化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2463-2474.DOI: 10.16085/j.issn.1000-6613.2023-1217
• 新能源与可再生能源 • 上一篇
收稿日期:
2023-07-17
修回日期:
2023-08-08
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
韩伟
作者简介:
韩伟(1982—),男,博士,副研究员,研究方向为石油洁净和转化过程化学及其催化剂、催化材料。E-mail:hanwei.ripp@sinopec.com。
HAN Wei(), HAN Hengwen, CHENG Wei, TANG Weijian
Received:
2023-07-17
Revised:
2023-08-08
Online:
2024-05-15
Published:
2024-06-15
Contact:
HAN Wei
摘要:
在碳中和目标的驱动下,炼化企业必须寻找新的路径,大力开发低碳、零碳的炼化新技术。生物基燃料性能与石油基燃料相近,但其全生命周期碳排放大幅降低,以生物质为原料生产替代燃料的技术,正成为炼油厂实现低碳、零碳发展的重要手段之一。本文综述了由生物质原料制碳氢类燃料(b-Fuels)相关技术的研究进展和发展趋势,主要包括无甘油生成的酯交换技术,控制产物选择性的酯交换技术,生物质油热裂解、催化裂解、加氢裂化技术,以及生物质与石油馏分共炼技术等,同时对未来炼化企业实现碳中和的技术发展路径进行了探讨,以期为炼厂转型发展提供思路借鉴。
中图分类号:
韩伟, 韩恒文, 程薇, 汤玮健. 碳中和目标驱动下生物质燃料技术研究进展[J]. 化工进展, 2024, 43(5): 2463-2474.
HAN Wei, HAN Hengwen, CHENG Wei, TANG Weijian. Research progress of biomass fuels technology driven by carbon neutrality[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2463-2474.
项目 | EN14214生物柴油 | 生物质燃料油 | ||
---|---|---|---|---|
格列哌醇类 | DMC制生物燃料油 | 生态柴油 | ||
反应物 | 甲醇/乙醇 | 乙酸甲酯/乙酸乙酯 | 碳酸二甲酯/二乙酯 | 甲醇/乙醇 |
催化剂 | NaOH、KOH | 酸、碱、酶 | 碱或酶 | 酶 |
产物 | FAME/FAEE | 甘油三乙酯、FAME/FAEE | 脂肪酸甘油碳酸酯 | 脂肪酸甘油单酯、FAME/FAEE |
副产物 | 甘油 | 无 | 无 | 无 |
分离清洗过程 | 非常复杂 | 无须 | 无须 | 无须 |
设备投资 | 中等 | 低 | 低 | 低 |
原料油中游离脂肪酸 | 转化为皂 | 转化为b-Fuels | 转化为b-Fuels | 转化为b-Fuels |
催化剂花费 | 低 | 低 | 低 | 低 |
环境影响 | 高(碱、盐污水处理) | 低 | 低 | 低 |
表1 3种生物质燃料油与生物柴油的性质与工艺过程比较
项目 | EN14214生物柴油 | 生物质燃料油 | ||
---|---|---|---|---|
格列哌醇类 | DMC制生物燃料油 | 生态柴油 | ||
反应物 | 甲醇/乙醇 | 乙酸甲酯/乙酸乙酯 | 碳酸二甲酯/二乙酯 | 甲醇/乙醇 |
催化剂 | NaOH、KOH | 酸、碱、酶 | 碱或酶 | 酶 |
产物 | FAME/FAEE | 甘油三乙酯、FAME/FAEE | 脂肪酸甘油碳酸酯 | 脂肪酸甘油单酯、FAME/FAEE |
副产物 | 甘油 | 无 | 无 | 无 |
分离清洗过程 | 非常复杂 | 无须 | 无须 | 无须 |
设备投资 | 中等 | 低 | 低 | 低 |
原料油中游离脂肪酸 | 转化为皂 | 转化为b-Fuels | 转化为b-Fuels | 转化为b-Fuels |
催化剂花费 | 低 | 低 | 低 | 低 |
环境影响 | 高(碱、盐污水处理) | 低 | 低 | 低 |
原料 | 质量比 | 催化剂 | 温度/℃ | 压力/MPa | 空速/h-1 |
---|---|---|---|---|---|
SGRO/废食用油[ | 80/20 | NiMo/Al2O3 | 350 | 5.5 | 2.0 |
AGO/废煎炸油[ | 80/20、50/50 | NiMo/Al2O3 | 330~370 | 5.6 | 1.0 |
SGRO/麻风树油[ | 90/10、80/20 | CoMo/Al2O3、NiMo/Al2O3 | 300 | 5.0 | — |
柴油/废食用油[ | 75/25 | NiW/SiO2-Al2O3、NiMo/Al2O3 | 340~380 | 5.0 | 2.0~4.0 |
HVGO/菜籽油[ | 90/10、80/20 | NiMo/Al2O3 | 360~395 | 8.0~10.0 | 1.0~2.5 |
SGRO/RSO[ | 70/30 | Mo/Al2O3、NiMo/Al2O3-SAPO-11 | 350~380 | 4.0~7.0 | 1.0~1.5 |
表2 生物质油与石油馏分共炼的工艺条件
原料 | 质量比 | 催化剂 | 温度/℃ | 压力/MPa | 空速/h-1 |
---|---|---|---|---|---|
SGRO/废食用油[ | 80/20 | NiMo/Al2O3 | 350 | 5.5 | 2.0 |
AGO/废煎炸油[ | 80/20、50/50 | NiMo/Al2O3 | 330~370 | 5.6 | 1.0 |
SGRO/麻风树油[ | 90/10、80/20 | CoMo/Al2O3、NiMo/Al2O3 | 300 | 5.0 | — |
柴油/废食用油[ | 75/25 | NiW/SiO2-Al2O3、NiMo/Al2O3 | 340~380 | 5.0 | 2.0~4.0 |
HVGO/菜籽油[ | 90/10、80/20 | NiMo/Al2O3 | 360~395 | 8.0~10.0 | 1.0~2.5 |
SGRO/RSO[ | 70/30 | Mo/Al2O3、NiMo/Al2O3-SAPO-11 | 350~380 | 4.0~7.0 | 1.0~1.5 |
1 | Internantional Energy Agency. CO2 emissions in 2022[R/OL]. . |
2 | ZACHARY B, CARRIE D. A low-carbon future in the US depends on decarbonizing petroleun refineries[R]. World Resources Institude, 2021-10-21. |
3 | HEPBURN Cameron, ADLEN Ella, BEDDINGTON John, et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature, 2019, 575(7781): 87-97. |
4 | 舒玉美,史成香,潘伦,等. 生物基喷气燃料的生产及应用进展[J]. 石油炼制与化工,2021,52(10),88-93. |
SHU Yumei, SHI Chengxiang, PAN Lun, et al. Progress in production and application of biomass-based jet fuel[J]. Petroleum Processing and Petrochemicals, 2021,52(10):88-93. | |
5 | SWIDERSKI Erwin, STENGEL Benjamin, PINKERT Fabian, et al. Influence of e-fuels on flame structures and combustion processes of large diesel engines[J]. MTZ Worldwide, 2022, 83(5): 54-61. |
6 | HUNICZ Jacek, MIKULSKI Maciej, SHUKLA Pravesh Chandra, et al. Partially premixed combustion of hydrotreated vegetable oil in a diesel engine: Sensitivity to boost and exhaust gas recirculation[J]. Fuel, 2022, 307: 121910. |
7 | ESTEVEZ Rafael, Laura AGUADO-DEBLAS, LÓPEZ-TENLLADO Francisco J, et al. Biodiesel is dead: Long life to advanced biofuels—A comprehensive critical review[J]. Energies, 2022, 15(9): 3173. |
8 | TAN Kok Tat, Gaik Tin ANG. Recent trends and advances in glycerol-free biodiesel production[M]//Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts. Amsterdam: Elsevier, 2019: 153-164. |
9 | SAKDASRI Winatta, KOMINTARACHAT Cholada, SAWANGKEAW Ruengwit, et al. A review of supercritical technologies for lipid-based biofuels production: The glycerol-free processes[J]. Engineering Journal, 2021, 25(2): 1-14. |
10 | VISIOLI Luiz Jardel, TRENTINI Caroline Portilho, DE CASTILHOS Fernanda, et al. Esters production in continuous reactor from macauba pulp oil using methyl acetate in pressurized conditions[J]. The Journal of Supercritical Fluids, 2018, 140: 238-247. |
11 | DHAWAN Manali S, BARTON Scott Calabrese, YADAV Ganapati D. Interesterification of triglycerides with methyl acetate for the co-production biodiesel and triacetin using hydrotalcite as a heterogenous base catalyst[J]. Catalysis Today, 2021, 375: 101-111. |
12 | MAHFUD Mahfud, ANSORI Ansori. Box-behnken design for optimization on biodiesel production from palm oil and methyl acetate using ultrasound assisted interesterification method[J]. Periodica Polytechnica Chemical Engineering, 2021, 66(1): 30-42. |
13 | QUINTANA-GÓMEZ L, LADERO M, CALVO L. Enzymatic production of biodiesel from alperujo oil in supercritical CO2 [J]. The Journal of Supercritical Fluids, 2021, 171: 105184. |
14 | RYMS M, LEWANDOWSKI W, JANUSZEWICZ K, et al. Methods of liquid biofuel production—The biodiesel example[J]. Proc. ECOpole, 2013,20(10):112. |
15 | ESAN Akintomiwa O, OLABEMIWO Ojeyemi M, SMITH Siwaporn M, et al. A concise review on alternative route of biodiesel production via interesterification of different feedstocks[J]. International Journal of Energy Research, 2021, 45(9): 12614-12637. |
16 | KHOUNANI Zahra, Homa HOSSEINZADEH-BANDBAFHA, MOUSTAKAS Konstantinos, et al. Environmental life cycle assessment of different biorefinery platforms valorizing olive wastes to biofuel, phosphate salts, natural antioxidant, and an oxygenated fuel additive (triacetin)[J]. Journal of Cleaner Production, 2021, 278: 123916. |
17 | LENG Lijian, LI Wenyan, LI Hailong, et al. Cold flow properties of biodiesel and the improvement methods: A review[J]. Energy & Fuels, 2020, 34(9): 10364-10383. |
18 | RAO Venkateswara P. Role of Triacetin additive in the performance of single cylinder DI diesel engine with COME biodiesel[J]. International Journal of Advanced Engineering Research and Science, 2018, 5(9): 253-260. |
19 | ESAN Akintomiwa Olumide, ADEYEMI Ayodele Dorcas, GANESAN Shangeetha. A review on the recent application of dimethyl carbonate in sustainable biodiesel production[J]. Journal of Cleaner Production, 2020, 257: 120561. |
20 | MEDRANO-GARCÍA J D, JAVALOYES-ANTÓN J, VÁZQUEZ D, et al. Alternative carbon dioxide utilization in dimethyl carbonate synthesis and comparison with current technologies[J]. Journal of CO2 Utilization, 2021, 45: 101436. |
21 | DHAWAN Manali S, YADAV Ganapati D. Insight into a catalytic process for simultaneous production of biodiesel and glycerol carbonate from triglycerides[J]. Catalysis Today, 2018, 309: 161-171. |
22 | PRADHAN Gitanjali, SHARMA Yogesh Chandra. Green synthesis of glycerol carbonate by transesterification of bio glycerol with dimethyl carbonate over Mg/ZnO: A highly efficient heterogeneous catalyst[J]. Fuel, 2021, 284: 118966. |
23 | PANADARE D C, RATHOD V K. Microwave assisted enzymatic synthesis of biodiesel with waste cooking oil and dimethyl carbonate[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 133: S518-S524. |
24 | FAN Pei, WANG Jiayan, XING Shiyou, et al. Synthesis of glycerol-free biodiesel with dimethyl carbonate over sulfonated imidazolium ionic liquid[J]. Energy & Fuels, 2017, 31(4): 4090-4095. |
25 | AL-SAADI Luma Sh, Valentine C EZE, HARVEY Adam P. Techno-economic analysis of processes for biodiesel production with integrated co-production of higher added value products from glycerol[J]. Biofuels, 2022, 13(4): 489-496. |
26 | PANCHAL Balaji, ZHU Zheng, QIN Shenjun, et al. The Current state applications of ethyl carbonate with ionic liquid in sustainable biodiesel production: A review[J]. Renewable Energy, 2022, 181: 341-354. |
27 | LUNA D, BAUTISTA F M, CABALLERO V, et al. Method for producing biodiesel using porcine pancreatic lipase as an enzymatic catalyst: WO2008009772A1[P]. 2008-01-24. |
28 | LUNA Carlos, SANCHO Enrique, LUNA Diego, et al. Biofuel that keeps glycerol as monoglyceride by 1,3-selective ethanolysis with pig pancreatic lipase covalently immobilized on AlPO4 support[J]. Energies, 2013, 6(8): 3879-3900. |
29 | PARYANTO Imam, PRAKOSO Tirto, SUYONO Eko Agus, et al. Determination of the upper limit of monoglyceride content in biodiesel for B30 implementation based on the measurement of the precipitate in a biodiesel-petrodiesel fuel blend (BXX)[J]. Fuel, 2019, 258: 116104. |
30 | Fevzi YAŞAR. Comparision of fuel properties of biodiesel fuels produced from different oils to determine the most suitable feedstock type[J]. Fuel, 2020, 264: 116817. |
31 | LUNA Carlos, Victoria GASCÓN-PÉREZ, LÓPEZ-TENLLADO Francisco J, et al. Enzymatic production of ecodiesel by using a commercial lipase CALB, immobilized by physical adsorption on mesoporous organosilica materials[J]. Catalysts, 2021, 11(11): 1350. |
32 | CALERO Juan, CUMPLIDO Gema, LUNA Diego, et al. Production of a biofuel that keeps the glycerol as a monoglyceride by using supported KF as heterogeneous catalyst[J]. Energies, 2014, 7(6): 3764-3780. |
33 | CALERO Juan, LUNA Diego, LUNA Carlos, et al. Optimization by response surface methodology of the reaction conditions in 1, 3-selective transesterification of sunflower oil, by using CaO as heterogeneous catalyst[J]. Molecular Catalysis, 2020, 484: 110804. |
34 | HURTADO Beatriz, POSADILLO Alejandro, LUNA Diego, et al. Synthesis, performance and emission quality assessment of ecodiesel from castor oil in diesel/biofuel/alcohol triple blends in a diesel engine[J]. Catalysts, 2019, 9(1): 40. |
35 | 吴石亮. 生物质基多元醇醚含氧燃料制备及燃烧特性研究[D]. 南京: 东南大学, 2018. |
WU Shiliang. Study on preparation and combustion characteristics of biomass-based polyol ether oxygenated fuel[D]. Nanjing: Southeast University, 2018. | |
36 | OSORIO-GONZÁLEZ Carlos S, Natali GÓMEZ-FALCON, Fabiola SANDOVAL-SALAS, et al. Production of biodiesel from castor oil: A review[J]. Energies, 2020, 13(10): 2467. |
37 | PACHECO Gonçalo, SILVA André, Mário COSTA. Single-droplet combustion of jet A-1, hydroprocessed vegetable oil, and their blends in a drop-tube furnace[J]. Energy & Fuels, 2021, 35(9): 7232-7241. |
38 | HONGLOI Nitchakul, PRAPAINAINAR Paweena, PRAPAINAINAR Chaiwat. Review of green diesel production from fatty acid deoxygenation over Ni-based catalysts[J]. Molecular Catalysis, 2022, 523: 111696. |
39 | KHAN Shamshad, NAUSHAD M, IQBAL Jibran, et al. Challenges and perspectives on innovative technologies for biofuel production and sustainable environmental management[J]. Fuel, 2022, 325: 124845. |
40 | LEE Xin Jiat, Hwai Chyuan ONG, GAN Yong yang, et al. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production[J]. Energy Conversion and Management, 2020, 210: 112707. |
41 | HAGHIGHAT Manouchehr, MAJIDIAN Nasrollah, HALLAJISANI Ahmad, et al. Production of bio-oil from sewage sludge: A review on the thermal and catalytic conversion by pyrolysis[J]. Sustainable Energy Technologies and Assessments, 2020, 42: 100870. |
42 | PANCHASARA Heena, ASHWATH Nanjappa. Effects of pyrolysis bio-oils on fuel atomisation—A review[J]. Energies, 2021, 14(4): 794. |
43 | CORTEZ Luís, FRANCO Telma Teixeira, Gustavo VALENÇA, et al. Perspective use of fast pyrolysis bio-oil (FPBO) in maritime transport: The case of Brazil[J]. Energies, 2021, 14(16): 4779. |
44 | SHIMADA Iori, KATO Shin, HIRAZAWA Naoki, et al. Deoxygenation of triglycerides by catalytic cracking with enhanced hydrogen transfer activity[J]. Industrial & Engineering Chemistry Research, 2017, 56(1): 75-86. |
45 | ABDULKAREEM-ALSULTAN G, ASIKIN-MIJAN N, MUSTAFA-ALSULTAN G, et al. Efficient deoxygenation of waste cooking oil over Co3O4-La2O3-doped activated carbon for the production of diesel-like fuel[J]. RSC Advances, 2020, 10(9): 4996-5009. |
46 | KAMARUZAMAN Muhammad Fadhli, TAUFIQ-YAP Yun Hin, DERAWI Darfizzi. Green diesel production from palm fatty acid distillate over SBA-15-supported nickel, cobalt, and nickel/cobalt catalysts[J]. Biomass and Bioenergy, 2020, 134: 105476. |
47 | YU Cong, YU Shitao, LI Lu. Upgraded methyl oleate to diesel-like hydrocarbons through selective hydrodeoxygenation over Mo-based catalyst[J]. Fuel, 2022, 308: 122038. |
48 | BAHARUDIN Khairul Basyar, ABDULLAH Nurulhuda, TAUFIQ-YAP Yun Hin, et al. Renewable diesel via solventless and hydrogen-free catalytic deoxygenation of palm fatty acid distillate[J]. Journal of Cleaner Production, 2020, 274: 122850. |
49 | PATTANAIK Bhabani Prasanna, MISRA Rahul Dev. Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 545-557. |
50 | WANG Wenbo, LUO Zhongyang, LI Simin, et al. Effects of the controllable mesostructure of nano-sized ZSM-5 on the co-cracking of phenolic bio-oil model compounds and ethanol[J]. Catalysis Science & Technology, 2019, 9(13): 3525-3536. |
51 | KASSA DADA Tewodros, ISLAM Md Anwarul, KUMAR Ravinder, et al. Catalytic co-pyrolysis of ironbark and waste cooking oil using strontium oxide-modified Y-zeolite for high-quality bio-oil production[J]. Chemical Engineering Journal, 2022, 450: 138448. |
52 | TRIANTAFYLLIDIS Kostas S, ILIOPOULOU Eleni F, ANTONAKOU Eleni V, et al. Hydrothermally stable mesoporous aluminosilicates (MSU-S) assembled from zeolite seeds as catalysts for biomass pyrolysis[J]. Microporous and Mesoporous Materials, 2007, 99(1/2): 132-139. |
53 | LU Changbo, YAO Jianzhong, LIN Weigang, et al. Study on biomass catalytic pyrolysis for production of bio-gasoline by on-line FTIR[J]. Chinese Chemical Letters, 2007, 18(4): 445-448. |
54 | 李凝, 芦超, 尹跃华, 等. M x O y -Al2O3复合氧化物在生物质油催化裂化中的催化性能[J]. 材料导报, 2016, 30(8):76-79. |
LI Ning, LU Chao, YIN Yuehua, et al. Catalytic performances of M x Oy-Al2O3 composite oxides for catalyzed cracking of biomass oil[J]. Materials Review, 2016, 30(8):76-79. | |
55 | ZHANG Xinghua, WANG Tiejun, MA Longlong, et al. Production of cyclohexane from lignin degradation compounds over Ni/ZrO2-SiO2 catalysts[J]. Applied Energy, 2013, 112: 533-538. |
56 | 李凝, 卢超, 刘薛恩, 等. ZrO2负载量对ZrO2-脱铝沸石在生物质油催化裂化中的性能影响[J]. 化学研究与应用, 2016, 28(10):1479-1483. |
LI Ning, LU Chao, Liu Xueen, et al. Effect of ZrO2 loading on the performance of ZrO2-dealuminated zeolite in catalytic cracking of biomass oil[J]. Chemical Research and Application, 2016, 28(10):1479-1483. | |
57 | JIRAROJ Duangkamon, JIRARATTANAPOCHAI Orhathai, ANUTRASAKDA Wipark, et al. Selective decarboxylation of biobased fatty acids using a Ni-FSM-16 catalyst[J]. Applied Catalysis B: Environmental, 2021, 291: 120050. |
58 | ASIKIN-MIJAN N, ABDULKAREEM-ALSULTAN G, MASTULI M S, et al. Single-step catalytic deoxygenation-cracking of tung oil to bio-jet fuel over CoW/silica-alumina catalysts[J]. Fuel, 2022, 325: 124917. |
59 | 章国栋. 熔盐裂解油脂制备生物燃料[D]. 杭州: 浙江工业大学, 2014. |
ZHANG Guodong. Preparation of biofuels by cracking oils in molten salt[D]. Hangzhou: Zhejiang University of Technology, 2014. | |
60 | 徐建忠. 熔融碱催化裂化小桐子油的试验研究[D]. 昆明: 昆明理工大学, 2019. |
XU Jianzhong. Experimental study on catalytic cracking of Jatropha curcas oil with molten alkali[D]. Kunming: Kunming University of Science and Technology, 2019. | |
61 | DOUVARTZIDES Savvas L, CHARISIOU Nikolaos D, PAPAGERIDIS Kyriakos N, et al. Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines[J]. Energies, 2019, 12(5): 809. |
62 | VERIANSYAH Bambang, HAN Jae Young, KIM Seok Ki, et al. Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts[J]. Fuel, 2012, 94: 578-585. |
63 | Martin HÁJEK, Aleš VÁVRA, DE PAZ CARMONA Héctor, et al. The catalysed transformation of vegetable oils or animal fats to biofuels and bio-lubricants: A review[J]. Catalysts, 2021, 11(9): 1118. |
64 | DE PAZ CARMONA Héctor, AKHMETZYANOVA Uliana, Zdeněk TIŠLER, et al. Hydrotreating atmospheric gasoil and co-processing with rapeseed oil using supported Ni-Mo and Co-Mo carbide catalysts[J]. Fuel, 2020, 268: 117363. |
65 | HACHEMI Imane, KUMAR Narendra, Päivi MÄKI-ARVELA, et al. Sulfur-free Ni catalyst for production of green diesel by hydrodeoxygenation[J]. Journal of Catalysis, 2017, 347: 205-221. |
66 | CHEN Jinlei, ZHU Yongfeng, LI Wenbin, et al. Production of diesel-like hydrocarbons via hydrodeoxygenation of palmitic acid over Ni/TS-1 catalyst[J]. Biomass and Bioenergy, 2021, 149: 106081. |
67 | CABRERA Eduardo, DE SOUSA João M Melo. Use of sustainable fuels in aviation—A review[J]. Energies, 2022, 15(7): 2440. |
68 | WU Le, WANG Yuqi, ZHENG Lan, et al. Design and optimization of bio-oil co-processing with vacuum gas oil in a refinery[J]. Energy Conversion and Management, 2019, 195: 620-629. |
69 | 吴乐, 王竞, 王玉琪, 等. 生物质油与蜡油在FCC装置共炼的多目标优化[J]. 化工学报, 2020, 71(5): 2182-2189. |
WU Le, WANG Jing, WANG Yuqi, et al. Multi-objective optimization of co-processing of bio-oil and vacuum gas oil in FCC[J]. CIESC Journal, 2020, 71(5): 2182-2189. | |
70 | Mustafa AL-SABAWI, CHEN Jinwen, Siauw NG. Fluid catalytic cracking of biomass-derived oils and their blends with petroleum feedstocks: A review[J]. Energy & Fuels, 2012, 26(9): 5355-5372. |
71 | BEZERGIANNI Stella, DAGONIKOU Vasiliki, SKLARI Stella. The suspending role of H2O and CO on catalytic hydrotreatment of gas-oil; myth or reality?[J]. Fuel Processing Technology, 2016, 144: 20-26. |
72 | IMAI Hiroyuki, KIMURA Toshiyuki, TERASAKA Kazusa, et al. Hydroconversion of fatty acid derivative over supported Ni-Mo catalysts under low hydrogen pressure[J]. Catalysis Today, 2018, 303: 185-190. |
73 | David KUBIČKA, Jan HORÁČEK. Deactivation of HDS catalysts in deoxygenation of vegetable oils[J]. Applied Catalysis A: General, 2011, 394(1/2): 9-17. |
74 | H De Paz CARMONA, ALFARO O de la Torre, BRITO ALAYÓN A, et al. Co-processing of straight Run gas oil with used cooking oil and animal fats[J]. Fuel, 2019, 254: 115583. |
75 | BEZERGIANNI Stella, DIMITRIADIS Athanasios, MELETIDIS Georgios. Effectiveness of CoMo and NiMo catalysts on co-hydroprocessing of heavy atmospheric gas oil-waste cooking oil mixtures[J]. Fuel, 2014, 125: 129-136. |
76 | Satyarthi JK, CHIRANJEEVI T, Gokak DT, et al. Studies on co-processing of jatropha oil with diesel fraction in hydrodesulfurization[J]. Fuel Processing Technology, 2014, 118: 180-186. |
77 | RANA Bharat S, KUMAR Rohit, TIWARI Rashmi, et al. Transportation fuels from co-processing of waste vegetable oil and gas oil mixtures[J]. Biomass and Bioenergy, 2013, 56: 43-52. |
78 | CHEN Jinwen, FAROOQI Hena, FAIRBRIDGE Craig. Experimental study on co-hydroprocessing canola oil and heavy vacuum gas oil blends[J]. Energy & Fuels, 2013, 27(6): 3306-3315. |
79 | VLASOVA E N, PORSIN A A, ALEKSANDROV P V, et al. Co-hydroprocessing of straight-run gasoil-rapeseed oil mixture over stacked bed Mo/Al2O3+NiMo/Al2O3-SAPO-11 catalysts[J]. Fuel, 2021, 285: 119504. |
80 | DE PAZ CARMONA Héctor, Eliška SVOBODOVÁ, Zdeněk TIŠLER, et al. Hydrotreating of atmospheric gas oil and co-processing with rapeseed oil using sulfur-free PMoC x /Al2O3 catalysts[J]. ACS Omega, 2021, 6(11): 7680-7692. |
81 | DE PAZ CARMONA Héctor, Jan HORÁČEK, Zdeněk TIŠLER, et al. Sulfur free supported MoC x and MoN x catalysts for the hydrotreatment of atmospheric gasoil and its blends with rapeseed oil[J]. Fuel, 2019, 254: 115582. |
82 | 张静瑜, 雷晴宇, 张帅, 等. 生物质油和蜡油在FCC装置共炼过程的碳排放分析和对比[J]. 化学反应工程与工艺, 2021, 37(3):253-258, 280. |
ZHANG Jingyu, LEI Qingyu, ZHANG Shuai, et al. Carbon emission analysis and comparison of co-processing of bio-oil and vacuum gas oil in FCC[J]. Chemical Reaction Engineering and Technology, 2021, 37(3):253-258, 280. | |
83 | 李阳, 史美荣, 沈若莹, 等. 耦合加氢反应动力学和FCC杂质分配作用的生物质油与蜡油共炼过程的操作优化[J]. 石油学报(石油加工), 2022, 38(1):199-207. |
LI Yang, SHI Meirong, SHEN Ruoying, et al. Operational optimization for co-processing of bio-oil and vacuum gas oil integrating hydrogenation reaction kinetics and impurity distributions of FCC[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(1):199-207. | |
84 | SOTELO-BOYÁS R, TREJO-ZÁRRAGA F, HERNÁNDEZ-LOYO F D J. Hydroconversion of triglycerides into green liquid fuels[M]//Hydrogenation. 2012: 338. |
85 | VERDIER S, ALKILDE O F, GABRIELSEN J. Hydroprocessing of renewable feedstocks—Challenges and solutions[EB/OL]. . |
86 | VÁSQUEZ Maria Cecilia, SILVA Electo Eduardo, CASTILLO Edgar Fernando. Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production[J]. Biomass and Bioenergy, 2017, 105: 197-206. |
87 | 中国石化石油化工科学研究院. 国内首套生物喷气燃料加氢装置一次开车成功[J].石油炼制与化工,2022,53(9):16. |
SINOPEC Research Institute of Petroleum Processing. The first domestic bio-jet fuel hydrogenation unit has been successfully launched[J]. Petroleum Processing and Petrochemicals, 2022, 53(9): 16. | |
88 | Kok Siew NG, FAROOQ Danial, YANG Aidong. Global biorenewable development strategies for sustainable aviation fuel production[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111502. |
89 | Antonio ARGUELLES-ARGUELLES, AMEZCUA-ALLIERI Myriam Adela, RAMÍREZ-VERDUZCO Luis Felipe. Life cycle assessment of green diesel production by hydrodeoxygenation of palm oil[J]. Frontiers in Energy Research, 2021, 9: 296. |
[1] | 杨梦茹, 彭琴, 常玉龙, 邱淑兴, 张溅波, 江霞. 生物炭替代煤粉/焦炭高炉炼铁碳减排技术研究进展[J]. 化工进展, 2024, 43(1): 490-500. |
[2] | 舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478. |
[3] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[4] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[5] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[6] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[7] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[8] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[9] | 刘含笑, 吴黎明, 林青阳, 周烨, 罗象, 桂志军, 刘小伟, 单思珂, 朱前林, 陆诗建. 碳足迹评估技术及其在重点工业行业的应用[J]. 化工进展, 2023, 42(5): 2201-2218. |
[10] | 王雪, 徐期勇, 张超. 木质纤维素类生物质水热炭化机理及水热炭应用进展[J]. 化工进展, 2023, 42(5): 2536-2545. |
[11] | 王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665. |
[12] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[13] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[14] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[15] | 陈崇明, 曾四鸣, 罗小娜, 宋国升, 韩忠阁, 郁金星, 孙楠楠. 基于超交联聚合物前体的碳载钾基CO2吸附剂制备和性能[J]. 化工进展, 2023, 42(3): 1540-1550. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |