. 化工进展, 2019, 38(02): 1038-1044. |
[12] | 裴建军, 李杰, 李琦, 赵林果. Thermoanaerobacterium saccharolyticum JW/SL-YS485来源的GH11家族木聚糖酶的克隆表达及其应用[J]. 化工进展, 2018, 37(04): 1544-1551. |
[13] | 李亿, 张红岩, 朱婧, 秦艳, 王青艳, 申乃坤. 响应面优化木糖母液发酵产丁二酸[J]. 化工进展, 2018, 37(01): 252-259. |
[14] | 孙明荣, 刘晓欣, 谢文华, 宗保宁, 郜亮. 生物炼制经济的发展思路和展望[J]. 化工进展, 2017, 36(09): 3250-3256. |
[15] | 王月皎, 夏乾竣, 周佩, 张瑜, 王飞, 李迅. 解糖热纤维菌木糖苷酶的分离纯化及其酶学性质[J]. 化工进展, 2017, 36(03): 1041-1046. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |